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ABSTRACT

Point processes offer a versatile framework for sequential event modeling. How-
ever, the computational challenges and constrained representational power of the
existing point process models have impeded their potential for wider applications.
This limitation becomes especially pronounced when dealing with event data that
is associated with multi-dimensional or high-dimensional marks such as texts or
images. To address this challenge, this study proposes a novel event generative
framework for modeling point processes with high-dimensional marks. We aim to
capture the distribution of events without explicitly specifying the conditional in-
tensity or probability density function. Instead, we use a conditional generator that
takes the history of events as input and generates the high-quality subsequent event
that is likely to occur given the prior observations. The proposed framework offers
a host of benefits, including considerable representational power to capture intricate
dynamics in multi- or even high-dimensional event space, as well as exceptional
efficiency in learning the model and generating samples. Our numerical results
demonstrate superior performance compared to other state-of-the-art baselines.

1 INTRODUCTION

Point processes are widely used to model asynchronous event data ubiquitously seen in real-world
scenarios, such as earthquakes (Ogata, 1998; Zhu et al., 2021a), healthcare records (Dong et al.,
2023), and criminal activities (Mohler et al., 2011). These data typically consist of a sequence of
events that denote when and where each event occurred, along with additional descriptive information
such as category, locations, and even text or image, commonly referred to as “marks”. With the rise
of complex systems, advanced models that go beyond the classic parametric point processes (Hawkes,
1971) are craved to capture intricate dynamics involved in the data generating mechanism.

Neural point processes (Shchur et al., 2021), such as Recurrent Marked Temporal Point Processes
(Du et al., 2016) and Neural Hawkes (Mei & Eisner, 2017), are powerful methods for event modeling
and prediction. They use neural networks (NNs) to model the intensity of events and capture complex
dependencies among observed events. However, due to the use of NNs, the cumulative (i.e., integral
of) conditional intensity in the point process likelihood is often analytically intractable, requiring
complex and expensive approximations during learning. More seriously, these models face significant
limitations in generating events with high-dimensional marked information, as the event simulation
relies heavily on the thinning algorithm (Ogata, 1981), which can be costly or even impossible when
the mark space is high-dimensional. This significantly restricts the applicability of these models to
modern applications (Zhu & Xie, 2022; Williams et al., 2020), where event data often come with
high-dimensional marks, such as texts and images in police crime reports or social media posts.

Recent developments in generative modeling (Kingma & Welling, 2014; Sohn et al., 2015; Ho
et al., 2020) offer potential solutions to handling high-dimensional event marks in point processes.
These generative models are adept at producing high-quality content based on contextual cues.
Their effectiveness is rooted in their ability to approximate the underlying high-dimensional data
distribution through generated samples, rather than directly estimating the density function.

This paper presents a novel generative framework for modeling point processes with high-dimensional
marks. Unlike traditional point process models that depend on defining the conditional intensity
or probability density function through parametric models (Du et al., 2016; Mei & Eisner, 2017;
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Shchur et al., 2021; Dong et al., 2022), our model estimates the distribution of events using samples
generated by a conditional generator, which takes the history of events as its input. The event
history is summarized by a recurrent neural architecture, allowing for flexible selection based on the
application’s needs. The benefits of our model can be summarized by:

1. Our model is capable of handling high-dimensional marks such as images or texts, an area not
extensively delved into in prior marked point process research;

2. Our model possesses superior representative power, as it does not confine the conditional intensity
or probability density of the point process to any specific parametric form;

3. Our model outperforms existing state-of-the-art baselines in terms of estimation accuracy and
generating high-quality event series;

4. Our model excels in computational efficiency during both the training phase and the event
generation process. In particular, our method needs only O(NT ) for generating NT events, in
contrast to the thinning algorithm’s complexity ofO(Nd ·NT ), whereN ≫ NT and d represents
the event dimension.

It is important to note that our proposed framework is general and model-agnostic, meaning that a
wide spectrum of generative models and learning algorithms can be applied within our framework. In
this paper, we present two possible learning algorithms and evaluate our framework through extensive
numerical experiments on both synthetic and real-world data sets.

Related work Seminal works in point processes (Hawkes, 1971; Ogata, 1998) introduce self-
exciting conditional intensity functions with parametric kernels. While these models have proven
useful, they possess limitations in capturing the intricate patterns observed in real-world applications.
Recently, there has been a focus on enhancing the expressiveness of point process models through
the integration of neural networks. Landmark studies like recurrent marked temporal point processes
(RMTPP) (Du et al., 2016) and Neural Hawkes (Mei & Eisner, 2017) have leveraged recurrent neural
networks (RNNs) to embed event history into a hidden state, which then represents the conditional
intensity function. Another line of research opts for a more “parametric” way, which only replaces
the parametric kernel in the conditional intensity using neural networks (Dong et al., 2023; Okawa
et al., 2021; Zhu et al., 2021a; 2023). However, these methods can be computationally inefficient,
and even intractable, when dealing with multi-dimensional marks due to the need for numerical
integration. To overcome these computational challenges, alternative approaches have been proposed
by other studies (Chen et al., 2020; Omi et al., 2019; Shchur et al., 2020; Zhou et al., 2022). These
approaches focus on modeling the cumulative hazard function or conditional probability rather than
the conditional intensity, thereby eliminating the need for integral calculations. Nonetheless, these
methods are typically used for low-dimensional event data, and still rely on the thinning algorithm
for simulating or generating event series, which significantly limits their applicability in modern
applications. Some studies (Dong et al., 2022; Zhu & Xie, 2022) propose to model high-dimensional
marks by considering simplified finite mark space. However, work on handling high-dimensional
marks in point processes is still limited.

Our research paper is closely connected to the field of generative modeling, which aims to generate
high-quality samples from learned data distributions. Prominent examples of generative models
include generative adversarial networks (GANs) (Goodfellow et al., 2014), variational autoencoders
(VAEs) (Kingma & Welling, 2014), and diffusion models (Ho et al., 2020; Sohl-Dickstein et al.,
2015b; Song et al., 2020). Recent studies have introduced conditional generative models (Mirza &
Osindero, 2014; Sohn et al., 2015) that can generate diverse and well-structured outputs based on
specific input information. In our work, we adopt a similar technique where we consider the history of
observed events as contextual information to generate high-quality future events. Furthermore, more
recent advancements in this field (Ajay et al., 2022; Li et al., 2020) have extended the application
of conditional generative models to a broader range of settings. For example, Ajay et al. (Ajay
et al., 2022) uses a conditional generator to explore the optimal decision that maximizes the reward,
drawing inspiration from reinforcement learning.

The application of generative models to point processes has received limited attention in the literature.
There are three influential papers (Li et al., 2018; Sharma et al., 2019; Xiao et al., 2018) that have
made significant contributions in this area by using RNN-like models to generate future events.
While RNNs are commonly used for prediction, these papers assume the model’s output follows a
Gaussian distribution, enabling the exploration of the event space, albeit at the cost of limiting the
representational power of the models. To learn the model, they choose to minimize the “similarity”
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(e.g., Maximum Mean Discrepancy or Wasserstein distance) between the generated and the observed
event sequences. It is important to note that these metrics are designed to measure the discrepancy
between two distributions in which each data point is assumed to be independent of the others. This
approach may not always be applicable to temporal point processes, particularly when the occurrence
of future events depends on the historical context. A similar concept of modeling point processes
using conditional generative models is also explored in another concurrent paper (Lin et al., 2022).
However, their approach differs from ours in terms of the specific architecture used. They propose
a diffusion model with an attention-based encoder, while our framework remains model-agnostic,
allowing for greater flexibility in selecting different models. Additionally, their work primarily
focuses on one-dimensional events and does not account for multi- or high-dimensional marks.

2 METHODOLOGY

2.1 BACKGROUND: MARKED TEMPORAL POINT PROCESSES

Marked temporal point processes (MTPPs) (Reinhart, 2018) consist of a sequence of discrete events
over time. Each event is associated with a (possibly multi-dimensional) mark that contains detailed
information of the event, such as location, nodal information (if the observations are over networks,
such as sensor or social networks), and contextual information (such as token, image, and text
descriptions). Let T > 0 be a fixed time-horizon, andM⊆ Rd be the space of marks. We denote the
space of observation as X = [0, T )×M and a data point in the discrete event sequence as

x = (t,m), t ∈ [0, T ), m ∈M,

where t is the event time and m represents the mark. Let Nt be the number of events up to time t < T
(which is random), and Ht := {x1, x2, . . . , xNt

} denote historical events. Let N be the counting
measure on X , i.e., for any measurable S ⊆ X , N(S) = |Ht ∩ S|. For any function ϕ : X → R, the
integral with respect to the counting measure is defined as∫

S

ϕ(x)dN(x) =
∑

xi∈HT∩S

ϕ(xi).

The events’ distribution in MTPPs can be characterized via the conditional intensity function λ,
which is defined to be the occurrence rate of events in the marked temporal space X given the events’
historyHt(x), i.e.,

λ(x|Ht(x)) = E
(
dN(x)|Ht(x)

)
/dx, (1)

where t(x) extracts the occurrence time of the possible event x. Given the conditional intensity
function λ, the corresponding conditional probability density function (PDF) can be written as

f(x|Ht(x)) = λ(x|Ht(x)) · exp

(
−
∫
[tn,t(x))×M

λ(u|Ht(u))du

)
. (2)

where tn denotes the time of the most recent event that occurred before time t(x).

The point process models can be learned using maximum likelihood estimation (MLE). The log-
likelihood of observing a sequence with NT events can therefore be obtained by

ℓ(x1, . . . , xNT
) =

∫
X
log λ(x|Ht(x))dN(x)−

∫
X
λ(x|Ht(x))dx. (3)

See all the derivations in Appendix A.

2.2 CONDITIONAL EVENT GENERATOR

The main idea of the proposed framework is to use a conditional event generator to produce the i-th
event xi = (ti−1 + ∆ti,mi) given its previous i − 1 events. Here, ∆ti and mi indicate the time
interval between the i-th event and its preceding event and the mark of the i-th event, respectively.
Formally, this is achieved by a generator function:

g(z,hi−1) : Rr+p → (0,+∞)×M, (4)

which takes an input in the form of a random noise vector (z ∈ Rr ∼ N (0, I)) and a hidden
embedding (hi−1 ∈ Rp) that summarizes the history information up to and excluding the i-th event,
namely,Hti = {x1, . . . , xi−1}. The output of the generator is the concatenation of the time interval
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Figure 1: (a) The architecture of the proposed framework, which consists of two key components: A
conditional generative model g that generates (∆t̃, m̃) given its history embedding and an RNN-like
model ψ that summarizes the events in the history. (b) An example of generated one-dimensional
(time only) events {x̃(j)} given the historyHt. The shaded area suggests the underlying conditional
probability density captured by the model parameters θ.

and mark of the i-th event denoted by ∆t̃i and m̃i, respectively. To ensure that the time interval is
positive, we restrict ∆t̃i to be greater than zero.

To represent the conditioning variable hi−1, we use a history encoder represented by ψ, which has
a recursive structure such as recurrent neural networks (RNNs) (Yu et al., 2019) or Transformers
(Vaswani et al., 2017). In our numerical results, we opt for long short-term memory (LSTM) (Graves
& Graves, 2012), which takes the current event xi and the preceding hidden embedding hi−1 as input
and generates the new hidden embedding hi. This new hidden embedding represents an updated
summary of the past events including xi. Formally,

h0 = 0 and hi = ψ(xi,hi−1), i = 1, 2, . . . , NT .

We denote the parameters of both models g and ψ using θ ∈ Θ. The model architecture is presented
in Figure 1 (a).

Connection to marked temporal point processes The proposed framework draws its statistical
inspiration from MTPPs. Unlike other recent attempts at modeling point processes, our framework
approximates the conditional probability of events using generated samples rather than directly
specifying the conditional intensity in (1) or PDF in (2) using a parametric model (Du et al., 2016;
Mei & Eisner, 2017; Omi et al., 2019; Shchur et al., 2020; Zhu et al., 2022; 2021b).

As illustrated by Figure 1 (b), when our model generates an event denoted by x̃ = (t+∆t̃, m̃), it
implies that the resulting event x̃ follows a conditional probabilistic distribution that is determined by
the model parameter θ and the event’s historyHt:

x̃ ∼ fθ(x|Ht(x)),

where fθ denotes the conditional PDF of the underlying MTPP (2). This design has three main
advantages compared to other point process models:

1. Generative efficiency: The generative nature of our model confers an exceptional efficiency
in simulating a complete event series for any point processes without relying on thinning
algorithms (Ogata, 1981). To exemplify, thinning algorithm (Algorithm 4) has a time complexity
of O(Nd ·NT ) to generate NT events from a history-dependent point process in d-dimensional
space X , with N ≫ NT being the number of uniformly sampled candidates in one dimension.
In contrast, our generation process (Algorithm 1) only requires a complexity of O(NT ).

2. Expressiveness: The proposed model enjoys considerable representational power, as it does not
impose any restrictions on the parametric form of the conditional intensity λ or PDF f . The
numerical findings also indicate that our model is capable of capturing complex event interactions,
even in a multi-dimensional space.

3. Predictive efficiency: To predict the next event x̂i = (ti−1 +∆t̂i, m̂i) given the observed events’
historyHti , we can calculate the sample average over a set of generated events {x̃(l)i } without
the need for an explicit expectation computation, i.e.,

x̂i =

∫
(ti−1,+∞)×M

x · fθ(x|Ht(x))dx ≈
1

L

L∑
l=1

x̃
(l)
i ,
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Algorithm 1 Event generation process using CEG
Input: Generator g, history encoder ψ, time horizon T
Initialization: HT = ∅,h0 = 0, t = 0, i = 0
while t < T do

1. Sample z ∼ N (0, I);
2. Generate next event x̃ = (t+∆t̃, m̃), where (∆t̃, m̃) = g(z,hi);
3. i = i+ 1; t = t+∆t̃;xi = x̃;HT = HT ∪ {xi};
4. Update hidden embedding hi = ψ(xi,hi−1);

end while
if t(xi) ≥ T then

returnHT − {xi}
else

returnHT

end if

where L denotes the number of samples.

2.3 MODEL ESTIMATION

To learn the model, one can maximize the log-likelihood of the observed event series (3). An
equivalent form of this objective can be expressed using conditional PDF, as shown in the following
equation (see Appendix A for the derivation):

max
θ∈Θ

ℓ(θ) :=
1

K

K∑
k=1

∫
X

log fθ(x|Ht(x)) dNk(x), (5)

where K represents the total number of observed event sequences and Nk is the counting measure
of the k-th event sequence. It is worth noting that this learning objective circumvents the need to
compute the integral in the second term of (3), which can be computationally intractable when events
exist in a multi-dimensional data space.

Now the key challenge is how do we obtain the conditional PDF of an event x without access to
the function fθ? This is a commonly posed inquiry in the realm of generative model learning, and
there are several pre-existing learning algorithms intended for generative models that can provide
solutions to this question (Bond-Taylor et al., 2021). In the rest of this section, we present two
learning strategies that approximate the conditional PDF using generated samples and demonstrate
the effectiveness of the proposed approach using numerical examples.

Non-parametric density estimation We present a non-parametric learning strategy that approxi-
mates the conditional PDF using kernel density estimation (KDE). Specifically, the conditional PDF
of the i-th event xi can be estimated by,

fθ(xi|Hti) ≈
1

L

L∑
l=1

κσ(xi − x̃(l)i ), (6)

where {x̃(l)i }Ll=1 is a set of samples generated by model g(·,hi−1) and κσ is a kernel function with a
bandwidth σ. See our implementation details in Appendix B.

We note that it is important to consider boundary correction (Jones, 1993) for the kernel function
in the time dimension, as the support of the next event’s time is [0,+∞), and a regular KDE would
extend it to negative infinity. To select the kernel bandwidth σ, we adopt a common approach called
the self-tuned kernel (Cheng & Wu, 2022; Mall et al., 2013). This method dynamically determines a
value of σ for each sample x̃(j) by computing the k-nearest neighbor (kNN) distance among other
generated samples. The use of self-tuned kernels is crucial for the success of the model because
the event distribution may change significantly over the training iterations. Therefore, adapting
the bandwidth for each iteration and sample is necessary to achieve an accurate estimate of the
conditional PDF.

Variational approximation Variational method is another widely-adopted approach for learning
a wide spectrum of generative models. Examples of such models include variational autoencoders

5



Under review as a conference paper at ICLR 2024

True
CEG
RMTPP
NH
FullyNN

C
on

di
tio

na
l P

D
F 
𝑓

C
on

di
tio

na
l i

nt
en

sit
y 

𝜆 True
CEG
RMTPP
NH
FullyNN

(a) Self-exciting 1 (b) Self-exciting 2 (c) Self-correcting 1 (d) Self-correcting 2
Figure 2: Out-of-sample estimation of the conditional PDF f(t|Ht) and the corresponding intensity
λ(t|Ht) using the proposed method on one-dimensional (time only) synthetic event sequences.

(Kingma & Welling, 2014; Kingma et al., 2019) and diffusion models (Ho et al., 2020; Kingma
et al., 2021; Sohl-Dickstein et al., 2015a). In this paper, we follow the idea of conditional variational
autoencoder (CVAE) (Sohn et al., 2015) and approximate the log conditional PDF using its evidence
lower bound (ELBO):

log fθ(xi|Hti) ≥ −DKL(q(z|xi,hi−1)||pθ(z|hi−1)) + Eq(z|xi,hi−1) [log pθ(xi|z,hi−1)] , (7)

where q is a variational approximation of the posterior distribution over the random noise given ob-
served i-th event xi and its history hi−1. The first term on the right-hand side is the Kullback–Leibler
(KL) divergence of the approximate posterior q(·|xi,hi−1) from the exact posterior pθ(·|hi−1)). The
second term is the log-likelihood of the latent data generating process. The complete derivation of (7)
and implementation details can be found in the Appendix C.

3 EXPERIMENTS

We evaluate our method using both synthetic and real data and demonstrate the superior performance
compared to five state-of-the-art approaches, including (1) Recurrent marked temporal point processes
(RMTPP) Du et al. (2016), (2) Neural Hawkes (NH) (Mei & Eisner, 2017), (3) Fully neural network
based model (FullyNN) (Omi et al., 2019), (4) Epidemic type aftershock sequence (ETAS) (Ogata,
1998) model, (5) Deep non-stationary kernel in point process (DNSK) (Dong et al., 2022). The first
three baselines leverage neural networks to model temporal event data (or only with categorical
marks). The last two baselines are chosen for testing multi-dimensional event data. Meanwhile, the
DNSK is the state-of-the-art method that uses neural networks for high-dimensional mark modeling.
See Shchur et al. (2021) and Appendix E for a detailed review of these baseline models. In the
following, we refer to our proposed method as the conditional event generator (CEG). Details about
the experimental setup and our model architecture are presented in Appendix E.

3.1 SYNTHETIC DATA

We first evaluate our model on synthetic data. To be specific, we generate four one-dimensional
(1D) and a three-dimensional (3D) synthetic data sets: Four 1D (time only) data sets include 1,000
sequences each, with an average length of 135 events per sequence, and are simulated by two
self-exciting processes and two self-correcting processes, respectively, using thinning algorithm
(Algorithm 4 in Appendix E). The 3D (time and space) data set also includes 1,000 sequences, each
with an average length of 150, generated by a randomly initialized CEG using Algorithm 1.

Table 1: Performance comparison with five baseline methods.
1D self-exciting data 1D self-correcting data 3D synthetic data 3D earthquake data

Model Testing ℓ MRE of f MRE of λ Testing ℓ MRE of f MRE of λ Testing ℓ MRE of f MRE of λ Testing ℓ

RMTPP −1.051 (0.015) 0.437 0.447 −0.975 (0.006) 0.308 0.391 / / / /
NH −0.776 (0.035) 0.175 0.198 −1.004 (0.010) 0.260 0.363 / / / /

FullyNN −1.025 (0.003) 0.233 0.330 −0.821 (0.008) 0.322 0.495 / / / /
ETAS / / / / / / −4.832 (0.002) 0.981 0.902 −3.939 (0.002)
DNSK −0.649 (0.002) 0.015 0.024 −2.832 (0.004) 0.134 0.185 −2.560 (0.004) 0.339 0.415 −3.606 (0.003)
CEG –0.645 (0.002) 0.013 0.066 –0.768 (0.005) 0.042 0.075 –2.540 (0.011) 0.049 0.089 –2.629 (0.015)

*Numbers in parentheses present standard error for three independent runs.
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(a) True series (b) CEG generated series (c) DNSK generated series
Figure 3: Generated T-MNIST series using CEG and a neural point process baseline DNSK, with true
sequences displayed on the left. Each event series is generated (blue boxes) given the first two true
events (red boxes).

t0 = 8.12 t1 = 8.23 t2 = 9.66 t3 = 10.93 t4 = 12.45 t5 = 16.97 t6 = 18.98 t7 = 21.31 t8 = 24.00

t0 = 8.17 t1 = 8.57 t2 = 8.60 t3 = 9.63 t4 = 9.68 t5 = 13.14 t6 = 14.98 t7 = 21.80

t0 = 8.36 t1 = 9.96 t2 = 10.59 t3 = 12.31 t4 = 13.09 t5 = 16.36 t6 = 16.85 t7 = 20.20 t8 = 20.85 t9 = 24.00

t0 = 8.02 t1 = 8.35 t2 = 8.37 t3 = 12.54 t4 = 14.23 t5 = 15.58 t6 = 16.77 t7 = 16.84 t8 = 23.11

(a) True series

t0 = 8.17 t1 = 8.57 t2 = 9.30 t3 = 10.98 t4 = 14.11 t5 = 16.46 t6 = 23.19

t0 = 8.12 t1 = 8.23 t2 = 8.23 t3 = 10.36 t4 = 10.36 t5 = 14.07 t6 = 15.26 t7 = 17.35 t8 = 21.63 t9 = 24.00

t0 = 8.36 t1 = 9.96 t2 = 10.87 t3 = 14.77 t4 = 16.58 t5 = 20.01 t6 = 22.27 t7 = 22.27 t8 = 24.00

t0 = 8.02 t1 = 8.35 t2 = 9.42 t3 = 9.64 t4 = 14.46 t5 = 16.99 t6 = 19.12 t7 = 21.99

(b) CEG generated series

t0 = 8.12 t1 = 8.23 t2 = 11.54 t3 = 12.37 t4 = 12.62 t5 = 13.12 t6 = 14.19 t7 = 16.70 t8 = 17.12 t9 = 18.38

t0 = 8.36 t1 = 9.96 t2 = 10.40 t3 = 12.50 t4 = 13.62 t5 = 13.86 t6 = 14.75 t7 = 14.87 t8 = 15.54 t9 = 16.65

t0 = 8.17 t1 = 8.57 t2 = 9.05 t3 = 10.92 t4 = 11.96 t5 = 12.22 t6 = 13.34 t7 = 13.50 t8 = 14.34 t9 = 15.29

t0 = 8.02 t1 = 8.35 t2 = 8.93 t3 = 10.79 t4 = 10.92 t5 = 11.74 t6 = 12.12 t7 = 13.15 t8 = 13.32 t9 = 14.09

(c) DNSK generated series
Figure 4: Generated T-CIFAR series using CEG and a neural point process baseline DNSK, with true
sequences displayed on the left. Each event series is generated (blue boxes) given the first two true
events (red boxes).

To assess the effectiveness of our model, we computed the mean relative error (MRE) of the estimated
conditional intensity and PDF on the testing set, and compared them to the ground truth. To obtain
the conditional intensity and log-likelihood for our method, we can follow Appendix A and (5),
respectively, based on the estimated conditional PDF. However, for the baseline approaches, we can
only directly estimate the conditional intensity and must compute the corresponding conditional PDF
and log-likelihood by numerical approximations using (2) and (3), respectively.

Figure 2 shows the estimated conditional PDFs and intensities, as well as their corresponding ground
truth on four 1D testing sequences. The two sequences on the left are generated by a self-exciting
process, while the other two on the right are generated by a self-correcting process. Our generative
model, CEG, enjoys demonstrated superior performance compared to other baseline models in
accurately recovering the true conditional PDFs and intensities for both sets of data. Table 1 presents
more quantitative results on 1D and 3D data sets, including log-likelihood testing per events and
the mean relative error (MRE) of the recovered conditional density and intensity. These results
demonstrate the consistent superiority of CEG over other methods across all scenarios. Figure E3 in
Appendix E presents similar results of the estimated conditional probability density on a 3D synthetic
data set, where CEG accurately captures the complex spatio-temporal point patterns while DNSK and
ETAS fail to do so.

3.2 SEMI-SYNTHETIC DATA WITH IMAGE MARKS

We test our model’s capability of generating complex high-dimensional marked events on two semi-
synthetic data, including time-stamped MNIST (T-MNIST) and CIFAR-100 (T-CIFAR). In these
data sets, both the mark (the image category) and the timestamp are generated through a marked
point process. Images from MNIST and CIFAR-100 are subsequently chosen at random based
on these marks, acting as an high-dimensional representation of the original image category. It’s
important to note that during the training phase, categorical marks are excluded, retaining only the
high-dimensional images for model learning. Since calculating the log-likelihood for event series with
high-dimensional marks is infeasible for CEG (the number of samples needed to estimate density is
impractically large), we evaluate the model performance according to: (1) the quality of the generated
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image marks and (2) the transition dynamics of the entire series. Details of the data generation
processes can be found in Appendix E.

1. T-MNIST: For each sequence in the data, the actual digit in the succeeding image is the aggregate
of the digits in the two preceding marks. The initial two digits are randomly selected from 0 and
1. The digits in the marks must be less than nine. The hand-written image for each mark is then
chosen from the corresponding subset of MNIST according to the digit. The time for the entire
MNIST series conforms to a Hawkes process with an exponentially decaying kernel.

2. T-CIFAR: The data contains event series that depict a typical day in the life of a graduate student,
spanning from 8:00 to 24:00. The marks are sampled from four categories: outdoor exercises,
food ingestion, working, and sleeping. Depending on the most recent activity, the subsequent
one is determined by a transition probability matrix. Images are selected from the respective
categories to symbolize each activity. The time for these activities follows a self-correcting
process.

Figure 3 presents the true T-MNIST series alongside the series generated by CEG and DNSK given
the first two events. Our model not only generates high-dimensional event marks that resemble true
images, but also successfully captures the underlying data dynamics, such as the clustering patterns
of the self-exciting process and the transition pattern of image marks. On the contrary, the DNSK
only learns the temporal effects of historical events and struggles to estimate the conditional intensity
for the high-dimensional marks. Besides, the grainy images generated by DNSK demonstrate the
challenge of simulating credible high-dimensional content using thinning algorithm. This is because
the real data points, being sparsely scattered in the high-dimensional mark space, make it challenging
for the candidate points to align closely with them in the thinning algorithm.

Similar results are shown in Figure 4 on T-CIFAR data set, where the CEG is able to simulate high-
quality daily activities with high-dimensional content at appropriate times. However, the DNSK fails
to extract any meaningful patterns from the data, since intensity-based modeling and data generation
become ineffectual in high-dimensional mark space.

3.3 REAL DATA

In our real data results, our model demonstrates superior efficacy in generating multi-dimensional
event sequences of high quality, which closely resemble real event series.

Northern California earthquake catalog We test our method using the Northern California Earth-
quake Data (Northern California Earthquake Data Center. UC Berkeley Seismological Laboratory.
Dataset, 2014), which contains detailed information on the timing and location of earthquakes that
occurred in central and northern California from 1978 to 2018, totaling 5,984 records with magnitude
greater than 3.5. We divided the data into several sequences by month. In comparison to other
baseline methods that can only handle 1D event data, we primarily evaluated our model against DNSK
and ETAS, training each model using 80% of the dataset and testing them on the rest. To demonstrate
the effectiveness of our method on the real data, we assess the quality of the generated sequences by
each model. Our model’s generation process for new sequences can be efficiently carried out using
Algorithm 1, whereas both DNSK and ETAS requires the use of a thinning algorithm (Algorithm 4)
for simulation. We also compared the estimated conditional probability density functions (PDFs) of
real sequences by each model in Appendix E.

We compare the generative ability of each method in Figure 5. The top left sub-figure features a single
event series selected at random from the data set, while the rest of the sub-figures in the first row
exhibit event series generated by each model, respectively. The quality of the generated earthquake
sequence using our method is markedly superior to that generated by DNSK and ETAS. We also
simulate multiple sequences using each method and visualize the spatial distribution of generated
earthquakes in the second row. The shaded area reflects the spatial density of earthquakes obtained
by KDE and represents the “background rate” over space. It is evident that CEG is successful in
capturing the underlying earthquake distribution, while the two STPP baselines are unable to do so.
Additional results in Figure E5 visualizes the conditional PDF estimated by CEG, DNSK, and ETAS
for an actual earthquake sequence in testing set, respectively. The results indicate that our model
is able to capture the heterogeneous triggering effects among earthquakes which align with current
understandings of the San Andreas Fault System (Wallace, 1990). However, both DNSK and ETAS
fail to extract this geographical feature from the data.
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(a) Real (b) Proposed CEG (c) DNSK (d) ETAS
Figure 5: Comparison between real and generated earthquake sequence. The first row displays a
single sequence, either real or generated, with the color depth of the dots reflecting the occurrence
time of each event. Darker colors represent more recent events. The shaded areas represent the
estimated conditional PDFs. The second row shows 1,000 real or generated events, where the gray
area indicates the high density of events, which can be interpreted as the “background rate”.
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Figure 6: The spatial distributions of the TF-IDF values of 10 crime-related keywords. The heatmap
in red and blue represent distributions of TF-IDF value of the keywords in the true and generated
events, respectively. The black dots pinpoint the locations of the corresponding events.

Atlanta crime reports with textual description We further assess our method using 911-calls-
for-service data in Atlanta. The proprietary data set contains 4644 burglary incidents from 2016 to
2017, detailing the time, location, and a comprehensive textual description of each incident. Each
textual description was transformed into a TF-IDF vector (Aizawa, 2003), from which the top 10
keywords with the most significant TF-IDF values were selected. The location combined with the
corresponding 10-dimensional TF-IDF vector is regarded as the mark of the incident. We first fit
our CEG model using the preprocessed data, subsequently generate crime event sequences, and then
compare them with the real data.

Figure 6 visualizes the spatial distributions of the true and the generated TF-IDF value of each
keyword, respectively, signifying the heterogeneous crime patterns across the city. As we can observe,
our model is capable of capturing such spatial heterogeneity for different keywords and simulating
crime incidents that follow the underlying spatio-temporal-textual dynamics existing in criminological
modus operandi (Zhu & Xie, 2022).

4 DISCUSSIONS

In this paper, we introduce a novel framework for high-dimensional marked temporal point processes
for generating high-quality event series, which offers a highly adaptable and efficient solution for
modeling and generating multi-dimensional event data. The proposed framework uses a conditional
generator to explore the intricate multi-dimensional event space and generates subsequent events
based on prior observations with exceptional efficiency. The empirical evaluation demonstrates the
superior performance of our model in capturing complex data distribution and generating high-quality
samples against state-of-the-art methods, and its flexibility of being adapting to different real-world
scenarios.
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A DERIVATION OF THE CONDITIONAL PROBABILITY OF POINT PROCESSES

The conditional probability of point processes can be derived from the conditional intensity (1).
Suppose we are interested in the conditional probability of events at a given point x ∈ X , and we
assume that there are i events that happen before t(x). Let Ω(x) be a small neighborhood containing
x. According to (1), we can rewrite λ(x|Ht(x)) as following:

λ(x|Ht(x)) = E
(
dN(x)|Ht(x)

)
/dx = P{xi+1 ∈ Ω(x)|Ht(x)}/dx

= P{xi+1 ∈ Ω(x)|Hti+1 ∪ {ti+1 ≥ t(x)}}/dx

=
P{xi+1 ∈ Ω(x), ti+1 ≥ t(x)|Hti+1}/dx

P{ti+1 ≥ t(x)|Hti+1}
.

Here Hti+1
= {x1, . . . , xi} represents the history up to i-th events. If we let F (t(x)|Ht(x)) =

P(ti+1 < t(x)|Hti+1
) be the conditional cumulative probability, and f(x|Ht(x)) ≜ f(xi+1 ∈

Ω(x)|Hti+1
) be the conditional probability density of the next event happening in Ω(x). Then the

conditional intensity can be equivalently expressed as

λ(x|Ht(x)) =
f(x|Ht(x))

1− F (t(x)|Ht(x))
.

We multiply the differential dx = dtdm on both sides of the equation and integral over the mark
spaceM:

dt ·
∫
M
λ(x|Ht(x))dm =

dt ·
∫
M f(x|Ht(x))dm

1− F (t(x)|Ht(x))
=

dF (t(x)|Ht(x))

1− F (t(x)|Ht(x))

= −d log (1− F (t(x)|Ht(x))).

Hence, integrating over t on [ti, t(x)) leads to the fact that

F (t(x)|Ht(x)) = 1− exp

(
−
∫ t(x)

ti

∫
M
λ(x|Ht(x))dmdt

)

= 1− exp

(
−
∫
[ti,t(x))×M

λ(x|Ht(x))dx

)
because F (ti) = 0. Then we have

f(x|Ht(x)) = λ(x|Ht(x)) · exp

(
−
∫
[ti,t(x))×M

λ(x|Ht(x))dx

)
,

which corresponds to (2).

The log-likelihood of one observed event series in (3) is derived, by the chain rule, as

ℓ(x1, . . . , xNT
) = log f(x1, . . . , xNT

) = log

NT∏
i=1

f(xi|Hti)

=

∫
X
log f(x|Ht(x))dN(x)

=

∫
X
log λ(x|Ht(x))dN(x)−

∫
X
λ(x|Ht(x))dx.

The log-likelihood of K observed event sequences in (5) can be conveniently obtained with the
counting measure N replaced by the counting measure Nk for the k-th sequence.

B IMPLEMENTATION DETAILS OF NON-PARAMETRIC LEARNING

Estimating the conditional PDF f(x|Ht(x)) using kernel density estimation (KDE) within our frame-
work presents two main challenges: (1) The distribution density of events generated by certain
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Figure A1: A comparison between the vanilla KDE and the KDE with boundary correction. The grey
shaded area indicates the true density function, which is defined on the bounded region [0,+∞). The
blue dashed line and red line show the estimated density function by the vanilla KDE and the KDE
with reflection, respectively.
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(a) Vanilla KDE
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(b) KDE using self-tuned kernel
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Figure A2: The estimated conditional PDF f(t|Ht) of a testing sequence is displayed from left to
right. Each panel within the same row represents the estimated conditional PDF at intervals of 10
training epochs.

inhomogeneous point processes can vary from location to location in the event space. Consequently,
using a single bandwidth for estimation would either oversmooth the conditional PDF or introduce
excessive noise in areas with sparse events. (2) The time intervals of the next events are usually
clustered in a small neighborhood of 0 and always positive, which will lead to a significant boundary
bias.

To overcome the above challenges, we adopt the self-tuned kernel with boundary correction:

1. We first choose the bandwidth adaptively, where the bandwidth σ tends to be small for those
samples falling into event clusters and to be large for those isolated samples. We dynamically
determine the value of σ for each sample x̃ by computing the k-nearest neighbor (kNN) distance
among other generated samples Cheng & Wu (2022); Mall et al. (2013).

2. We correct the boundary bias of KDE by reflecting the data points against the boundary 0 in time
domain Jones (1993). Specifically, the kernel with reflection is defined as follows:

κ(x− x̃) = υ∗(∆t−∆t̃) · υ(m− m̃),
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Algorithm 2 Non-parametric learning for CEG

Input: Training set X with K sequences: X = {x(k)i }i=1,...,Nk(X ), k=1,...,K , learning epoch E,
learning rate γ, mini-batch size M .
Initialization: model parameters θ, e = 0
while e < E do

for each sampled batch X̂M with size M do
1. Draw samples z from noise distribution N (0, 1);
2. Feed z into the generator g to obtain sampled events x̃;
3. Estimate conditional PDF using KDE (6) and log-likelihood ℓ (3), given data X̂M , samples
x̃ and the model;
4. θ ← θ + γ∂ℓ/∂θ;

end for
e← e+ 1;

end while
return θ

where υ is an arbitrary kernel and υ∗(x− x̃) = υ(x− x̃) + υ(−x− x̃) is the same kernel with
reflection boundary. This allows for a more accurate estimation of the density near the boundary
of the time domain without impacting the estimation elsewhere, as shown in Figure A1.

Figure A2 compares the learned conditional PDF using three KDE methods on the same synthetic
data set generated by a self-exciting Hawkes process. The results show that the estimation using
the self-tuned kernel with boundary correction shown in (c) significantly outperforms two ablation
models in (a) and (b). We also summarize the learning algorithm in Algorithm 2.

C DERIVATION AND IMPLEMENTATION DETAILS OF VARIATIONAL LEARNING

Derivation of the approximate conditional PDF Now we present the derivation of the approximate
conditional PDF in (7). We first use hidden embedding h to represent the history Ht(x) and
fθ(x|Ht(x)) can be substituted by fθ(x|h). Then the conditional PDF of event x given the history
can be re-written as:

log fθ(x|h) = log

∫
pθ(x, z|h)dz,

where z is a latent random variable. This integral has no closed form and can usually be estimated by
Monte Carlo integration with importance sampling, i.e.,∫

pθ(x, z|h)dz = Ez∼q(·|x,h)

[
pθ(x, z|h)
q(z|x,h)

]
.

Here q(z|x,h) is the proposed variational distribution, where we can draw sample z from this
distribution given x and h. Therefore, by Jensen’s inequality, we can find the evidence lower bound
(ELBO) of the conditional PDF:

log fθ(x|h) = logEz∼q(·|x,h)

[
pθ(x, z|h)
q(z|x,h)

]
≥ Ez∼q(·|x,h)

[
log

pθ(x, z|h)
q(z|x,h)

]
.

Using Bayes rule, the ELBO can be equivalently expressed as:

Ez∼q(·|x,h)

[
log

pθ(x, z|h)
q(z|x,h)

]
= Ez∼q(·|x,h)

[
log

pθ(x|z,h)pθ(z|h)
q(z|x,h)

]
= Ez∼q(·|x,h)

[
log

pθ(z|h)
q(z|x,h)

]
+ Ez∼q(·|x,h) [log pθ(x|z,h)]

= −DKL(q(z|x,h)||pθ(z|h)) + Ez∼q(·|x,h) [log pθ(x|z,h)] .

Implementation details In practice, we introduce two additional generator functions, encoder
net gencode(ϵ, xi,hi−1) and prior net gprior(ϵ,hi−1), respectively, to represent q(z|xi,hi−1) and
pθ(z|hi−1) as transformations of another random variable ϵ ∼ N (0, I) using reparametrization trick
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Algorithm 3 Variational learning for CEG using stochastic gradient descent

Input: Training set X with K sequences: X = {x(k)i }i=1,...,Nk(X ), k=1,...,K , learning epoch E,
learning rate γ, mini-batch size M .
Initialization: model parameters θ, e = 0
while e < E do

for each sampled batch X̂M with size M do
1. Draw samples ϵ from noise distribution N (0, 1);
2. Compute z using reparametrization trick, given data X̂M , noise ϵ, gprior, and gencode;
3. Compute ELBO (7) and log-likelihood ℓ (3) based on z and data X̂M ;
4. θ ← θ + γ∂ℓ/∂θ;

end for
e← e+ 1;

end while
return θ

(Sohl-Dickstein et al., 2015a). Both q(z|xi,hi−1) and pθ(z|hi−1) are often modeled as Gaussian
distributions, which allows us to compute the KL divergence of Gaussians with a closed-form
expression. The log-likelihood of the second term can be implemented as the reconstruction loss and
calculated using generated samples.

We parameterize both pθ(z|h) and q(z|x,h) using fully-connected neural networks with one hidden
layer, denoted by gprior and gencode, respectively. The prior of the latent variable is modulated by the
input h in our formulation; however, the constraint can be easily relaxed to make the latent variables
statistically independent of input variables, i.e., pθ(z|h) = pθ(z) Kingma et al. (2014); Sohn et al.
(2015). For the approximate posterior q(z|x,h), a common choice is a simple factorized Gaussian
encoder, which can be represented as:

q(z|x,h) = N (z;µ, diag(Σ)),

or

q(z|x,h) =
r∏

j=1

q(zj |x,h) =
r∏

j=1

N (zj ;µj , σ
2
j ).

The Gaussian parameters µ = (µj)j=1,...,r and diag(Σ) = (σ2
j )j=1,...,r are the output of an encoder

network ϕ and the latent variable z can be obtained using reparametrization trick:

(µ, log diag(Σ)) = ϕ(x,h),

z = µ+ diag(Σ)⊙ ϵ,

where ϵ ∼ N (0, I) is another random variable and ⊙ is the element-wise product. For simplicity in
presentation, we denote such a factorized Gaussian encoder as gencode(ϵ, x,h) that maps an event x,
its history h, and a random noise vector ϵ to a sample z from the approximate posterior for that event
x.

In (7), the first term is the KL divergence of the approximate posterior from the prior, which acts as a
regularizer, while the second term is an expected negative reconstruction error. They can be calculated
as follows: (1) Because both q(z|xi,hi−1) and pθ(z|hi−1) are modeled as Gaussian distributions,
the KL divergence can be computed using a closed-form expression. (2) Minimizing the negative
log-likelihood pθ(x|z,h) is equivalent to maximizing the cross entropy between the distribution of
an observed event x and the reconstructed event x̃ generated by the generative model g given z and
the history h. The learning algorithm has been summarized in Algorithm 3.

D SAMPLING EFFICIENCY COMPARISON

Thinning algorithms are known to be challenging and suffer from low sampling efficiency. This
is because (i) these algorithms require sampling uniformly in the space X with the upper limit of
the conditional intensity λ > λ(x), ∀x, and only a few candidate points are retained in the end.
(ii) the decision of whether to reject one candidate point requires the evaluation of the conditional
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Table D1: Computation costs for generating earthquake series and time-stamped image series of
length 100 using ETAS, DNSK and CEG.

3D earthquake data T-MNIST T-CIFAR
Model 5 sequences 50 sequences 5 sequences 50 sequences 5 sequences 50 sequences

ETAS 12.4 118.6 / / / /
DNSK 20.1 220.4 87.3 745.6 274.0 1381.9
CEG < 1 < 1 0.6 0.8 1.1 1.2

*Unit: second.

intensity function over the entire history, which is also stochastic. This doubly stochastic trait makes
the entire thinning process particularly costly when X is a multi-dimensional space, since it requires
a drastically large number of candidate points and numerous evaluations of the conditional intensity
function.

On the contrary, our model generates samples based on the underlying conditional distribution of
events learned from true data, thus every generated point will be retained. Table D1 compares the time
costs for ETAS, DNSK, and CEG to generate event series of length 100 on each data set. Particularly
noteworthy is that our model requires a similar amount of time to generate different numbers of
sequences. This is because CEG can generate all the sequences in parallel, leveraging the benefits of
the implementation of conditional generative models.

E EXPERIMENT DETAILS AND ADDITIONAL RESULTS

Baselines We compare our proposed method empirically with the following baselines:

1. Recurrent Marked Temporal Point Process (RMTPP) Du et al. (2016) uses an RNN to capture the
nonlinear relationship between both the markers and the timings of past events. It models the
conditional intensity function by

λ(t|Ht) = exp(v⊤hi + w(t− ti) + b),

where hidden state hi of the RNN represents the event history until the nearest i-th eventHti ∪
{ti}. The v, w, b are trainable parameters. The model is learned by MLE using backpropagation
through time (BPTT).

2. Neural Hawkes Process (NH) Mei & Eisner (2017) extends the classical Hawkes process by
memorizing the long-term effects of historical events. The conditional intensity function is given
by

λ(t|Ht) = f(w⊤ht),

where ht is a sufficient statistic of the event history modeled by the hidden state in a continuous-
time LSTM, and f(·) is a scaled softplus function for ensuring positive output. The weight w is
learned jointly with the LSTM through MLE.

3. Fully Neural Network based Model (FullyNN) for General Temporal Point Processes Omi et al.
(2019) models the cumulative hazard function given the history embedding hi, which leads to
a tractable likelihood. It uses a fully-connect neural network Zi with a non-negative activation
function for the cumulative hazard function Φ(τ |hi) where τ = t− ti. The conditional intensity
function is obtained by computing the derivative of the network:

λ(t|Ht) =
∂

∂(τ)
Φ(τ |hi) =

∂

∂(τ)
Zi(τ),

where Zi is the fully-connect neural network.
4. Epidemic-type aftershock sequence (ETAS) acts as a benchmark in spatio-temporal point process

modeling. Denoting each event x := (t, s), ETAS adopts a Gaussian diffusion kernel in the
conditional intensity as following

λ(t, s|Ht) = µ+
∑

(ti,si)∈Ht

k(t, ti, s, si),
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Figure E3: Snapshots of out-of-sample estimation of the conditional PDFs for a three-dimensional
(time and space) synthetic event sequence, arranged in chronological order from left to right. The
conditional PDFs are indicated by shaded areas, with darker shades indicating higher conditional
PDF values. The red dots represent newly observed events within the most recent time period, while
the circles represent historical events.

where

k(t, ti, s, si) =
Ce−β(t−ti)

2π
√
|Σ|(t− ti)

· exp
{
− (s− si − a)⊤Σ−1(s− si − a)

2(t− ti)

}
.

Here Σ = diag(σ2
x, σ

2
y) is a diagonal matrix representing the covariance of the spatial correlation.

Note that the diffusion kernel is stationary and only depends on the spatio-temporal distance
between two events. All the parameters are learnable.

5. Deep non-stationary kernel (DNSK) proposes a neural-network-based influence kernel based on
kernel singular value decomposition for modeling spatio-temporal point process data. In addition,
their kernel can be extended to handle high-dimensional marks:

k(ti, t− ti, si, s−si,mi,m) =

Q∑
q=1

R∑
r=1

L∑
l=1

αlrqψl(ti)φl(t− ti)ur(si)vr(s−si)gq(mi)hq(m).

Here all the basis functions are represented by fully-connected neural networks.

Synthetic data description We use the following point process models to generate the one-
dimensional synthetic data sets using Algorithm 4:

1. Self-exciting Hawkes process: λ(t) = µ +
∑

ti∈Ht
βe−β(t−ti), with µ = 0.1, β = 0.1 and

µ = 0.5, β = 1.0 in self-exciting data 1 and 2, respectively.
2. Self-correcting process: λ(t) = exp

(
µt−

∑
ti∈Ht

α
)
, with µ = 1.0, α = 1.0 and µ = 0.5, α =

0.8 in self-correcting data 1 and 2, respectively.
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Algorithm 4 Thinning algorithm
Input: Model λ(·), time horizon T , mark spaceM, Intensity upper bound λ̄.
Initialization: HT = ∅, t = 0, i = 0
while t < T do

1. Sample u ∼ Unif(0, 1).
2. t← t− lnu/λ̄.
3. Sample m ∼ Unif(M), D ∼ Unif(0, 1).
4. λ = λ(t,m|HT ).
if Dλ̄ ≤ λ then
i← i+ 1; ti = t,mi = m.
HT ← HT ∪ {(ti,mi)}.

end if
end while
if ti ≥ T then

returnHT − {(ti,mi)}
else

returnHT

end if

3. T-MNIST: In the MNIST series, all the digits that are greater than nine will be truncated to nine.
The exponentially decaying kernel for the observation times are k(t, ti) = βe−β(t−ti), β = 0.2.

4. T-CIFAR: The images of bicycles and motorcycles represent outdoor exercises; the apples, pears,
and oranges represent food ingestion; the computer keyboards represent study/working; and
the beds represent sleeping. Before 21:00, the activity series progresses with the transition
probability matrix between (exercise, food ingestion, working) being

P =

(
0.0 1.0 0.0
0.2 0.0 0.8
0.2 0.3 0.5

)
.

Starting from 21:00, the probability of sleeping increases linearly from 0 to 1 at 23:00. Each
series ends with the activity of sleeping. The self-correcting process for event times is set with
µ = 0.1, α = 0.5, indicating that each activity will last for a while before the student moves to
the next activity (or stays in the current one).

Experimental setup We choose our generator g to be a fully-connected neural network with two
hidden layers of width 32 with softplus activation function. To guarantee that the generated time
interval is always positive, we apply an extra Rectified Linear Unit (ReLU) function for the output
of the time dimension in the output layer. We use an LSTM for the history encoder ψ. We train our
model and other baselines using 90% of the data and test them on the remaining 10% data. To fit the
model parameters, we maximize log-likelihood according to (5), and adopt Adam optimizer (Kingma
& Ba, 2014) with a learning rate of 10−3 and a batch size of 32 (event sequences). More details about
experimental setup can be found in Appendix E.

For RMTPP, NH and FullyNN, we take the default parameters for model architectures in the original
papers, with the dimension of hidden embedding to be 64 for all three models, and a fully-connected
neural network with two hidden layers of width 64 for the cumulative hazard function in FullyNN.
There is no hyperparameter in ETAS. All the baselines are trained using the Adam optimizer with a
learning rate of 10−3 and a batch size of 32 for 100 epochs. The experiments are implemented on
Google Colaboratory (Pro version) with 12GB RAM and a Tesla T4 GPU.

E.1 ADDITIONAL EXPERIMENT RESULTS

3D synthetic data Each row in Figure E3 displays four snapshots of estimated conditional proba-
bility density functions (PDFs) for a particular 3D testing sequence. It is apparent that our model’s
estimated PDFs closely match the ground truth and accurately capture the complex spatial and
temporal point patterns. Conversely, DNSK and ETAS model for estimating spatio-temporal point
processes fails to capture the heterogeneous triggering effects between events, indicating limited
practical representational power.
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(a) Additional T-MNIST series generated by CEG

t0 = 8.64 t1 = 9.05 t2 = 9.13 t3 = 10.75 t4 = 13.57 t5 = 20.97 t6 = 21.39 t7 = 24.00

t0 = 9.71 t1 = 9.81 t2 = 10.89 t3 = 11.10 t4 = 15.17 t5 = 17.34 t6 = 19.30 t7 = 22.05

t0 = 8.01 t1 = 8.10 t2 = 9.20 t3 = 9.37 t4 = 14.10 t5 = 16.58 t6 = 18.66 t7 = 21.50

t0 = 8.26 t1 = 8.76 t2 = 10.73 t3 = 12.10 t4 = 13.70 t5 = 14.35 t6 = 14.35 t7 = 23.01 t8 = 24.00

t0 = 8.55 t1 = 10.15 t2 = 10.30 t3 = 12.22 t4 = 12.36 t5 = 13.81 t6 = 18.34 t7 = 18.34 t8 = 18.34 t9 = 23.94

t0 = 8.17 t1 = 8.57 t2 = 11.32 t3 = 11.52 t4 = 11.52 t5 = 17.98 t6 = 24.00

t0 = 8.97 t1 = 9.25 t2 = 9.88 t3 = 11.54 t4 = 14.64 t5 = 16.99 t6 = 23.86

t0 = 8.27 t1 = 8.90 t2 = 8.90 t3 = 12.18 t4 = 13.02 t5 = 14.81 t6 = 18.58 t7 = 24.00

(b) Additional T-CIFAR series generated by CEG

Figure E4: Additional T-MNIST and T-CIFAR series using CEG and a neural point process baseline
DNSK, with true sequences displayed on the left. Each event series is generated (blue boxes) given
the first two true events (red boxes).

Semi-synthetic image data More generated T-MNIST and T-CIFAR series by CEG are presented in
Figure E4. As we can see, our generative point process can not only sample images that resemble the
ground truth, but also recover the intricate temporal dynamics (e.g., clustering effect of self-exciting
process in T-MNIST, student’s sleeping time in T-CIFAR) and high-dimensional mark dependencies.

Northern California earthquake catalog Additional results in Figure E5 visualizes the conditional
PDF estimated by CEG, DNSK, and ETAS for an actual earthquake sequence in testing set, respectively.
The results indicate that our model is able to capture the heterogeneous effects among earthquakes.
Particularly noteworthy is our model’s finding of a heightened probability of seismic activity along
the San Andreas fault, coupled with a diminished likelihood in the basin. These results align with
current understandings of the mechanics of earthquakes in Northern California. However, both
DNSK and ETAS fail to extract this geographical feature from the data and suggest that observed
earthquakes impact their surroundings uniformly, leading to an increased likelihood of aftershocks
within a circular area centered on the location of the initial event.
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Figure E5: Estimated conditional PDFs of an actual earthquake sequence represented by shaded areas,
with darker shades indicating higher conditional PDF values. Each row contains four sub-figures,
arranged in chronological order from left to right, showing snapshots of the estimated conditional
PDFs. The red dots represent newly observed events within the most recent time period, while the
circles represent historical events.
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