
Supplementary Material for DDF-HO: Hand-Held
Object Reconstruction via Conditional Directed

Distance Field

1 Network Architecture

Given an RGB input, DDF-HO first uses a ResNet34 [6] to generate hierarchical feature maps at the
resolution of 56x56, 28x28, 14x14 and 7x7 respectively (Fig. 1 (a)). We use bilinear interpolation to
upsample the feature map to the same size, which is 56x56. Then, all the upsampled feature maps go
through a bottleneck convolutional layer to have a channel size of 256, resulting in an output size of
56x56x256. After 2D ray sampling process depicted in Sec. 3.3 in the main manuscript, the local
point feature Fp

2D (Q) and the sampled local ray feature F l
2D (K and V ) are fed to a multi-head

attention network [9] with number of head 2 during our implementation. The aggregated 2D ray
feature F2D is generated by the addition of Fp

2D and the output of the multi-head attention layer
(Fig. 1 (b)). The concatenated feature F = {P, θ,F2D,F3D} for each 3D ray LP,θ is fed to an
8-layer MLP to yield corresponding DDF value: distance D and binary visible signal ξ, as described
in Sec. 3.5 in the main manuscript (Fig. 1 (c). The total number of parameters of our network is 25M.
Thanks to the simple design of our network architecture, DDF-HO can reconstruct object in real-time
(∼ 50 FPS).

2 Details of 3D Intersection-aware Hand Features

In Section 3.4 of the main manuscript, we introduce the 3D intersection-aware hand feature F3D,
which is represented as F3D = {FG

3D,FL
3D}. The specific construction of FL

3D is detailed in Section
3.4. The global hand pose embedding FG

3D is created using an explicit articulation embedder based
on the approach described in [11]. To elaborate, given the hand articulation parameter θH , we employ
forward kinematics [11, 8] to derive the transformation that maps a sample point P to each joint
coordinate. The resulting 15 joint coordinates corresponding to P are concatenated to form FG

3D.
This process enables the extraction of global information from the hand joints.

3 Ray Sampling Algorithm for DDF

During the testing stage, the starting points {P} of the sampled rays for DDF-HO are uniformly
distributed within a uniform sphere, and the directions {θ} are also uniformly sampled. However,
during the training stage, as we have access to the model information, employing diverse sampling
algorithms can enhance the training process, leading to a robust 3D perception capability [1].

Our training process involves the utilization of five distinct types of data samples. To sample {LP,θ},
instead of directly obtaining {θ}, we select the corresponding endpoints {PE} and calculate each θ
as θ = (PE − P)/|PE − P|. The five types of data samples for training are as follows: I. Both {P}
and {PE} are uniformly sampled within a uniform sphere. II. {P} is uniformly sampled within a
uniform sphere, while {PE} is uniformly sampled on the mesh surface. III. {P} is sampled along
the tangent space of the mesh, while {PE} is uniformly sampled on the mesh surface. IV. {P} is
sampled along the tangent space of the mesh and then perturbed with Gaussian noise, while {PE} is
uniformly sampled on the mesh surface. V. {P} is sampled on the surface of a uniform sphere, while
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Figure 1: Network Architecture of DDF-HO.

Method F-5 ↑ F-10 ↑ CD ↓ F-5 ↑ F-10 ↑ CD ↓
Ours 0.28 0.42 0.55 0.24 0.36 0.73

Error Bar ±0.012 ±0.010 ±0.018 ±0.006 ±0.005 ±0.013

Table 1: Error bars on HO3D(v2) [4] dataset with finetuning (left) and zero-shot generalization from
ObMan [5] dataset (right).

{PE} is uniformly sampled on the mesh surface. For each object, we sampled a total of 20,000 rays,
distributed among the five algorithms as follows: 10,000 for algorithm I, 2,500 for algorithms II, III,
IV, and V respectively. The effectiveness of this sampling strategy in training the DDF network has
been demonstrated by [1].

4 Ground Truth Generation for DDF

Once we have obtained the samples {LP,θ}, we generate the ground truth distance D and binary
visible signal ξ using the Trimesh library 1. The ray marching algorithm in Trimesh is utilized to
determine the intersection location of each ray, in the event that it intersects with the object mesh.
Simultaneously, Trimesh provides the signal (ξ) indicating whether the ray intersects the mesh or not.
To calculate the distance D, we measure the Euclidean distance between the origin of the ray and its
corresponding intersection location along the given direction.

5 Error Bars of Experiments

To fully illustrate the statistical significance of our experiments, we provide corresponding error bars
of Tab. 1, 2 and 3 in our main manuscript, as is shown in Tab. 1, 2 and 3. We obtain the error bars by
running the experiments 5 times with different random seeds.

6 Quantitative Results on ObMan by Category

In this section, we provide the corresponding table (Tab. 4) for Fig. 4 in the main manuscript to give
more detailed comparison results on ObMan by category. DDF-HO consistently outperforms the

1https://trimsh.org/
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Method F-5 ↑ F-10 ↑ CD ↓ F-5 ↑ F-10 ↑ CD ↓
Ours 0.16 0.22 1.59 0.14 0.19 1.89

Error Bar ±0.010 ±0.006 ±0.017 ±0.008 ±0.010 ±0.009

Table 2: Error bars on MOW [2] dataset, with the setting of finetuning (left) and zero-shot generaliza-
tion from ObMan [5] dataset (right).

Method F-5 ↑ F-10 ↑ CD ↓
Ours 0.55 0.67 0.14

Error Bar ±0.012 ±0.005 ±0.003

Table 3: Error bars on ObMan [5] dataset.

current state-of-the-art [11] on each category, especially for some tiny objects hard to reconstruct
well such as cellphone and knife.

7 Additional Quantitative Comparisons on ObMan

Input image
Ground truth

View 1
IHOI
View1

Ours
View 1

Ground truth
View2

IHOI
View 2

Ours
View 2

Figure 2: Visualization results on ObMan [5].

Tab. 5 exhibits additional quantitative comparison results on ObMan dataset. We add another recent
hand-object reconstruction method AlignSDF [3]. Results show that DDF-HO still consistently
outperforms all competitors.

3



Metrics Methods Bottle Bowl Camera Can Cellphone Jar Knife Remote Mean

F-5 ↑ IHOI [11] 0.52 0.35 0.34 0.51 0.43 0.40 0.28 0.38 0.42
Ours 0.61 0.56 0.50 0.65 0.58 0.53 0.46 0.52 0.55

F-10 ↑ IHOI [11] 0.73 0.56 0.57 0.72 0.63 0.61 0.46 0.59 0.63
Ours 0.73 0.70 0.64 0.79 0.68 0.66 0.56 0.63 0.67

CD ↓ IHOI [11] 0.34 1.54 0.88 0.32 0.94 0.81 4.12 1.11 1.02
Ours 0.10 0.15 0.14 0.09 0.13 0.13 0.29 0.18 0.14

Table 4: Metrics on ObMan [5] dataset by category. Overall best results are in bold.

Method F-5 ↑ F-10 ↑ CD ↓
HO [5] 0.23 0.56 0.64
GF [7] 0.30 0.51 1.39

AlignSDF [3] 0.40 0.64 3.38
IHOI [11] 0.42 0.63 1.02

Ours 0.55 0.67 0.14

Table 5: Additional Results on ObMan [5] dataset. Overall best results are in bold.

8 Additional Qualitative Results

Additional visualization results are shown in Fig. 2, 3, 4. More 3D visualization results are provided
in our attached video.
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Figure 3: Visualization results on MOW [2].

9 Experiments Using Other Representation

We also consider leveraging occupancy as the shape representation to fully demonstrate the superiority
of DDF representation for hand-held object reconstruction. Since no off-the-shelf hand-held object
reconstruction pipelines leverage occupancy as the shape representation, we design a baseline method
ourselves following the widely-used 2D-3D lifting scheme in single-view reconstruction [10]. We
first use the same backbone as our method (ResNet34) to extract per-pixel features. The extracted
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Figure 4: Visualization results on HO3D(v2) [4].

Method F-5 ↑ F-10 ↑ CD ↓ F-5 ↑ F-10 ↑ CD ↓
Pix2Vox [10] 0.24 0.45 1.81 0.06 0.17 6.12

IHOI [11] 0.42 0.63 1.02 0.21 0.38 1.99
Ours 0.55 0.67 0.14 0.28 0.42 0.55

Table 6: Results considering occupancy representation on ObMan [5] dataset (left) and HO3D [4]
dataset (right). Overall best results are in bold.

features are then back-projected to the volume (32x32x32, the same as [10]). For each voxel inside
the volume, the predicted hand pose (the same as used in DDF-HO, parameterized as the MANO
model parameters) is also concatenated to its feature vector. Finally, we predict the occupancy as in
Pix2Vox [10]. The results on ObMan (the left block) and HO3D(V2) (the right block) are shown as
Tab. 6.

10 Failure Cases

We add some visual results of the failure cases to comprehensively showcase our method, as exhibited
in Fig. 5. It can be seen that reconstructing very thin objects is still a big challenge for all methods.
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Figure 5: Visualization results of the failure cases
.
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