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ABSTRACT

Unlearning in Large Language Models (LLMs) is essential for ensuring ethical
and responsible AI use, especially in addressing privacy leak, bias, safety, and
evolving regulations. Existing approaches to LLM unlearning often rely on retain
data or a reference LLM, yet they struggle to adequately balance unlearning
performance with overall model utility. This challenge arises because leveraging
explicit retain data or implicit knowledge of retain data from a reference LLM
to fine-tune the model tends to blur the boundaries between the forgotten and
retain data, as different queries often elicit similar responses. In this work, we
propose eliminating the need to retain data or the reference LLM for response
calibration in LLM unlearning. Recognizing that directly applying gradient ascent
on the forget data often leads to optimization instability and poor performance,
our method guides the LLM on what not to respond to, and importantly, how to
respond, based on the forget data. Hence, we introduce Forget data only Loss
AdjustmenT (FLAT), a "flat" loss adjustment approach which addresses these
issues by maximizing f -divergence between the available template answer and
the forget answer only w.r.t. the forget data. The variational form of the defined
f -divergence theoretically provides a way of loss adjustment by assigning different
importance weights for the learning w.r.t. template responses and the forgetting of
responses subject to unlearning. Empirical results demonstrate that our approach
not only achieves superior unlearning performance compared to existing methods
but also minimizes the impact on the model’s retained capabilities, ensuring high
utility across diverse tasks , including copyrighted content unlearning on Harry
Potter dataset and MUSE Benchmark, and entity unlearning on the TOFU dataset
1.

1 INTRODUCTION

The widespread integration of Large Language Models (LLMs) into daily applications has raised
significant concerns regarding the trustworthiness of such models. Their outputs may contain sensitive,
private, or illegal content (Karamolegkou et al., 2023; Patil et al., 2023), reflect societal biases (Motoki
et al., 2024; Yu et al., 2023), or provide harmful instructions (Yao et al., 2023; Li et al., 2024; Barrett
et al., 2023). In particular, for privacy concerns, regulations (Hoofnagle et al., 2019) have been
introduced, requiring applications to support the deletion of information contained in training samples
upon user request. This has motivated research into machine unlearning (MU) (Cao & Yang, 2015;
Liu et al., 2024b; Fan et al., 2023; Di et al., 2024; Liu et al., 2024c), a critical process aimed at
removing the influence of specific data points, data classes, or even higher-level data concepts from
trained models.

LLM unlearning (Eldan & Russinovich, 2023; Yao et al., 2023; Liu et al., 2024c) is part of a broader
set of MU techniques aiming to make the unlearned model forget the knowledge specified in forget
dataset, while preserving the model ability to accomplish tasks irrelevant to the unlearning target (Liu
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Table 1: Comparison of different loss adjustment-based baselines in terms of their requirement. Our
method relies solely on forget data and available template responses, without using the retain data or a reference
model for response calibration.

Baselines Forget Data Retain Data Reference Model
Gradient Ascent (GA) (Maini et al., 2024a) ✓ ✗ ✗

Gradient Difference (GD) (Maini et al., 2024a) ✓ ✓ ✗
KL Minimization (KL) (Maini et al., 2024a) ✓ ✓ ✓

Preference Optimization (PO) (Maini et al., 2024a) ✓ ✓ ✗
Mismatch (Liu et al., 2024a) ✓ ✓ ✗

Direct Preference Optimization (DPO) (Rafailov et al., 2024) ✓ ✗ ✓
Negative Preference Optimization (NPO) (Zhang et al., 2024) ✓ ✗ ✓
Large Language Model Unlearning (LLMU) (Yao et al., 2023) ✓ ✓ ✓

FLAT (Ours) ✓ ✗ ✗

et al., 2024c; Ji et al., 2024). To achieve this, existing work can be categorized into three main streams
of LLM unlearning approaches: input-based, data-based, and model-based methods. Input-based
methods (Liu et al., 2024a; Pawelczyk et al., 2023) design input instructions to guide the original LLM
towards the unlearning objective without altering the model’s parameters. Data-based methods (Choi
et al., 2024) typically fine-tune models on pre-constructed desirable responses, using prompts from
the forget data distribution. Model-based methods (Yao et al., 2023; Chen & Yang, 2023) focus on
modifying the weights or architecture to achieve the unlearning objective. Among these approaches,
the most relevant to our work is fine-tuning the target LLM using a modified loss function, which
typically incorporates two key objectives: maximizing the loss on the forget samples and minimizing
(or maintaining) the loss on the retain samples.

However, as summarized in Table 1, current loss adjustment-based methods either rely on retain
data (Maini et al., 2024a; Liu et al., 2022; Yao et al., 2023), which might not be readily available in
real-world scenarios (Li et al., 2024), or utilize a reference model (Rafailov et al., 2024; Zhang et al.,
2024; Yao et al., 2023; Maini et al., 2024a) to maintain performance on the retain dataset, incurring
additional cost during training—especially when fine-tuning a large-scale LLM. Moreover, leveraging
explicit retain data or implicit knowledge from a reference LLM during fine-tuning may blur the
distinction between the forget and retain data, which can lead to a trade-off between model utility
and forget quality. Furthermore, fine-tuning using both retain data and forget data would require a
careful design of a data mixing strategy. To preserve model utility while improving forget quality, we
propose Forget data only Loss AdjustmenT (FLAT), a "flat" loss adjustment approach which adjusts
the loss function using only the forget data. Given the forget data, FLAT guides the LLM not only
in what to forget but also in how to respond, by optimizing the f -divergence between the template
and forget answers with respect to the forget data. The variational form of the f -divergence enables
loss adjustment by assigning optimal importance weights to learning from template responses while
forgetting the responses subject to unlearning. Our main contributions are highlighted below:

• We identify the potential drawback of relying on retain data or a reference LLM to guide LLM
unlearning. To address this, we propose FLAT, which facilitates LLM unlearning without requiring
retain data or a reference LLM for response calibration.

• FLAT optimizes the f -divergence between template and forget responses to guide the LLM
through the unlearning process. The variational form of f -divergence optimization provides a
clear illustration of how to optimally balance forget quality and model utility, with theoretical
guarantees.

• Extensive experiments on three unlearning tasks, including copyrighted content unlearning on the
Harry Potter dataset and MUSE benchmark, as well as entity unlearning on the TOFU dataset,
demonstrate the superior performance of our method, achieving both high unlearning efficiency
and strong overall model utility.

2 PRELIMINARIES

In this section, we introduce the preliminary formulation of LLM unlearning and existing LLM
unlearning framework.
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2.1 FORMULATION

Given an forget dataset Df , a retain dataset Dr, and an LLM θo, the task of LLM unlearning is
to fine-tune the original model such that the updated LLM θ resembles a model trained without
Df . For a prompt-response pair (x, y), the loss function on y for fine-tuning is L(x, y; θ) =∑|y|

i=1 ℓ(hθ(x, y<i), yi), where ℓ(·) is the cross-entropy loss, and hθ(x, y<i) := P(yi|(x, y<i); θ) is
the predicted probability of the token yi given by an LLM θ, with the input prompt x and the already
generated tokens y<i := [y1, ..., yi−1].

The most straightforward approach to unlearn is Gradient Ascent (GA). GA modifies a trained model
so that it "forgets" or minimizes the influence of specific data or patterns it has previously learned.
Mathematically, the GA algorithm iteratively updates the model at step t by performing gradient
ascent on the next-token prediction loss over the forget dataset: θt+1 ← θt + λ∇θtL(x, y; θt), where
λ is the (un)learning rate.

2.2 EXISTING LLM UNLEARNING PARADIGM

The mainstream class of existing LLM unlearning methods involves fine-tuning the original LLM
against an unlearning objective function. Although the exact designs vary, the general type of loss
adjustment in LLM unlearning can be characterized as follows:

L = LFG + LRT + LCustom. (1)

The modified loss function comprises three main components:

• LFG (Forget Loss): Encourages the model to "forget" the undesired data or patterns. This typically
involves increasing the loss on the data to be forgotten, effectively making the model perform
worse on those specific examples. The goal is to reduce the model’s reliance on these data points,
thereby minimizing their influence on future predictions.

• LRT (Retain Loss): Ensures that the model maintains its overall performance and general knowl-
edge on unaffected data. It typically involves using the original loss function from training or a
modified version that focuses on the data the model is meant to retain. This term prevents the
unlearning process from degrading the model’s overall capabilities beyond the scope of the specific
unlearning objective.

• LCustom (Custom Loss): Allows for additional flexibility and customization in the unlearning
process. It may include regularization terms to control the magnitude of parameter updates or
specific constraints to enforce certain unlearning behaviors. This component enables researchers to
tailor the unlearning process to specific requirements or incorporate domain-specific knowledge.

In summary, common loss adjustment methods employ one (Jang et al., 2022), two (Liu et al., 2022;
Maini et al., 2024a; Zhang et al., 2024), or all three (Yao et al., 2023) of these components to guide
the model towards forgetting specific data while minimizing the impact on its overall performance
and utility. The interplay between these terms allows for controlled and targeted unlearning, ensuring
the model retains its valuable capabilities while selectively forgetting undesired information. More
detailed formulations of these loss adjustment-based methods, along with related work, are deferred
to Appendix C.1 and Appendix E.

An Example: Large Language Model Unlearning (LLMU). We adopt a popular approach in
LLM unlearning, LLMU (Yao et al., 2023), to interpret a special case of Eqn. (1). Specifically, the
objective of LLMU contains three components: the Unlearn Harm LFG, the Maintain Performance
LRT, and the Random Mismatch LRandom (the custom loss). The training objective is as follows:

LLLMU = LFG + LRT + LRandom,

The forget loss LFG = −
∑

(xf ,yf )∈Df
L(xf , yf ; θ), where (xf , yf ) indicates the forget data

pairs from the forget dataset Df , θ is the updated unlearned model. It is actually the
Gradient Ascent loss to forget the samples subject to unlearning. The retain loss LRT =∑

(xr,yr)∈Dr

∑|yr|
i=1 KL(hθo(xr, yr<i)||hθ(xr, yr<i)), where KL(·) is the KL divergence term,

(xr, yr) indicates the retain data pairs from the retain dataset Dr, θo is the original model, and
θ is the updated model. The random loss LRandom =

∑
(xf ,·)∈Df

1
|Yrdn|

∑
yrdn∈Yrdn

L(xf , yrdn; θ).

Here, Yrdn is a set of random responses that do not have a connection to the forget prompts xf .
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3 METHOD

In this section, we introduce Forget data only Loss AjustmenT (FLAT), a "flat" loss adjustment
approach which adjusts the loss function using only the forget data, by leveraging f -divergence
maximization towards the distance between the preferred template and original forget responses. We
first derive the formulation of our method via f -divergence maximization (§ 3.1), followed by the
presentation of the empirical alternative to our approach (§ 3.2). In section § 3.3, we explore the
estimation gap between the theoretical and empirical f -divergence. Finally, we discuss the connection
between our method and DPO (§ 3.4).

3.1 LOSS-ADJUSTMENTS VIA f -DIVERGENCE MAXIMIZATION

Table 2: fdivs, optimal variational g (g∗), conjugate functions (f∗).

Name g∗(v) domf∗ f∗(u)

Total Variation
1

2
tanh v u ∈ [−1

2
,
1

2
] u

Jensen-Shannon log
2

1 + e−v
u < log 2 − log (2− eu)

Pearson v R
1

4
u2 + u

KL v R eu−1

For each learning batch, we
assume that we only have ac-
cess to a set of forget samples
(xf , yf ) ∈ Df . Instead of di-
rectly adopting gradient ascent
over these forget samples, we
propose to maximize the diver-
gence between exemplary and
bad generations of forget data.
Key steps are summarized as be-
low.

• Step 1: Equip example/template responses ye for each forget sample xf . Together we denote the
paired samples as {(xj

f , y
j
e)}j∈[N ].

This could be done by leveraging open-source LLMs such as Llama 3.1 (Dubey et al., 2024) or
self-defining the responses according to our wish, etc. The designated unlearning response could
be a reject-based answer such as "I don’t know" (denoted as "IDK") or an irrelevant answer devoid
of the unlearning target-related information.
Motivation: Step 1 generates example responses for LLM fine-tuning and provides better instruc-
tions on what LLM should respond given the forget data. Besides, certain existing methods make
LLM generate hallucinated responses after unlearning, which further illustrates the importance of
example responses for LLM unlearning.

• Step 2: Loss adjustmens w.r.t. the sample pairs (xf , ye, yf ) through:

L(xf , ye, yf ; θ) = λe · Le(xf , ye; θ)− λf · Lf (xf , yf ; θ), (2)

where Le, Lf are losses designed for the data sample (xf , ye) and (xf , yf ), respectively. The
corresponding closed form will be introduced in Section § 3.2.
Motivation: Step 2 encourages the LLM to forget the forget data with bad responses, meanwhile,
learn to generate good responses on relevant forget data. [such as template answers]

• Step 3: How to decide on the values of λe and λf?
We leverage f -divergence to illustrate the appropriate balancing between Le(xf , ye; θ) and
Lf (xf , yf ; θ). Assume xf , ye is generated by the random variable Xf , Ye jointly following
the distribution De. Similarly, xf , yf is given by Xf , Yf and (Xf , Yf ) ∼ Df . Step 2 shares
similar insights as if we are maximizing the divergence between De and Df . Our theoretical
purpose is to obtain the model that maximizes the f -divergence between De and Df , defined as
fdiv(De||Df ).

The variational form f -divergence Instead of optimizing the fdiv term directly, we resolve to
the variational form of it. Due to the Fenchel duality, we would have:

fdiv(De||Df ) = sup
g

[
EZe∼De

[g(Ze)]− EZf∼Df
[f∗(g(Zf ))]

]
:= sup

g
VA(θ, g), (3)

we define f∗ as the conjugate function of the f -divergence function. Here, Ze takes (xf , ye, θ) as
input and estimates the "loss" between the model’s response to xf and the target ye. Mathematically,
this corresponds to the discrepancy between θ(xf ) and ye, where θ(xf ) represents the answer
generated by the LLM parameterized by θ given prompt xf . Similarly, Zf estimates the "loss"
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for (xf , yf , θ). We will provide the empirical estimation for Eqn. (3) in the next section. For
simplicity, we define VA(θ, g∗) := supg VA(θ, g), where g∗ is the optimal variational function.
Hence, the objective of FLAT is to obtain: θ∗ := argmaxθ VA(θ, g∗).
Motivation: Note that existing solutions fail to keep a good balance between model performance
on forget data and retain data, step 3 provides a formal theoretical framework of our loss revision
in Step 2, under the f−divergence maximization between De and Df , the method assigns the
appropriate weights f∗(·), g∗(f∗(·)) w.r.t. the joint data distributions De,Df .

3.2 EMPIRICAL ALTERNATIVE OF LOSS ADJUSTMENT

Note that Eqn. (3) could be viewed as a data distribution level loss adjustment, in practice, when
given access to a set of forget data as well as example and bad answers, xf , ye, yf , the per-sample
loss function (closed form of Eqn. (2)) would be given by2:

L(xf , ye, yf ; θ) = −
[
sup
g

[g(P(xf , ye; θ))− f∗(g(P(xf , yf ; θ)))]

]
= −g∗(P(xf , ye; θ)) + f∗(g∗(P(xf , yf ; θ))). (4)

We provide examples of f -divergence functions in Table 2, along with their conjugate and variational
functions (Nowozin et al., 2016; Wei & Liu, 2021). We illustrate via following examples.

Example 1: Total-Variation For Total-Variation (TV), an example of f -divergence, f∗(u) =

u, g∗(v) = tanh (v)
2 , hence, g∗(P(xf , ye; θ))− f∗(g∗(P(xf , yf ; θ)) =

tanh (P(xf ,ye;θ))

2
− tanh (P(xf ,yf ;θ))

2
.

We defer examples of other f -divergence functions in the Appendix B.1.

How to estimate P(xf , ye; θ),P(xf , yf ; θ)? We define the following two quantities:

P(xf , ye; θ) :=

∑|ye|
i=1 P (Mθ(xf , ye,<i) = ye,i)

|ye|
, P(xf , yf ; θ) :=

∑|yf |
i=1 P (Mθ(xf , yf,<i) = yf,i)

|yf |
.

Here, ye,i and yf,i denote the i-th token in the samples ye and yf , respectively, while ye,<i and
yf,<i represent the already generated tokens. |ye| and |yf | are the lengths of the example response
ye and the forget response yf , respectively. Given a prompt and the previously generated tokens,
P (Mθ(xf , ye,<i) = ye,i) and P (Mθ(xf , yf,<i) = yf,i) are the probabilities of correctly predicting
the next token, whereMθ(xf , ye,<i), andMθ(xf , yf,<i) are the predicted token using LLM θ given
input prompt xf and the already generated tokens ye,<i and yf,<i. These two quantities represent the
average probabilities of correctly generating tokens for the template and forget responses, respectively.
To align Eqn. (4) with Eqn. (2), we could define λe = λf = 1, Le(xf , ye; θ) := −g∗(P(xf , ye; θ)),
and Lf (xf , yf ; θ) := −f∗ (g∗(P(xf , yf ; θ))).

3.3 THE UPPER BOUND OF THE ESTIMATION GAP

To connect the empirical alternative of FLAT with the corresponding theoretical format, in this
section, we aim to explore the estimation gap between the theoretical f -divergence fdiv(De||Df ) and
the empirical optimal estimated f -divergence f̂div(De||Df ), here we define:

f̂div(De||Df ) := EZe∼De
[ĝ(Ze)]− EZf∼Df

[f∗(ĝ(Zf ))],

where ĝ := supg∈Φ EZe∼De [g(Ze)]− EZf∼Df
[f∗(g(Zf ))] and Φ is the function space.

Assumption 3.1 (Bounded Density Ratio). The density ratio Ze/Zf is lower and upper bounded by
positive constants a and b, respectively.

Assumption 3.1 is wildely adopted by the literature (Suzuki et al., 2008; Nguyen et al., 2010), which
necessitates that the probability density functions Ze, Zf share the same support.

2To clarify, we introduce the negative sign on the r.h.s. because loss function is commonly combined with
the minimization task, while our method is formulated as maximizing the f -divergence.
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Assumption 3.2 (Regularity of Divergence Function). f(·) is smooth on [a, b], and f(1) = 0. f is
µ0-strongly convex, and has L0-Lipschitz continuous gradient on [a, b], for positive constants µ0, L0.

Assumption 3.2 is a mild condition since it only requires the condition to hold for the interval [a, b],
which works for many commonly used f -divergence functions, i.e., KL divergence.

Let (V, || · ||L2) be a normed space, and Φ ⊂ V . v1, ..., vC is a δ-covering over Φ of size C if
Φ ⊂ ∪Ci=1B(vi, δ) where B(vi, δ) is the δ-ball centered at vi. The covering number is then defined as
C2(δ,Φ) = min{C : ∃δ-covering over Φ of size C}. The following assumption would characterize
the representation power of the function space Φ.
Assumption 3.3 (Order of Covering Number). C2(δ,Φ) = O(exp{δ−rΦ}), and rΦ ∈ (0, 2).

Theorem 3.4. Given Assumptions 3.1-3.3, suppose ĝ ∈ Φ, with probability ≥ 1 − e−NrΦ/(2+rΦ)

,
we have:

∣∣∣f̂div(De||Df )− fdiv(De||Df )
∣∣∣ ≾ N

− 1
rΦ+2 , where we have defined N as the number of

samples in the forget data.

Theorem 3.4 illustrates that the empirical alternative of FLAT, f̂div(De||Df ), achieves the optimal
non-parametric rate of convergence towards fdiv(De||Df ).

3.4 CONNECTION WITH DPO

In this section, we discuss the connection and key differences between our approach and the celebrated
Direct Preference Optimization (DPO) Rafailov et al. (2024) approach for aligning LLMs.

Given a dataset D = {(xj
f , y

j
e, y

j
f )}j∈[N ]

, where ye and yf are preferred template and original forget
responses to the forget prompt xf , DPO (Rafailov et al., 2024) fine-tunes original model θo using D
to better align it with good answer preferences, which minimizes:

LDPO,β(θ) = − 2

β
ED

[
log σ

(
β log

πθ(ye | xf )

πref (ye | xf )
− β log

πθ(yf | xf )

πref (yf | xf )

)]
= − 2

β
ED

[
log σ

(
β(log

|ye|∏
i=1

hθ(xf , ye,<i)− log

|yf |∏
i=1

hθ(xf , yf,<i))−Mref

)]
,

where, σ(t) = 1
1+e−t is the sigmoid function, β > 0 is the inverse temperature, πθ :=∏|y|

i=1 hθ(x, y<i) is the predicted probability of the response y to prompt x given by LLM θ, πref

is the predicted probability given by reference model, and Mref := β(log
∏|ye|

i=1 hθo(xf , ye,i) −
log

∏|yf |
i=1 hθo(xf , yf,i)). As for FLAT, we calculate the average probability of all correctly generated

tokens and employ a novel re-weighting mechanism that assigns different importance to each term
using distinct activate functions for both the example and forget loss terms, which minimizes:

LFLAT(θ) = −ED

[
g∗(

1

|ye|

|ye|∑
i=1

hθ(xf , ye,<i))− f∗(g∗(
1

|yf |

|yf |∑
i=1

hθ(xf , yf,<i))
]
.

Here, f∗(·), g∗(f∗(·)) are the activate functions that assign appropriate weights to each loss term.
The detailed derivation is in Appendix B.2. The key differences are highlighted in red. Specifically,
DPO relies on a reference model to guide the unlearning process, whereas FLAT only uses a sample
pair dataset containing both exemplar and forget responses. Besides, our solution differs from DPO
in three critical aspects: the re-weighting activation function, whether to sum or average the token
losses, and whether to apply the logarithm to the output probability. We conduct an ablation study
with DPO to evaluate the effectiveness of the proposed re-weighting mechanism in Section § 4.5.

4 EXPERIMENT

In this section, we compare the proposed method with baseline unlearning methods on three widely
used LLM unlearning tasks: copyrighted content unlearning on Harry Potter (HP) Series Book (Yao
et al., 2023) (§ 4.2), entity unlearning on TOFU dataset (Maini et al., 2024a) (§ 4.3), and unlearning
on MUSE-News benchmark (Shi et al., 2024) (§ 4.4). We conduct additional ablation studies to
assess the effectiveness of our methods in Section § 4.5.
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4.1 BASELINE METHODS

We evaluate the effectiveness of our proposed method FLAT by comparing it to a series of strong
LLM unlearning baselines, particularly those based on loss adjustment. We consider Gradient
Ascent (GA) (Jang et al., 2022; Yao et al., 2023), KL minimization (KL) (Maini et al., 2024a),
GradDiff (GD) (Liu et al., 2022), NPO (Zhang et al., 2024), and Mismatch (Liu et al., 2024a)
across all three tasks. For copyrighted content and entity unlearning, we also include Preference
Optimization (PO) (Maini et al., 2024a), Large Language Model Unlearning (LLMU) (Yao et al.,
2023), and DPO (Rafailov et al., 2024). For the MUSE-News benchmark, we additionally consider
Task Vectors (Ilharco et al., 2022), Who’s Harry Potter (WHP) (Eldan & Russinovich, 2023) and an
extended version of NPO (NPO-RT) as a comparable method, which incorporates a fine-tuning term
on the retain dataset. Further experiment details are provided in Appendix C.1.

4.2 COPYRIGHTED CONTENT UNLEARNING

Table 3: Performance of our method and the base-
line methods on Harry Potter dataset using OPT-
2.7B. FLAT consistently ranks in the top two in
terms of similarity to the retained model, measured
by Forget Quality Gap (FQ Gap), while also gener-
ating meaningful and diverse outputs, as reflected
by perplexity (PPL) and the average zero-shot ac-
curacy across nine LLM benchmarks (Avg. Acc.).
The top two results across three main metrics are
highlighted in blue.

Metric FQ Gap(↓) PPL(↓) Avg.Acc.(↑)
Original LLM 1.5346 15.6314 0.4762
Retained LLM 0.0 14.3190 0.4686

GA 2.7301 1.0984e71 0.3667
KL 2.7301 16.1592 0.4688
GD 2.3439 16.1972 0.4690
PO 2.1601 14.8960 0.4583

Mismatch 1.4042 15.7507 0.4679

LLMU 2.4639 15.8398 0.4656
DPO 2.2152 16.8396 0.4621
NPO 1.2611 19.6637 0.4644

FLAT (TV) 1.4047 15.5512 0.4681
FLAT (KL) 1.3238 15.5311 0.4694
FLAT (JS) 1.4025 15.5499 0.4693

FLAT (Pearson) 1.4089 15.5543 0.4686

Experiment Setup. We select Harry Potter and the
Sorcerer’s Stone (Rowling, 1997) as the copyrighted
content for unlearning. The objective is to ensure that
the unlearned model does not generate passages with
high similarity to the original text. Following prior
works (Liu et al., 2024a; Yao et al., 2023), we first
fine-tune LLMs on the corresponding corpus, treat-
ing it as the model subject to unlearning, while using
the original pre-trained checkpoint as the retained
model3. Following Yao et al. (2023); Jia et al. (2024),
We extract 400 chunks from the Harry Potter book se-
ries dataset (Eldan & Russinovich, 2023), with each
chunk containing up to 512 tokens, to create the for-
get dataset Df . We sample 400 paragraphs in the
C4 dataset (Raffel et al., 2020) as the retain data Dr.
The IDK dataset comes from Jia et al. (2024). We
experiment with OPT-2.7B (Zhang et al., 2022) and
Llama2-7B (Touvron et al., 2023) for this task.

Evaluation Metrics. We report three key metrics to
assess the unlearning efficiency and model utility of
the unlearned models. For unlearning efficiency, we
use the Forget Quality Gap (FQ Gap), similar to Liu
et al. (2024a), which is the sum of the BLEU Gap
and ROUGE-L Gap. It is the absolute difference between the retained model and the unlearned
model on these metrics. Specifically, we calculate BLEU (Papineni et al., 2002) and ROUGE-L (Lin,
2004) scores by comparing ground-truth excerpts with completions generated by the unlearned
model, given a fixed prefix length of 200 tokens from the forget data, to reflect potential copyright
content leakage. We further conduct study on the prompt length for evaluation in Appendix D.1.
Following (Ji et al., 2024), we measure the model utility using the zero-shot accuracy on nine standard
LLM benchmarks to determine if the generated text remains meaningful and diverse. Additionally,
we measure perplexity (PPL) on Wikitext (Merity et al., 2016). More details about the experimental
setup and implementation are in Appendix C.2.

FLAT consistently ranks in the top two across three metrics. Table 3 shows that FLAT ranks in
the top two across the three primary metrics, with particularly strong performance in KL f-divergence
function. Our method achieves scores close to those of the retained model in terms of the average
accuracy across nine LLM benchmarks.

FLAT approach achieves good trade-off. Our method demonstrates strong unlearning efficiency
while preserving model utility as shown in Table 3. Although NPO demonstrates the best forget
quality, outperforming our method, it severely suffers from lower model utility, as reflected by its
PPL score. PO, while also using example responses, has the lowest PPL and a weak forgetting

3We empirically verified that the initial LLM cannot generate the original corpus, making it a valid candidate
for retrained model.
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Table 4: Performance of our method and the baseline methods on TOFU dataset using three base LLMs,
Llama2-7B, Phi-1.5B, and OPT-2.7B. FQ, MU, R-RL, F-RL represent forget quality, model utility, ROUGE-L
on retain dataset and ROUGE-L on forget dataset respectively. We include the original LLM and retain LLM for
reference. The top two results are highlighted in blue.

Base LLM Llama2-7B Phi-1.5B OPT-2.7B
Metric FQ MU F-RL(↓) R-RL FQ MU F-RL(↓) R-RL FQ MU F-RL(↓) R-RL

Original LLM 4.4883e-06 0.6346 0.9851 0.9833 0.0013 0.5184 0.9607 0.9199 0.0013 0.5120 0.7537 0.7494
Retained LLM 1.0 0.6267 0.4080 0.9833 1.0 0.5233 0.4272 0.9269 1.0 0.5067 0.4217 0.7669

GA 0.0143 0.6333 0.4862 0.9008 0.0013 0.5069 0.5114 0.8048 0.2657 0.4639 0.4748 0.6387
KL 0.0068 0.6300 0.5281 0.9398 0.0030 0.5047 0.5059 0.8109 0.0286 0.4775 0.4810 0.6613
GD 0.0068 0.6320 0.4773 0.8912 0.0030 0.5110 0.4996 0.8496 0.0541 0.4912 0.4521 0.6603
PO 0.0541 0.6308 0.3640 0.8811 0.0286 0.5127 0.3170 0.7468 0.0068 0.4424 0.0589 0.4015

Mismatch 0.0143 0.6304 0.9406 0.9741 0.0030 0.5225 0.9612 0.9194 0.0030 0.5025 0.7525 0.7475

LLMU 0.0541 0.6337 0.4480 0.8865 0.0286 0.5110 0.3058 0.7270 0.0286 0.3296 0.0347 0.2495
DPO 0.0541 0.6359 0.5860 0.8852 0.0521 0.0519 0.3437 0.7349 0.0541 0.4264 0.0806 0.3937
NPO 0.0068 0.6321 0.4632 0.8950 0.0030 0.5057 0.5196 0.8000 0.0541 0.4788 0.4993 0.6490

FLAT (TV) 0.0541 0.6373 0.4391 0.8826 0.0143 0.5168 0.4689 0.8155 0.0068 0.5086 0.5217 0.7067
FLAT (KL) 0.0286 0.6393 0.5199 0.8750 0.0143 0.5180 0.4524 0.7850 0.0286 0.4838 0.4942 0.6974
FLAT (JS) 0.0541 0.6364 0.4454 0.8864 0.0068 0.5144 0.4572 0.8117 0.0541 0.4959 0.4938 0.7013

FLAT (Pearson) 0.0541 0.6374 0.4392 0.8857 0.0143 0.5175 0.4591 0.8099 0.0068 0.5093 0.5052 0.7059

performance (FQ Gap), indicating the ineffectiveness of learning the example responses in a naive
manner. These results highlight the effectiveness of our method in balancing forget quality and model
utility, even without an explicit retaining term in the loss function. We also include additional results
using Llama2-7B (Table 9) in Appendix D.1.

4.3 ENTITY UNLEARNING

Experiment Setup. The TOFU dataset (Maini et al., 2024a) is a synthetic question-answering dataset
focused on author biographies, aiming to enable a LLM to unlearn a portion of fictitious authors
while retaining knowledge about the rest and real-world facts. The dataset includes 200 fake authors,
each with 20 QA pairs, and experiments are conducted with 1%, 5% or 10% of these authors marked
for unlearning. We first fine-tuned the target LLM using all dataset to obtain the original LLM. We
use Llama2-7B, Phi-1.5B (Li et al., 2023a), and OPT-2.7B as base LLM.

Evaluation Metrics. To assess forget quality and model utility, we mainly use two metrics proposed
alongside the TOFU dataset, Forget Quality (FQ) and Model Utility (MU) (Maini et al., 2024a).
Forget quality, assessed via a p-value from a Kolmogorov-Smirnov test, measures how closely the
unlearned model’s output matches a model trained only on the retained data in distribution. When
the p-value is above 0.01, we say the forgetting is significant. Model utility is the aggregated model
performance on held-out retain data regarding fictional authors, real-world author profiles, and world
facts. We also report the ROUGE-L score on forget set and retain set. It’s important to note that for
the forget set, a lower ROUGE-L score does not necessarily indicate better performance. Therefore,
we highlight methods where the ROUGE-L score closely matches that of the retained model, as these
are considered to produce better results. More metrics can be found in Appendix C.3.1.

FLAT is always the best in preserving model utility. As seen in Table 4, it experiences almost no
reductions in model utility compared to the original model. On LLaMA2-7B, although GA and KL
achieve strong ROUGE-L scores on the retain dataset, their forgetting performance is poor. Similarly,
on Phi-1.5B, GD performs well on the retain dataset’s ROUGE-L score, but its forgetting performance
is insufficient, failing to exceed 0.01.

FLAT achieves the top two Forget Quality under all three models. FLAT achieves a ROUGE
score that is closest to the Retained LLM on forget dataset under Llama2-7B and Phi-1.5B. PO shows
the best forgetting efficiency on Phi-1.5B, but its ROUGE-L scores on both the forget and retain
datasets are lower compared to the retained LLM, indicating weaker model utility. A similar issue
is observed with GA: while it excels in forgetting performance on the OPT-2.7B model, its model
utility remains weaker.

FLAT achieves the best trade-off. Our method consistently ranks in the top two across the primary
metrics, achieving the best performance in MU. Specifically, KL f-divergence demonstrates strong
results in both FQ and MU on LLama2-7B and Phi-1.5B models. Overall, all four f-divergence
functions effectively balance forgetting efficiency and model utility. In summary, our method
demonstrates the best model utility while achieving top-two results in forgetting performance.
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Table 5: Performace on MUSE benchmark using four criteria. We highlight results in blue if the unlearning
algorithm satisfies the criterion and highlight it in red otherwise. For metrics on Df , lower values than the
retained LLM are preferred and the lower the better. For metrics on Dr , as long as KnowMem is non-zero
(indicating retained knowledge), higher values are better. In terms of PrivLeak, the results should be close to 0.
Large negative or positive values suggest that they may cause privacy leakage.

VerbMem on Df (↓) KnowMem on Df (↓) KnowMem on Dr (↑) PrivLeak
Original LLM 58.4 - 63.9 - 55.2 - -99.8
Retained LLM 20.8 - 33.1 - 55.0 - 0.0

GA 0.0 (✔) 0.0 (✔) 0.0 (✘) 17.0
KL 27.4 (✘) 50.2 (✘) 44.8 (✔) -96.1

NPO 0.0 (✔) 0.0 (✔) 0.0 (✘) 15.0
NPO-RT 1.2 (✔) 54.6 (✘) 40.5 (✔) 105.8

Task Vector 56.3 (✘) 63.7 (✘) 54.6 (✔) -99.8
Mismatch 42.8 (✘) 52.6 (✘) 45.7 (✔) -99.8

GD 4.9 (✔) 27.5 (✔) 6.7 (✔) 109.4
WHP 19.7 (✔) 21.2 (✔) 28.3 (✔) 109.6

FLAT (TV) 1.7 (✔) 13.6 (✔) 31.8 (✔) 45.4
FLAT (KL) 0.0 (✔) 0.0 (✔) 0.0 (✘) 58.9
FLAT (JS) 1.9 (✔) 36.2 (✘) 38.5 (✔) 47.1

FLAT (Pearson) 1.6 (✔) 0.0 (✔) 0.2 (✔) 26.8

4.4 MUSE-NEWS UNLEARNING

Experiment Setup. We focus on the task of unlearning on News corpus presented in Shi et al. (2024).
News consists of BBC news articles (Li et al., 2023b) collected after August 2023. All articles
are randomly divided into forget, retain, and holdout sets. We perform unlearning directly on the
pre-trained models provided by the benchmark, following the corresponding experimental setup.

Evaluation Metrics. We report the proposed four metrics, VerbMem on forget dataset, KnowMem on
forget and retain dataset, and Privacy leakage (PrivLeak). We quantify the verbatim memorization
VerbMem by prompting the model with the first l tokens from a sequence and comparing the
continuation outputted by the model θ to the true continuation using the ROUGE-L F1 score (Lin,
2004). We gather the model’s answers to questions and then average the ROUGE scores for all
question-answer pairs in forget dataset or retain dataset to compute the knowledge memorization
score KnowMem. The PrivLeak metric for a good unlearning algorithm should be close to zero,
whereas an over/under-unlearning algorithm will get a large positive/negative metric.

Experiment Results. FLAT effectively removes verbatim and knowledge memorization of forget
dataset and achieve good knowledge memorization of retain dataset. But it can still reveal the
membership of Df in Dr. As shown in Table 5, GA, NPO, GD, WHP, and ours perform well in
VerbMem and KnowMem on forget dataset, often reduing them even beyond the levels achieved by
the retrained model. However, these reductions often come at the cost of significant utility loss on the
retain set. Only GD, WHP and ours can perfome good in all memorization related metrics. And FLAT
(TV) can achieve the lowest VerbMem and KnowMem on Df and the highest KnowMem on Dr

among the three methods. However, none of the methods can achieve satisiable results regarding to
the privacy leakage. Since MUSE uses news data, which is highly time-dependent (and thus possibly
non-i.i.d.), we advocate for cautious interpretation of the PrivLeak metric (see Appendix C.4.1).

4.5 ABLATION STUDIES

The Effectiveness of Re-weighting Mechanism. As FLAT (KL) demonstrates strong overall
performance, we base our ablation study on KL divergence to explore the effectiveness of the implicit
re-weighting mechanism within our loss adjustment. This study is conducted on the TOFU dataset
using Llama2-7B. For additional results from the ablation studies, please refer to Appendix D.3.

When using preferred template data for unlearning, we compare our method with DPO (without
the term Mref ) and SimPO, as outlined in Appendix C.1. All methods use the same data and have
similar formulations, with two terms in the loss function; the only difference lies in the intrinsic
re-weighting mechanism. As shown in Table 6, our method achieves the highest number of best
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Table 6: Ablation Study of Re-weighting Mechanism on TOFU dataset using Llama2-7B under all metrics. We
report ROUGE-L score (R-L), Probability (P), and Truth Ratio (TR) on all four subsets of the TOFU benchmark.
Higher scores are better except ROUGE-L and Probability on the Forget Set. The best ones are in blue.

Split Real Authors Real World Retain Set Forget Set
Metric R-L P TR R-L P TR R-L P TR R-L(↓) P(↓) TR

Study on Re-weighting Mechanism Using Template IDK Data

DPO 0.9330 0.4939 0.6384 0.8917 0.4631 0.5646 0.8852 0.9623 0.4407 0.5860 0.8734 0.6240
DPO w/o Mref 0.9330 0.4899 0.6333 0.8917 0.4620 0.5642 0.8735 0.9579 0.4388 0.4021 0.8149 0.6326

SimPO 0.9330 0.4902 0.6335 0.8917 0.4624 0.5664 0.8758 0.9577 0.4388 0.4087 0.8128 0.6329
FLAT (KL) 0.9180 0.4992 0.6491 0.9060 0.4524 0.5609 0.8750 0.9679 0.4603 0.5199 0.7588 0.5895

Study on Re-weighting Mechanism Using Retain Data

GD 0.9080 0.4728 0.6156 0.8718 0.4439 0.5833 0.8912 0.9657 0.4701 0.4773 0.4238 0.5619
FLAT (KL)-Retain 0.9180 0.4643 0.6099 0.8832 0.4356 0.5690 0.9241 0.9734 0.4697 0.4487 0.3342 0.5879

Table 7: Ablation Study of Good Answer Type using three LLMs on TOFU dataset. FQ, MU, R-RL, F-RL
represent forget quality, model utility, ROUGE-L on retain dataset and ROUGE-L on forget dataset respectively.
The best performance is in blue.

Split Llama2-7B Phi-1.5B OPT-2.7B
Metric FQ MU F-RL(↓) R-RL FQ MU F-RL(↓) R-RL FQ MU F-RL(↓) R-RL

Original LLM 4.4883e-06 0.6346 0.9851 0.9833 0.0013 0.5184 0.9249 0.9293 0.0013 0.5120 0.7537 0.7494
Retained LLM 1.0 0.6267 0.4080 0.9833 1.0 0.5233 0.4272 0.9269 1.0 0.5067 0.4217 0.7669

FLAT (TV)-IDK 0.0541 0.6373 0.4391 0.8826 0.0143 0.5168 0.4689 0.8155 0.0068 0.5086 0.5217 0.7067
FLAT (KL)-IDK 0.0286 0.6393 0.5199 0.8750 0.0143 0.5180 0.4524 0.7850 0.0286 0.4838 0.2212 0.4853
FLAT (JS)-IDK 0.0541 0.6364 0.4454 0.8864 0.0068 0.5144 0.4572 0.8117 0.0541 0.4959 0.3104 0.5658

FLAT (Pearson)-IDK 0.0541 0.6374 0.4392 0.8857 0.0143 0.5175 0.4591 0.8099 0.0068 0.5093 0.5052 0.7059

FLAT (TV)-Normal 0.0068 0.6173 0.4941 0.9575 0.0068 0.5104 0.4827 0.8245 0.0030 0.5086 0.5646 0.7355
FLAT (KL)-Normal 0.0068 0.6162 0.6273 0.9719 0.0068 0.5177 0.5377 0.8575 0.0030 0.5082 0.5642 0.7474
FLAT (JS)-Normal 0.0143 0.6178 0.4910 0.9560 0.0013 0.5068 0.5538 0.7313 0.0013 0.5068 0.5538 0.7313

FLAT (Pearson)-Normal 0.0068 0.6186 0.4972 0.9546 0.0030 0.5094 0.5554 0.7343 0.0030 0.5094 0.5554 0.7343

results across 12 metrics. When replacing the IDK data with retain data, the results show that the
retain version performs better on the Retain Set but worse on Real Authors and Real World compared
to FLAT (KL). Since GD shares the same data usage and formulation as our method, except for the
re-weighting mechanism and utilization of retain data, we compare the retain version to GD. The
results show that our method achieves better performance on both the Retain Set and Forget Set, with
the decline in Real Authors and Real World performance caused by the use of retain data.

The Imapct of Good Answer Type. In the first step of our approach, we intend to generate good
example responses for each forget sample. We primarily use the reject-based response "I don’t know"
(denoted as IDK) as the default choice. In this section, we conduct an ablation study on data usage
for FLAT to analyze how these good responses impact unlearning performance. Table 7 presents
the ablation study of good answer type using three LLMs on TOFU dataset, comparing IDK with
random normal responses (denoted as Normal). Table 14 in Appendix D.3 provides the ablation
study of different good answer type using Llama2-7B on the HP dataset. Results indicate that using
normal responses improves model utility on HP datasets and improves ROUGE-L Score on retain set
on TOFU datasets, whereas using IDK responses yields better forgetting quality. Additionally, we
observe that the performance across the four divergence functions is relatively similar. KL divergence,
in particular, demonstrates more consistent results across the three datasets and three models, likely
due to its reduced sensitivity to incorrect or bad answers.

5 CONCLUSION

In this paper, we address the limitations of existing LLM unlearning methods, which often rely on the
retain data or a reference LLM for response calibration. To overcome these challenges, we propose
FLAT (Forget data only Loss AdjustmenT), a "flat" loss adjustment approach that eliminates the
need for retain data or a reference model. By optimizing the f -divergence between the template
and forget responses, FLAT offers a clear and theoretically grounded solution for balancing forget
quality with model utility in LLM unlearning. Through extensive experiments on three key unlearning
tasks: copyrighted content unlearning on the Harry Potter dataset, the MUSE benchmark, and entity
unlearning on the TOFU dataset, we demonstrate the superior performance of FLAT. Our method
consistently achieves high unlearning efficiency while preserving overall model utility, showcasing
its effectiveness in addressing both practical and theoretical challenges in LLM unlearning.
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APPENDIX ARRANGEMENT

The Appendix is organized as follows.

• Section § A: Discussion of the broad impacts and limitations of our method.
• Section § B: Detailed theoretical illustrations and proofs.

• Section § B.1: Additional examples of loss adjustments under various f -divergence functions.
• Section § B.2: Derivation of the empirical loss objective.

• Section § C: Detailed experimental settings.
• Section § C.1:Revisits existing unlearning methods and unifies them under our general loss

function framework, as described in Section § 2.2.
• Section § C.2, § C.3, § C.4: Detailed experimental settings, including evaluation metrics and

implementation settings for the three unlearning tasks.
• Section § D: Additional experiments and discussions.
• Section § E: Related work.

A LIMITATIONS AND BROADER IMPACTS

A.1 BROAD IMPACTS

The proposed FLAT method for LLM unlearning has the potential to significantly advance ethical
and responsible AI deployment, particularly in addressing key challenges such as privacy concerns,
bias, and regulatory compliance. By enabling models to effectively forget specific data without
compromising overall model utility, this approach directly addresses issues related to data privacy,
including compliance with regulations like GDPR, which mandates data deletion upon user request.
The ability to unlearn sensitive or copyrighted information, as demonstrated on datasets like Harry
Potter and TOFU, ensures that AI models can be continually refined without propagating harmful or
biased content.

Furthermore, the reduced reliance on the retain data or a reference LLM makes FLAT more resource-
efficient, lowering the computational and financial costs associated with large-scale unlearning. This
opens up opportunities for wider adoption across industries and research institutions where access
to retain data or additional model resources may be limited or not accessible. The implications
of this work span multiple domains, including healthcare, finance, and education, where ethical
considerations are paramount.

A.2 LIMITATIONS

One key limitation of our approach is the unsatisfactory performance in the privacy leakage evaluation
on the MUSE dataset. While FLAT demonstrates strong unlearning efficiency and retains model
utility across several benchmarks, it struggles to prevent privacy leakage. Note that all other tested
methods suffer from the same issue, this suggests that further refinement is needed to strengthen
the privacy-preserving aspects of existing LLM unlearning approaches. Future work could explore
more robust strategies to address privacy leakage while maintaining the balance between unlearning
performance and model utility.
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B THEORETICAL ILLUSTRATION AND PROOFS

B.1 ADDITIONAL EXAMPLES FOR LOSS ADJUSTMENTS UNDER MORE f -DIVERGENCE

Example 2: Jenson-Shannon (JS) For Jenson-Shannon f -divergence, we have f∗(u) =

− log (2− eu), g∗(v) = log
2

1 + e−v
, hence:

g∗((P(xf , ye; θ))− f∗(g∗((P(xf , yf ; θ)) = log
2

1 + e−P(xf ,ye;θ)
−

− log

2− e
log

2

1 + e−P(xf ,yf ;θ)




= log
2

1 + e−P(xf ,ye;θ)
+ log

2− e
log

2

1 + e−P(xf ,yf ;θ)


= log

2

1 + e−P(xf ,ye;θ)
+ log

(
2− 2

1 + e−P(xf ,yf ;θ)

)
= log

2

1 + e−P(xf ,ye;θ)
+ log

(
2e−P(xf ,yf ;θ)

1 + e−P(xf ,yf ;θ)

)
= log

(
4e−P(xf ,yf ;θ)

(1 + e−P(xf ,ye;θ))(1 + e−P(xf ,yf ;θ))

)
.

Example 3: Pearson For Pearson f -divergence, we have f∗(u) = u2

4 + u, g∗(v) = v, hence:

g∗(P(xf , ye; θ))− f∗(g∗((P(xf , yf ; θ)) = P(xf , ye; θ)−
(
P(xf , yf ; θ)

2

4
+ P(xf , yf ; θ)

)
= −P(xf , yf ; θ)

2

4
− P(xf , yf ; θ) + P(xf , ye; θ).

Example 4: KL For KL f -divergence, we have f∗(u) = eu−1, g∗(v) = v, hence:

g∗((P(xf , ye; θ))− f∗(g∗((P(xf , yf ; θ)) = P(xf , ye; θ)− eP(xf ,yf ;θ)−1.

B.2 THE DERIVATION OF EMPIRICAL LOSS FUNCTION

According to Eqn. (4), we have:

L(xf , ye, yf ; θ) = −
[
sup
g

[g(P(xf , ye; θ))− f∗(g(P(xf , yf ; θ)))]

]
= f∗(g∗(P(xf , yf ; θ)))︸ ︷︷ ︸

Lf (xf ,yf ;θ)

−g∗(P(xf , ye; θ)))︸ ︷︷ ︸
Le(xf ,ye;θ)

.

Given a dataset D = {(xj
f , y

j
e, y

j
f )}j∈[N ]

, where ye and yf are preferred template and original

forget responses to the forget prompt xf , we estimate P(xf , ye; θ),P(xf , yf ; θ) via the following
two quantities:

P(xf , ye; θ) :=

∑|ye|
i=1 P (Mθ(xf , ye,<i) = ye,i)

|ye|
, P(xf , yf ; θ) :=

∑|yf |
i=1 P (Mθ(xf , yf,<i) = yf,i)

|yf |
.

Given a prompt and the previously generated tokens, P (Mθ(xf , ye,<i) = ye,i) and
P (Mθ(xf , yf,<i) = yf,i) are the probabilities of correctly predicting the next token, where
Mθ(xf , ye,<i), andMθ(xf , yf,<i) are the predicted token using LLM θ given input prompt xf and
the already generated tokens ye,<i and yf,<i.
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Empirically, we can obtain the loss function for the dataset D:

LFLAT (θ) = −ED

[
g∗(P(xf , ye; θ)))− f∗(g∗(P(xf , yf ; θ)))

]
= −ED

[
g∗(

∑|ye|
i=1

∑v
k=1 ye,i,k · hθ(xf , ye,<i)k

|ye|
)− f∗(g∗(

∑|yf |
i=1

∑v
k=1 yf,i,k · hθ(xf , yf,<i)k

|yf |
)
]

= −ED

[
g∗(

∑|ye|
i=1 hθ(xf , ye,<i)

|ye|
)− f∗(g∗(

∑|yf |
i=1 hθ(xf , yf,<i)

|yf |
)
]
.

Here, v is the vocabulary size, ye,i,k is the k-th element of vector representing the i-th token in
the good response ye, yf,i,k is the k-th element of vector representing the i-th token in the forget
response yf . Additionally, hθ(xf , ye,<i)k and hθ(xf , yf,<i)k denote the k-th entry of the probability
distribution for the correctly generated token.

An example: KL For KL f-divergence, f∗(u) = eu−1, g∗(v) = v, hence, g∗(P(xf , ye; θ)) −
f∗(g∗(P(xf , yf ; θ)) = P(xf , ye; θ)− eP(xf ,yf ;θ)−1. We have:

LFLAT (θ) = −ED

[∑|ye|
i=1 hθ(xf , ye,<i)

|ye|
− e

∑|yf |
i=1

hθ(xf ,yf,<i)

|yf | −1
]
.

B.3 PROOF OF THEOREM 3.4

Proof. Remember that we define:

f̂div(De||Df ) := EZe∼De
[ĝ(Ze)]− EZf∼Df

[f∗(ĝ(Zf ))],

and

fdiv(De||Df ) = sup
g

[
EZe∼De [g(Ze)]− EZf∼Df

[f∗(g(Zf ))]
]
,

we first prove the convergence of ĝ, and then the convergence of f̂div(De||Df ).

For the ease of presentation, for any real-valued function ϱ, we write EDe(ϱ) = Ez∼De [ϱ(z)],
EDf

(ϱ) = Ez∼Df
[ϱ(z)], EDe(ϱ) = Ez∼De [ϱ(z)], and EDf

(ϱ) = Ez∼Df
[ϱ(z)].

Given any g̃ ∈ Φ, according to Lemma C.1 in (Wei et al., 2021), and the fact that f∗ is Lipschitz
continuous, we have:

||ĝ − g∗||2L2(Df )
≾ [EDe

[(ĝ − g∗)/2]− EDe
[(ĝ − g∗)/2]]

−
[
EDf

[f∗((ĝ − g∗)/2)− f∗(g∗)]− EDf
[f∗((ĝ − g∗)/2)− f∗(g∗)]

]
. (5)

By using the fact that the true density ratio Ze/Zf is bounded below and above, hence, L2(De) is
indeed equivalent to L2(Df ). Based on Eqn. (5), Lemma C.2 in (Wei et al., 2021), and the Lipschitz
property of f∗, with probability at least 1− c1 exp(−NrΦ/(2+rΦ)/c21), we have

||ĝ − g∗||2L2(Df )
≾ N−1/(rΦ+2). (6)

Note that we have:∣∣∣f̂div(De||Df )− fdiv(De||Df )
∣∣∣

≤|EDe
[ĝ − g∗]− EDe

[ĝ − g∗]|+ |EDf
[f∗(ĝ)− f(g∗)]− EDf

[f∗(ĝ)− f∗(g∗)]|
+ |EDe [ĝ − g∗]− EDf

[f∗(ĝ)− f∗(g∗)]|+ |EDe [g
∗]− EDe [g

∗]|+ |EDf
[f∗(g∗)]− EDf

[f∗(g∗)]|
= Cons1 + Cons2 + Cons3 + Cons4 + Cons5. (7)

By Lemma C.2 in (Wei et al., 2021), with probability at least 1− c1 exp(−NrΦ/(2+rΦ)/c21), we have

Cons1 ≾ N−2/(rΦ+2).
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Similar upper bound holds for Cons2.

Following from Eqn. (6), with probability at least 1− c1 exp(−NrΦ/(2+rΦ)/c21), we have

Cons3 ≾ N−1/(rΦ+2).

Applying Hoeffding’s inequality, with probability at least 1− c1 exp(−NrΦ/(2+rΦ)/c21), we have

Cons4 ≾ N−1/(rΦ+2).

Similar upper bound holds for Cons5.

Combining the five upper bounds for Consi where i ∈ [5], with probability at least 1 −
c1 exp(−NrΦ/(2+rΦ)/c21), we have∣∣∣f̂div(De||Df )− fdiv(De||Df )

∣∣∣ ≾ N
− 1

rΦ+2 .

C DETAILED EXPERIMENTAL SETUP

Table 8: Summary of unlearning tasks, including base models, forget datasets, and evaluation metrics.
Unlearning Task Base Model Forget Dataset Metrics

Copyrighted Content Unlearning OPT-2.7B, Llama2-7B Harry Potter Series BLEU, ROUGE_L, PPL, Zero-shot Acc

Entity Unlearning (TOFU) OPT-2.7B, Llama2-7B, Phi-1.5B TOFU-Forget01/05/10 Forget Quality (p-value), ROUGE_L on Forget set, Model Utility

MUSE Benchmark Llama2-7B BBC News Corps verbatim and knowledge memorization on Df , privacy leakage, Utility preservation

Table 8 summarizes the experimental setups, including base models, forget and retain datasets, and
evaluation metrics.

C.1 FORMULATIONS FOR BASELINE METHODS

In this section, we revisit existing unlearning objectives and unify them under our general loss
function framework, as described in Section § 2.2. We provide formulations for GA, GD, KL, and
PO, as presented in Maini et al. (2024a), as well as for Mismatch (Liu et al., 2024a), LLMU (Yao
et al., 2023), DPO(Rafailov et al., 2024), and NPO (Zhang et al., 2024). Additionally, we include
the formulations for DPO without the Mref term and SimPO (Meng et al., 2024), as discussed in
Section § 3.4. We also add formulations for Task Vectors (Ilharco et al., 2022) and Who’s Harry
Potter (WHP)(Eldan & Russinovich, 2023).

Fine-tuning on retain data Retraing from scratch is the gold standard for unlearning. HHowever,
in real-world scenarios, retain data may not always be available, and retraining a LLM is highly
resource-intensive. Alternatively, we can fine-tune the model using retain data for several epochs,
which only involves performing gradient descent on Dr.

LFine-tune =
1

|Dr|
∑

(xr,yr)∈Dr

L(xr, yr; θ)︸ ︷︷ ︸
Retain Loss

Gradient ascent (GA) GA is simple baselines commonly used in traditional machine unlearning
settings (Chen et al., 2023; Jia et al., 2023; Fan et al., 2023; Kurmanji et al., 2024). GA reverts
the change of the gradient descent during the training with its opposite operation. The rationale of
gradient ascent is that a subsequent maximization of prediction loss on the forget dataset Df would
approximately "revert" the optimization on the forget dataset, thus unlearning Df and approximating
a model trained on the retain dataset Dr only.

LGA = − 1

|Df |
∑

(xf ,yf )∈Df

L(xf , yf ; θ)︸ ︷︷ ︸
Forget Loss

19



Published as a conference paper at ICLR 2025

Gradient difference (GD) Gradient difference has been introduced as simple baseline method in
Maini et al. (2024a).It combines fine-tuning and gradient ascent by compute the sum of the two loss
terms.

LGD =
1

|Dr|
∑

(xr,yr)∈Dr

L(xr, yr; θ)︸ ︷︷ ︸
Retain Loss

− 1

|Df |
∑

(xu,yu)∈Df

L(xf , yf ; θ)︸ ︷︷ ︸
Forget Loss

KL minimization (KL) The KL minimization is adopted from Maini et al. (2024a) and involves a
gradient ascent term for forgetting. It also minimizes the Kullback-Leibler (KL) divergence between
the predictions on retain data Dr of the reference model (the original model θo) and the newly
trained model (the unlearned model θ). This term aims to keep the unlearned model’s current output
distribution on the retain dataset close to its pre-unlearning distribution on the retain samples.

LKL = LGA︸︷︷︸
Forget Loss

+
1

|Dr|
∑

(xr,yr)∈Dr

|yr|∑
i=1

KL(hθ0(xr, yr<i)∥hθ(xr, yr<i))︸ ︷︷ ︸
Retain Loss

Preference optimization (PO) Preference Optimization (PO) differs from the traditional direct
preference optimization approach as presented in Rafailov et al. (2024) in that it combines the
fine-tuning loss on Dr with a term that teaches the model to respond with ’I don’t know’ to prompts
from Df (Maini et al., 2024a). Here, Didk refers to an augmented forget dataset where the model’s
response to the prompt is ’I don’t know.’

LPO = LFine-tune︸ ︷︷ ︸
Retain Loss

+
1

|Didk|
∑

xf ,yidk∈Didk

L(xf , yidk; θ)︸ ︷︷ ︸
Custom Loss

Here, the Custom Loss utilizes the modified response to the forget prompt to ensure that the model
rejects answering questions related to the forget data.

Mismatch Mismatch has the same objective to PO, except it involves constructing a random
combination of text sequences Yrdn. Here, the second term in mismatch is the same as the second
term in LLMU (Yao et al., 2023).

LMismatch = LFine-tune︸ ︷︷ ︸
Retain Loss

+
∑

(xf ,·)∈Df

1

|Yrdn|
∑

yrdn∈Yrdn

L(xf , yrdn; θ)︸ ︷︷ ︸
Custom Loss

LLMU (Yao et al., 2023) LLMU combines the GA term with two additional terms to learn 1)
random completions Yrdn from Dr (constructed using prompts from Df ) to facilitate unlearn and 2)
Dr to preserve performance. We use books with similar styles as Dr in our experiments and construct
Yrdn using randomly sampled text sequences from Dr.

LLLMU =−
∑

(xf ,yf )∈Df

L(xf , yf ; θ)

+
∑

(xf ,·)∈Df

1

|Yrdn|
∑

yrdn∈Yrdn

L(xf , yrdn; θ)

+
∑

(xr,yr)∈Dr

|yr|∑
i=1

KL(hθo(xr, yr<i)||hθ(xr, yr<i))

We have already unified LLMU in Section § 2.2

20



Published as a conference paper at ICLR 2025

Direct preference optimization (DPO), DPO w/o Mref , SimPO See Section § 3.4 for more
information.

LDPO,β(θ) = −
2

β
ED

[
log σ

(
β log

|ye|∏
i=1

hθ(xf , ye,<i)︸ ︷︷ ︸
Custom Loss

−β log

|yf |∏
i=1

hθ(xf , yf,<i))︸ ︷︷ ︸
Forget Loss

−Mref︸ ︷︷ ︸
Retain/ Custom Loss

)]
.

LDPO w/o Mref ,β(θ) = −
2

β
ED

[
log σ

(
β log

|ye|∏
i=1

hθ(xf , ye,<i)︸ ︷︷ ︸
Custom Loss

−β log

|yf |∏
i=1

hθ(xf , yf,<i))︸ ︷︷ ︸
Forget Loss

)]
.

LSimPO,β(θ) = −
2

β
ED

[
log σ

( β

|ye|
log

|ye|∏
i=1

hθ(xf , ye,i)︸ ︷︷ ︸
Custom Loss

− β

|yf |
log

|yf |∏
i=1

hθ(xf , yf,i)︸ ︷︷ ︸
Forget Loss

)− γ]
)]

where γ is the target reward margin.

Negative preference optimization (NPO) (Zhang et al., 2024) NPO incorporates only the losing
response term in DPO (Rafailov et al., 2024), penalizing only the prompt-response pairs in Df .In the
formulation below, β represents the inverse-temperature, πθ is the prediction probability of LLM θ.
NPO also has two extended versions that include either the KL term or a fine-tuning term on Dr to
preserve model utility.

LNPO = − 2

β
EDf

[
log σ

(
− βlog

πθ(yf | xf )

πref (yf | xf )

)]
= − 2

β
EDf

[
log σ

(
β log πref (yf | xf )︸ ︷︷ ︸

Retain/Custom Loss

−β log πθ(yf | xf )︸ ︷︷ ︸
Forget Loss

)]

LNPO-KL = LNPO + LKL

LNPO-RT = LNPO + LFine-tune

Task Vectors (Eldan & Russinovich, 2023) The taks vector is derived by calculating the weight
difference between the original LLM θo and a reinforce LLM θreinforce, which is the model trained
on Df until it over-fits. This method then subtract this task vector from the original LLM’ weights,
intuitively moving the model away from the direction it used to adapt to Df . The weights of unlearned
model can be obtained as:

θ = θo − (θreinforce − θo)

WHP (Eldan & Russinovich, 2023) WHP defines the unlearned model θ as the interpolation
between the original model θo and the reinforced model θreinforce. Let pθ(·|x) denote the token
distribution parametrized by the model θ when given a prompt x as input. Then, for any input x,
WHP samples the next token from:

pθ(·|x) = pθo(·|x)− α(pθreinforce
(·|x)− pθo(·|x))

where α is a hyperparameter that controls the interpolation between the two models.

C.2 COPYRIGHTED UNLEARNING ON HP

C.2.1 EVALUATION METRICS

We use two text similarity metrics to evaluate our models. In each case, the original copyrighted text
serves as the reference, and we calculate the similarity between this reference and the text generated
by the LLM.
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ROUGE-L For the forget dataset, we compute the ROUGE-L recall score (Lin, 2004) between the
ground truth responses (the forget responses) and the text generated by the model after unlearning.

BLEU Similarly, we compute the BLEU score (Papineni et al., 2002) for the forget dataset,
comparing the ground truth responses to the model’s output after unlearning.

A retained model that has never seen the reference text should score low on both metrics, and a
successfully unlearned model should perform similarly. Note that for these metrics, values closer to
those of the retained model indicate better unlearning, while values that are too large or too small
suggest a difference from the retained model Liu et al. (2024a). For Harry Potter datasets, we evaluate
similarity using the first 600 generated tokens as per (Jia et al., 2024).

Perplexity (PPL) We assess text fluency and diversity by computing perplexity on the Wiki-
text (Merity et al., 2016) using the LM Evaluation Harness (Gao et al., 2023). A model with lower
perplexity on the fine-tuned data suggests the generated text remains meaningful.

Zero-shot Accuracy We evaluate zero-shot accuracy across various tasks, including BoolQ (Clark
et al., 2019), RTE (Dagan et al., 2005), HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi
et al., 2021), ARC-Challenge (Chollet, 2019), ARC-Easy (Chollet, 2019), OpenBookQA (Mihaylov
et al., 2018), Piqa (Bisk et al., 2020), and TruthfulQA (Lin et al., 2021). The mean accuracy across
these diverse tasks was computed and reported as a comprehensive measure of model utility after
unlearning. The higher the average accuracy, the better the results.

C.2.2 IMPLEMENTATION SETTING.

To demonstrate the copyright removal task, we undertake the fine-tuning of all the models using the
complete Harry Potter series. The finetuning procedure for the OPT-2.7B and Llama2-7B models
involve a learning rate of 1e-5 and a batch size of 2. AdamW serves as the optimizer for preparing
these models. For baseline methods, we set the batch size and learning rate to be the same as in their
original papers, and fine-tune for 5 epochs using AdamW optimizer. For our method, we use the
same training hyper-parameters as baseline but set the learning rate to be 2e-7.

C.3 ENTITY UNLEARNING ON TOFU

C.3.1 EVALUATION METRICS

We utilize the original evaluation metrics designed in the original paper of the TOFU dataset (Maini
et al., 2024a).

Probability For each instance in the retain or forget set, we calculate the normalized conditional
probability P (a | q)1/|a| on the LLM subject to unlearning, where q represents the question, a is
the answer, and |a| denotes the number of tokens in the answer. For the real authors and world
facts subsets, the dataset provides a set of five answers {a0, ã1, ã2, ã3, ã4}, consisting of one correct
answer a0 and four perturbed answers that are incorrect. In this case, we compute the ratio P (a0 |
q)1/|a0|/

∑4
i=1 P (ãi | q)1/|ãi|.

Truth ratio The truth ratio is computed as the geometric mean of multiple perturbed (incorrect) an-
swers’ (A = {ã1, ã2, ...}) probabilities over the normalized conditional probability of the paraphrased
answer â.

Rtruth =

(∏|A|
i=1 P (ã | q)|1/ãi|

)1/|A|

P (â | q)1/|â|

For the real authors and world fact subsets, the original answer a is used in the denominator as no
paraphrased answer is available.

ROUGE-L For all subsets of TOFU, we compute the ROUGE-L recall score (Lin, 2004) between
the ground truth responses (forget dataset) and the text generated by the model after unlearning.
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Model utility The model utility is aggregated as a harmonic mean over nine numbers: the answer
probability, truth ratio, and ROUGE recall scores from each of the retain, real authors, and world
facts subsets. A higher model utility is always preferred.

Forget quality The forget quality is determined by calculating the p-value from a Kolmogorov-
Smirnov (KS) test, which compares two distributions: the truth ratio of the retained model and the
truth ratio of the unlearned model on the forget set. A higher p-value suggests that the null hypothesis
— that the distributions of the truth ratios from both models are identical — cannot be rejected,
indicating that the retained and unlearned models behave similarly.

C.3.2 IMPLEMENTATION SETTING.

For all LLM unlearning methods, we set the batch size to be 32 following previous works (Maini
et al., 2024a; Zhang et al., 2024; Ji et al., 2024) and use consistent learning rates for each model.
For Phi-1.5B, we fine-tune the pre-trained models for 5 epochs using learning rate of 2e-5 to obtain
the original model. Similarly, we fine-tune Llama2-7B and OPT-2.7B for the same duration with a
learning rate of 1e-5. AdamW serve as the optimizer for preparing these models. The unlearning
process for all methods, including ours, employs the same learning rate as used during fine-tuning
the original models. For all experiments on the TOFU dataset, the training hyperparameters remain
consistent across models of the same type.

Why do we follow the official implementation of TOFU and report the final results, rather
than adopting NPO’s best-results strategy (Ji et al., 2024; Liu et al., 2024d)? It is important
to note that the original implementation of TOFU does not evaluate the best result from each epoch
but instead use the final model after unlearning to get its evaluations. Also, the baseline methods
reported in the TOFU paper reflect the performance of the final model. In contrast, NPO begins
to introduce an evaluation strategy that reports the best results achieved at each epoch by their
method on the TOFU dataset. Reporting the best results across all epochs can overstate the
model’s performance, as it may not fully represent the method’s actual unlearning capability.
In real-world scenarios, evaluating during each epoch is often impractical. Instead, it is important to
develop a robust method that achieves a good trade-off without time-consuming parameter tuning or
requiring frequent evaluations, especially when dealing with larger forget sets. Therefore, to ensure
a fair comparison and align with the evaluation settings of the original TOFU paper, we choose to
report the final results after unlearning.

C.4 MUSE-NEWS UNLEARNING

C.4.1 EVALUATION METRICS

Note on PrivLeak metric The PrivLeak metric used in (Shi et al., 2024) is derived from Min-K%
Prob, a membership inference attack method for LLMs. Formally, it is calculated as:

PrivLeak =
AUC(funlearn;Dforget, Dholdout)−AUC(fretrain;Dforget, Dholdout)

AUC (fretrain;Dforget, Dholdout)

where the AUC score refers to the standard AUC-ROC score between Dforget and Dholdout. While
this method indeed discriminates between the forget and holdout distributions as a measure of
successful unlearning, it is highly dependent on the data selected for evaluation. Specifically, Min-K%
Prob has been shown to yield random-guess accuracy due to modern LLMs being trained on large
pretraining corpora for only a small number of iterations, causing fuzzy boundary between members
and non-members (Duan et al., 2024).

Furthermore, Maini et al. (2024b) demonstrate that Min-K% Prob results in 1) high variance depend-
ing on the random selection of the dataset used for evaluation, 2) better performance when the two
subsets (in our case, forget and holdout) are not drawn from the same distribution, and 3) empirically
overestimated false positives. The latter finding suggests that the distribution gap (i.e., temporal shift,
which is also identified by Duan et al. (2024)) acts as a confounding factor in the discrimination
process, since the forget set and holdout set may differ in more than one dimension. Given that
MUSE (Shi et al., 2024) uses news data, which is highly time-dependent (and thus possibly non-i.i.d.),
we advocate for cautious interpretation of the PrivLeak metric.
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Table 9: Unlearning performance of Llama2-7B on the Harry Potter dataset. R-L and Avg. Acc. denote the
ROUGE-L score and average zero-shot accuracy across nine LLM benchmarks. We include the original LLM
and retained LLM for reference. Some methods, such as PO, LLMU, DPO, and NPO, exhibit strong performance
in either forget quality or model utility, but underperform in the other. FLAT consistently ranks in the top three
in terms of similarity to the retained model, measured by Forget Quality Gap (FQ Gap), while also generating
meaningful and diverse outputs, as indicated by perplexity (PPL) and the average zero-shot accuracy (Avg. Acc.).
The top three results across the three main metrics are highlighted in blue.

Forget Quality Model Utility
Metric BLEU(↓) BLEU Gap R-L(↓) R-L Gap FQ Gap PPL(↓) PPL Gap Avg.Acc. Acc. Gap

Original LLM 4.0452 - 0.1487 - - 8.9524 - 0.5617 -
Retained LLM 0.4903 - 0.0442 - - 8.7070 - 0.5599 -

GA 0.0624 0.4279 0.0134 0.0308 0.4587 47.2769 -38.5699 0.5088 -0.0511
KL 0.0976 0.3927 0.0144 0.0298 0.4225 9.4336 -0.7266 0.5509 -0.0090
GD 0.0039 0.4864 0.0002 0.0440 0.5304 9.1797 -0.4727 0.4902 -0.0697
PO 0.0206 0.4697 0.0015 0.0427 0.5124 8.8364 -0.1294 0.5532 -0.0067

Mismatch 0.0670 0.4233 0.0028 0.0414 0.4647 8.9906 -0.2836 0.5593 -0.0056

LLMU 0.3033 0.1870 0.0317 0.0125 0.1985 9.0530 -0.3460 0.5503 -0.0096
DPO 0.7717 -0.2814 0.0552 -0.0110 0.2924 8.9597 -0.2527 0.5614 0.0015
NPO 0.9840 -0.4937 0.0656 -0.0214 0.5151 9.0397 -0.3327 0.5609 0.0010

FLAT (TV) 0.6770 -0.1867 0.0673 -0.0231 0.2098 8.9899 -0.2829 0.5592 -0.0007
FLAT (KL) 0.6829 -0.1926 0.0662 -0.0220 0.2146 8.9803 -0.2733 0.5572 -0.0027
FLAT (JS) 0.6890 -0.1987 0.0684 -0.0242 0.2229 8.9910 -0.2840 0.5574 -0.0025

FLAT (Pearson) 0.6930 -0.2027 0.0680 -0.0238 0.2265 8.9906 -0.2836 0.5580 -0.0019

D EXPERIMENTAL RESULTS

D.1 COPYRIGHTED UNLEARNING ON HP DATASET

Performance using Llama2-7B on HP dataset Table 9 indicates that our method consistently
places within the top three across the primary metrics, with TV f-divergence showing the best
performance. LLMU achieves the best forgetting effect, comparable to our method, but its model
utility is inferior. PO again demonstrates the highest PPL but exhibits poor forgetting performance.
While DPO shows good model utility, the difference between our method and DPO in PPL is
minimal. Unlike other methods, PO directly leverages fine-tune loss, which helps preserve the
model’s performance beyond the unlearning. These results highlight the effectiveness of our method,
striking a better balance between forgetting quality and model utility.

Analysis about the edge case of Mismatch When using OPT-2.7B, the forget quality gap (FQ Gap)
between Mismatch and FLAT(TV) is relatively similar. For small LLMs like OPT-2.7B, fine-tuning
with the retain data for several epochs can lead to effective forgetting of the forget set. The rationale is
that fine-tuning on the forget set may induce catastrophic forgetting over the forget set like continual
learning (Parisi et al., 2019). Additionally, OPT-2.7B generally produces lower-quality outputs, which
reduces the BLEU gaps between FLAT and Mismatch. As a result, the differences in unlearning
performance (FQ Gap) between these two methods appear comparable in this setting.

Mismatch can achieve comparable results using OPT-2.7B on the HP dataset. However, on Llama2-
7B, the FQ Gap for the mismatch is 0.4647, and ours is 0.2098 (Table 9). Note that a smaller FQ
Gap indicates better unlearning performance. FLAT can show better adoption to different LLMs and
different datasets. This might be because the Mismatch fails to keep a good balance between the
model utility and the forget quality, while Flat theoretically formulated a reweighting mechanism.

Parameter Study on Prompt Length for HP dataset Following Jia et al. (2024); Eldan &
Russinovich (2023), we evaluate the forget quality using prompt lengths of 50, 100, 200, 300 on
Harry Potter series dataset. Table 10 presents the parameter study of different prompt lengths for
assessing forget quality on this dataset. In the main paper, we adopt the prompt length of 200, as
suggested by Liu et al. (2024a).
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Table 10: Parameter Study of different prompt length on Harry Potter book series dataset. We include the original
LLM and retained LLM for reference.

Split Prompt Length 50 Prompt Length 100 Prompt Length 200 Prompt Length 300
Metric BLEU(↓) ROUGE-L(↓) BLEU(↓) ROUGE-L(↓) BLEU(↓) ROUGE-L(↓) BLEU(↓) ROUGE-L(↓)

OPT-2.7B

Original LLM 3.4492 0.1203 3.7660 0.1273 4.1163 0.1484 3.4924 0.1551
Retain LLM 1.7350 0.0944 2.3427 0.0986 2.6072 0.1229 2.7479 0.1261

FLAT (TV) 0.8382 0.1090 0.9607 0.1206 1.1955 1.4117 1.4532 0.1628
FLAT (KL) 0.8363 0.1107 0.9867 0.1209 1.2743 1.3329 1.4714 0.1657
FLAT (JS) 0.8709 0.1101 0.9720 0.1213 1.1986 0.1290 1.4735 0.1635

FLAT (Pearson) 0.8430 0.1098 0.9624 0.1211 1.1917 1.4155 1.4501 0.1627

Llama2-7B

Original LLM 0.0448 0.0049 0.3951 0.0254 4.0452 0.1487 0.2541 0.0275
Retain LLM 0.0917 0.0111 0.1664 0.0162 0.4903 0.0442 0.2542 0.0194

FLAT (TV) 0.0293 0.0045 0.2627 0.0276 0.6770 0.0673 0.2185 0.0251
FLAT (KL) 0.0308 0.0041 0.2592 0.0276 0.6829 0.0662 0.2217 0.0242
FLAT (JS) 0.0305 0.0045 0.2512 0.0279 0.6890 0.0684 0.2143 0.0253

FLAT (Pearson) 0.0310 0.0044 0.2573 0.0281 0.6930 0.0680 0.2163 0.0252

Table 11: Performance of our method and the baseline methods on TOFU-5% and TOFU-10% dataset using
Llama2-7B. FQ, MU, R-RL, F-RL represent forget quality, model utility, ROUGE-L on retain dataset and
ROUGE-L on forget dataset respectively. We include the original LLM and retain LLM for reference. The top
two results are highlighted in blue.

Dataset TOFU-5% TOFU-10%
Metric FQ MU F-RL(↓) R-RL FQ MU F-RL(↓) R-RL

Original LLM 3.0507e-13 0.6346 0.9918 0.9833 4.6575e-14 0.6346 0.9918 0.9833
Retained LLM 1.0 0.6281 0.3928 0.9803 1.0 0.6225 0.3970 0.9798

GA 0.0043 0.3545 0.2593 0.2858 2.0608e-13 0.0 0.0115 0.0128
KL 4.0248e-06 0.0538 0.0619 0.0614 1.6347e-10 0.0 8.3333e-05 0.0004
GD 1.1150e-05 0.5532 0.3482 0.5035 2.0608e-13 0.0093 0.0105 0.0336
PO 3.6025e-09 0.2101 0.0128 0.1385 9.1590e-16 0.4915 0.1091 0.6454

Mismatch 1.8266e-05 0.5565 0.5470 0.7506 2.0180e-08 0.5106 0.6219 0.7807

LLMU 1.1150e-05 0 0.0142 0.0142 0.0005 0.0 0.0112 0.0133
DPO 4.7488e-05 0.0 0.0167 0.0162 0.0055 0.0 0.0147 0.0151
NPO 0.0001 0.4630 0.3234 0.3925 0.0017 0.3086 0.4066 0.4383

NPO-RT 0.0001 0.4811 0.3331 0.4217 0.0423 0.4093 0.4066 0.4383

FLAT (TV) 0.0221 0.0186 0.0047 0.0060 0.0012 0.1624 0.0167 0.0238
FLAT (TV)-RT 0.1452 0.4946 0.1991 0.3405 0.0774 0.5204 0.3816 0.4050

D.2 ENTITY UNLEARNING ON TOFU

The results on TOFU-5% and TOFU-10% Table 11 shows the results on TOFU-5% and TOFU-
10% using Llama2-7B. Results indicate that FLAT can achieve a good balance between unlearning
efficiency and general language capability.

Note that the retain version of FLAT can achieve the best forget quality on TOFU-5% and TOFU-10%
while maintaining high model utility. For the TOFU dataset, which is a synthetic set with separable
profiles of 200 authors, using retain data does not significantly blur the boundaries between the forget
and retain data. Hence, using the retain data in this task significantly improves performance. However,
the primary focus of our work remains on content unlearning (usually only the forget content is
known), which reflects more practical and realistic situations encountered in real-world applications.

TOFU Experimental Results using All Metrics Table 12 shows the performance on TOFU using
three base LLMs, Llama2-7B, Phi-1.5B, and OPT-2.7 under all metrics. From Table 4, we find that
the forget quality on the TOFU-1% is similar to that of the baseline methods may be due to the small
size of the forget set (40 samples). When calculating the distributions of truth ratio for such a small
sample size, the differences between methods tend to diminish.

Clarification of the baseline discrepancy The difference in forget quality values between ours and
NPO reported results arises due to the differences in evaluation settings. We tried our best to evaluate
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Table 12: Performance on TOFU dataset using three base LLMs, Llama2-7B, Phi-1.5B, and OPT-2.7 under
all metrics. We report ROUGE-L score (R-L), Probability (P), and Truth Ratio (TR) on all four subsets of the
TOFU benchmark. Higher scores are better except ROUGE-L and probability on the Forget Set. We include the
original LLM and retained LLM for reference. The best two are highlighted in blue.

Split Real Authors Real World Rerain Set Forget Set
Metric R-L P TR R-L P TR R-L P TR R-L(↓) P(↓) TR

Llama2-7B
Original LLM 0.9350 0.4738 0.6210 0.8846 0.4355 0.5579 0.9833 0.9900 0.4662 0.9851 0.9898 0.5123
Retained LLM 0.9230 0.4645 0.6118 0.8932 0.4182 0.5449 0.9833 0.9902 0.4724 0.4080 0.1798 0.6939

GA 0.9030 0.4754 0.6233 0.8761 0.4432 0.5843 0.9008 0.9546 0.4695 0.4862 0.3566 0.5705
KL 0.9280 0.4652 0.6092 0.8803 0.4383 0.5691 0.9398 0.9705 0.4655 0.5281 0.5119 0.5626
GD 0.9080 0.4728 0.6156 0.8718 0.4439 0.5833 0.8912 0.9657 0.4701 0.4773 0.4238 0.5619
PO 0.9330 0.4850 0.6269 0.8917 0.4582 0.5602 0.8811 0.9627 0.4393 0.3640 0.8695 0.6318

LLMU 0.9330 0.4905 0.6344 0.8917 0.4603 0.5625 0.8865 0.9628 0.4391 0.4480 0.8606 0.6286
DPO 0.9330 0.4939 0.6384 0.8917 0.4631 0.5646 0.8852 0.9623 0.4407 0.5860 0.8734 0.6240
NPO 0.8930 0.4754 0.6218 0.8746 0.4466 0.5798 0.8950 0.9574 0.4680 0.4632 0.3664 0.5785

NPO-RT 0.8830 0.4758 0.6218 0.8746 0.4459 0.5805 0.8958 0.9588 0.4687 0.4519 0.3672 0.5791

FLAT (TV) 0.9180 0.4937 0.6459 0.8974 0.4505 0.5591 0.8826 0.9685 0.4607 0.4391 0.5314 0.6026
FLAT (KL) 0.9180 0.4992 0.6491 0.9060 0.4524 0.5609 0.8750 0.9679 0.4603 0.5199 0.7588 0.5895
FLAT (JS) 0.8980 0.4927 0.6460 0.8974 0.4508 0.5592 0.8864 0.9686 0.4607 0.4454 0.5183 0.6039

FLAT (Pearson) 0.9180 0.4932 0.6461 0.8974 0.4509 0.5583 0.8857 0.9684 0.4607 0.4392 0.5092 0.6037

Phi-1.5B
Original LLM 0.4073 0.3744 0.4470 0.7503 0.4148 0.4982 0.9199 0.9238 0.4810 0.9607 0.9345 0.4839
Retained LLM 0.4240 0.3779 0.4539 0.7585 0.4090 0.4974 0.9269 0.9271 0.4855 0.4272 0.1686 0.6579

GA 0.4573 0.3638 0.4373 0.7541 0.3978 0.4741 0.8048 0.7748 0.4880 0.5114 0.3268 0.5099
KL 0.4273 0.3643 0.4370 0.7474 0.3997 0.4764 0.8109 0.8043 0.4889 0.5059 0.3342 0.5091
GD 0.3907 0.3726 0.4461 0.7605 0.4087 0.4931 0.8496 0.8900 0.4910 0.4996 0.4025 0.4952
PO 0.4240 0.3728 0.4449 0.7699 0.4190 0.5207 0.7468 0.8747 0.4596 0.3170 0.7362 0.5416

LLMU 0.4240 0.3720 0.4421 0.7785 0.4203 0.5197 0.7270 0.8678 0.4572 0.3058 0.7067 0.5453
DPO 0.0420 0.3713 0.4423 0.7785 0.4202 0.5205 0.7349 0.8712 0.4583 0.3437 0.6999 0.5393
NPO 0.4573 0.3619 0.4342 0.7417 0.3988 0.4761 0.8000 0.7856 0.4840 0.5196 0.3529 0.5119

NPO-RT 0.4473 0.3619 0.4340 0.7474 0.3998 0.4770 0.8024 0.7926 0.4851 0.5193 0.3527 0.5129

FLAT (TV) 0.4440 0.3695 0.4390 0.7742 0.4125 0.5040 0.8155 0.8858 0.4709 0.4689 0.4756 0.5395
FLAT (KL) 0.4440 0.3735 0.4464 0.7571 0.4175 0.5147 0.7850 0.8874 0.4666 0.4524 0.6285 0.5287
FLAT (JS) 0.4340 0.3703 0.4386 0.7588 0.4119 0.5045 0.8117 0.8850 0.4714 0.4572 0.4683 0.5390

FLAT (Pearson) 0.4540 0.3694 0.4389 0.7674 0.4117 0.5040 0.8099 0.8850 0.4711 0.4591 0.4672 0.5383

OPT-2.7B
Original LLM 0.6687 0.3833 0.4393 0.6433 0.3701 0.4158 0.7494 0.8335 0.4992 0.7537 0.8237 0.5338
Retained LLM 0.6487 0.3735 0.4249 0.6278 0.3696 0.4185 0.7669 0.8399 0.4988 0.4217 0.1991 0.7097

GA 0.6390 0.3774 0.4375 0.5953 0.3644 0.4071 0.6387 0.4097 0.4972 0.4748 0.0722 0.6325
KL 0.6573 0.3775 0.4346 0.6463 0.3646 0.4071 0.6613 0.4707 0.4958 0.4810 0.1110 0.5902
GD 0.6453 0.3782 0.4336 0.6084 0.3613 0.3979 0.6603 0.6916 0.5162 0.4521 0.1701 0.5774
PO 0.4078 0.3874 0.4540 0.5135 0.3705 0.4207 0.4015 0.6922 0.4546 0.0589 0.5220 0.6037

LLMU 0.1528 0.3739 0.4215 0.3946 0.3695 0.4031 0.2495 0.6013 0.4305 0.0347 0.3967 0.6356
DPO 0.3478 0.3853 0.4498 0.4915 0.3708 0.4230 0.3937 0.6445 0.4375 0.0806 0.3931 0.6255
NPO 0.6573 0.3787 0.4343 0.6281 0.3681 0.4130 0.6490 0.4978 0.4870 0.4993 0.1355 0.5952

NPO-RT 0.5698 0.3646 0.4107 0.6264 0.3675 0.4239 0.4620 0.2459 0.4065 0.3627 0.1087 0.6716

FLAT (TV) 0.6737 0.3878 0.4457 0.6382 0.3715 0.4137 0.7067 0.8075 0.4858 0.5217 0.6368 0.5601
FLAT (KL) 0.6903 0.3802 0.4364 0.6369 0.3672 0.4108 0.6974 0.8078 0.4909 0.4942 0.6735 0.5515
FLAT (JS) 0.6723 0.3824 0.4385 0.6369 0.3706 0.4162 0.7013 0.7685 0.4911 0.4938 0.5662 0.5502

FLAT (Pearson) 0.6737 0.3873 0.4462 0.6467 0.3705 0.4150 0.7059 0.8069 0.4868 0.5052 0.6329 0.5597

the performance of all methods under controlled settings as indicated in TOFU’s original paper to
ensure a fair comparison. Our implementation is based on the TOFU codebase. The difference
between the TOFU official implementation and the NPO implementation is that the NPO evaluates
models after every epoch (a total of 10) and reports the epoch with the best forget quality, while
the TOFU benchmark uses the final results after five epochs. The difference in reporting policies
significantly influences how forget quality is presented and perceived.

D.3 ABLATION STUDY

Ablation Study of Reweighting Mechanism on HP dataset Table 13 demonstrates the effective-
ness of the re-weighting mechanism on the Harry Potter dataset. When using the preferred template
data for unlearning, our method achieves strong forget quality and comparable model utility. When
using retain data, our method outperforms GD, indicating that the re-weighting mechanism improves
both unlearning efficiency and model utility.
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Table 13: Ablation Study of the Re-weighting Mechanism using Llama2-7B on Harry Potter dataset. R-L and
Avg. Acc. denote the ROUGE-L score and average zero-shot accuracy over nine LLM benchmarks. We include
the original LLM and retain LLM for reference. The best ones are highlighted in blue.

Forget Quality Model Utility
Metric BLEU(↓) BLEU Gap R-L(↓) R-L Gap FQ Gap PPL(↓) PPL Gap Avg.Acc. Acc. Gap

Original LLM 4.0452 3.5549 0.1487 0.2933 3.8482 8.9524 0.2444 0.5617 0.0018
Retained LLM 0.4903 0.0 0.0442 0.0 0.0 8.7070 0.0 0.5599 0.0

Study on Re-weighting Mechanism Using Retain Data
GD 0.0039 0.4864 0.0002 0.0440 0.5304 9.1797 -0.4727 0.4902 -0.0697

FLAT (KL)-retain 0.2359 0.2544 0.0263 0.0179 0.2714 8.9948 -0.2878 0.5591 -0.0008

Study on Re-weighting Mechanism Using IDK Data

DPO w/o Mref 0.7719 -0.2816 0.0523 -0.0081 0.2897 8.9674 -0.2604 0.5560 -0.0039
SimPO 0.6876 -0.1973 0.0552 -0.0110 0.2723 8.9927 -0.2857 0.5593 -0.0006

FLAT (KL) 0.6829 -0.1926 0.0662 -0.0220 0.2146 8.9803 -0.2733 0.5572 -0.0027

Table 14: Ablation Study of the good answer type using Llama2-7B on Harry Potter dataset. R-L and Avg. Acc.
denote the ROUGE-L score and average zero-shot accuracy over nine LLM benchmarks. We include the original
LLM and retain LLM for reference. The best ones are highlighted in blue.

Forget Quality Model Utility
Metric BLEU(↓) BLEU Gap R-L(↓) R-L Gap FQ Gap PPL(↓) PPL Gap Avg.Acc. Acc. Gap

Original LLM 4.0452 - 0.1487 - - 8.9524 - 0.5617 -
Retained LLM 0.4903 - 0.0442 - - 8.7070 - 0.5599 -

FLAT (TV)-IDK 0.6770 -0.1867 0.0673 -0.0231 0.2098 8.9899 -0.2829 0.5592 -0.0007
FLAT (KL)-IDK 0.6829 -0.1926 0.0662 -0.0220 0.2146 8.9803 -0.2733 0.5572 -0.0027
FLAT (JS)-IDK 0.6890 -0.1987 0.0684 -0.0242 0.2229 8.9910 -0.2840 0.5574 -0.0025

FLAT (Pearson)-IDK 0.6930 -0.2027 0.0680 -0.0238 0.2265 8.9906 -0.2836 0.5580 -0.0019

FLAT (TV)-Normal 0.6942 -0.2039 0.0677 -0.0235 0.2274 8.9872 -0.2802 0.5588 -0.0011
FLAT (KL)-Normal 0.6773 -0.1870 0.0664 -0.0222 0.2092 8.9721 -0.2651 0.5580 -0.0019
FLAT (JS)-Normal 0.6980 -0.2077 0.0678 -0.0236 0.2313 8.9888 -0.2818 0.5593 -0.0006

FLAT (Pearson)-Normal 0.6991 -0.2088 0.0681 -0.0239 0.2327 8.9882 -0.2812 0.5594 -0.0005

Ablation Study of Good Answer Types on HP dataset Table 14 presents the ablation study on
the good answer types using Llama2-7B on the Harry Potter dataset. The results show that using
normal responses enhances model utility on the HP dataset, while using IDK responses leads to better
forgetting quality.

Ablation Study of Good Answer Types on TOFU dataset We designed a prompt instructing
GPT-4o not to reveal any information about the two authors included in the forget set from TOFU-1%.
Table 15 presents the ablation study on the TOFU-1% dataset using Llama2-7B. Generation is the
generated template from GPT-4o. This approach demonstrates the worst performance among the
three types, including IDK, normal and generation. One possible explanation is that GPT-4o tends to
repeat several words from the question in its answer, which increases its similarity to the ground truth
answer and undermines the effectiveness of unlearning.

Good Answer Generation using GPT-4o. For TOFU-1% dataset, the system prompt should be
following "You are a helpful, respectful, and honest assistant. You must not reply with content that
violates copyrights for books, news articles, people personal information, or song lyrics. When I ask
questions about the authors Basil Mahfouz Al-Kuwaiti or Nikolai Abilov, you must not provide any
information about them or even acknowledge their names since these are the private information.
However, for questions about other authors, you should answer accurately and provide relevant
information. You should use various and high quality response to answer all my questions even with
those about personal information." And then we put each question in forget set into the LLM and get
the generated template answer as the good answer.

Ablation Study of Reweighting Mechanism on TOFU dataset Table 16 presents the results of
the study on the importance of reweighting. The results demonstrate that the reweighting mechanism
in FLAT enhances both FQ and MU, achieving an effective balance between unlearning efficiency
and overall model capability. The FQ on the TOFU-1% is similar among several baseline methods
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Table 15: Ablation Study of good answer type on TOFU-1% dataset using Llama2-7B. Here we mainly focus on
FLAT(KL). "Generation" denotes using the generated template from GPT-4o. FQ, MU, R-RL, F-RL represent
forget quality, model utility,ROUGE-L on retain dataset and ROUGE-L on forget dataset respectively. We
include the original LLM and retain LLM for reference. The best ones are highlighted in blue.

Metric FQ MU F-RL(↓) R-RL

Original LLM 4.4883e-06 0.6346 0.9851 0.9833
Retained LLM 1.0 0.6267 0.4080 0.9833

FLAT(KL)-IDK 0.0286 0.6393 0.5199 0.8750
FLAT(KL)-Normal 0.0068 0.6162 0.6273 0.9719

FLAT(KL)-Generation 0.0030 0.6338 0.9369 0.9818

Table 16: Ablation Study of the implicit reweighting mechanism on TOFU dataset using Llama2-7B. FQ, MU,
R-RL, F-RL represent forget quality, model utility, ROUGE-L on retain dataset and ROUGE-L on forget dataset
respectively. We include the original LLM and retain LLM for reference. The best one results are highlighted in
blue.

Dataset TOFU-1% TOFU-5% TOFU-10%
Metric FQ MU F-RL(↓) R-RL FQ MU F-RL(↓) R-RL FQ MU F-RL(↓) R-RL

Original LLM 4.4883e-06 0.6346 0.9851 0.9833 3.0507e-13 0.6346 0.9918 0.9833 4.6576e-14 0.6346 0.9918 0.9833
Retained LLM 1.0 0.6267 0.4080 0.9833 1.0 0.6281 0.3928 0.9803 1.0 0.6225 0.3970 0.9798

DPO 0.0541 0.6359 0.5860 0.8852 4.7488e-05 0.0 0.0167 0.0162 0.0055 0.0 0.0147 0.0151
SimPO 0.0541 0.6336 0.5199 0.8750 0.0003 0.0 0.0137 0.0151 0.0012 0.0 0.0163 0.0158

FLAT (TV) 0.0541 0.6373 0.4391 0.8826 0.0221 0.0186 0.0047 0.0060 0.0012 0.1624 0.0167 0.0238

may be due to the small size of the forget set (40 samples). When calculating the distributions of
truth ratio for such size, the differences between methods tend to diminish.

E RELATED WORK

E.1 LLM UNLEARNING

LLM unlearning approaches can be broadly categorized into three families: model-based methods,
input-based methods, and data-based methods (Liu et al., 2024c).

Model-based Methods Model-based approaches involve modifying the weights and/or architecture
to achieve unlearning. These include gradient ascent (GA) and its variants (Yao et al., 2023; Maini
et al., 2024a; Chen & Yang, 2023), as well as model editing techniques (Wu et al., 2023; Ilharco
et al., 2022; Belrose et al., 2024). The dominant approach among existing LLM unlearning methods
is fine-tuning the original model based on a carefully designed unlearning objective function (Chen &
Yang, 2023; Yao et al., 2023; Jia et al., 2024; Li et al., 2024; Yao et al., 2024; Zhang et al., 2024). A
common strategy combines forgetting and retaining objectives, applying gradient ascent updates to
undesirable data while using regular gradient descent on desirable data (Chen & Yang, 2023; Li et al.,
2024). The goal of GA is to maximize the loss on the forget data, essentially reversing the effect
of gradient descent during training. Some methods employ custom loss functions that go beyond
standard forgetting and retaining losses. For example, Yao et al. (2023) introduce a loss function with
three components, where the custom loss reflects advanced techniques or regularization applied to
the objectives. Other methods, such as DPO (Rafailov et al., 2024), KTO (Ethayarajh et al., 2024),
and NPO (Zhang et al., 2024), utilize reference models to guide the unlearning process.

Chen & Yang (2023) fine-tunes an adapter over the unlearning objective, which acts as an unlearn-
ing layer within the LLM. Several works also employ assistant or reinforced LLMs to facilitate
unlearning (Ilharco et al., 2022; Eldan & Russinovich, 2023; Huang et al., 2024). Who’s Harry
Potter (WHP) (Eldan & Russinovich, 2023) is a classic method in LLM unlearning. It involves three
components: reinforced training to identify tokens linked to the unlearning target, replacing unique
expressions with generic alternatives using the model’s predictions, and fine-tuning the model on
alternative labels to erase the original text from its memory. Liu et al. (2024d) extends WHP and
introduces a causal intervention framework for targeted unlearning. It can achieve strong performance
on specific benchmarks (e.g., TOFU) because it relies on targeted input modifications. However, this
approach is specifically designed for target unlearning and lacks generalizability and practicality for
other tasks. Ji et al. (2024) introduce an assistant LLM that pursues the opposite of the unlearning
goals, i.e., remembering forgotten documents and forgetting retained knowledge. The unlearned

28



Published as a conference paper at ICLR 2025

LLM is then derived by computing the logit difference between the original and assistant LLMs.
UNDIAL (Dong et al., 2024) employs self-distillation to adjust logits, selectively diminishing the
impact of targeted tokens. This approach ensures smooth convergence while effectively mitigating
catastrophic forgetting.

Data-based Methods Data-based methods fine-tune the LLM using a set of modified responses.
This approach often begins by generating altered outputs (e.g., refusal-based responses), such as
obliterated responses (Choi et al., 2024), inverted facts (Gu et al., 2024), or in-domain plausible
alternatives (Mekala et al., 2024). These generated responses are then used to guide the unlearning
process. Mekala et al. (2024) propose Alternate Preference Optimization, which utilizes in-domain
positive feedback on the forget set, complementing the usual negative feedback to overcome the
limitations of relying solely on negative feedback during unlearning. In this work, we employ
reject-based template outputs as the modified "good" responses for the forgotten samples.

Input-based Methods Input-based methods craft input instructions (Pawelczyk et al., 2023; Mure-
sanu et al., 2024; Thaker et al., 2024; Bhaila et al., 2024; Gao et al., 2024; Liu et al., 2024a), such as
in-context examples and prompts, to steer the original LLM toward the unlearning objective without
altering the model’s parameters. These approaches aim to achieve unlearning in the output space
rather than in the parameter space. Among these methods, a notable baseline by Liu et al. (2024a)
uses an external prompt classifier as a guardrail, applying embedding corruptions to the identified
prompts. The authors demonstrate that this corruption scheme results in distribution-wise similarity
to the retrained model.

In this work, we propose a novel loss adjustment method for LLM unlearning, which simultaneously
utilizes available example responses, effectively combining data-based and model-based methods.

E.2 MACHINE UNLEARNING

In response to the data regulation requirements (Hoofnagle et al., 2019), machine unlearning (MU)
has emerged as a critical process to remove the influence of specific data points, data classes, or even
higher-level data concepts from a trained machine-learning model. One direct unlearning method
involves retraining the model from scratch after removing the forgotten data from the original dataset,
which is often considered the gold standard (Liu et al., 2024b; Fan et al., 2024). However, this
approach comes with significant computational demands. To alleviate this, most research focuses
on developing approximate but much faster unlearning techniques, including gradient ascent (Thudi
et al., 2022; Graves et al., 2021), influence unlearning (Izzo et al., 2021; Warnecke et al., 2021;
Wu et al., 2022), Fisher forgetting (Becker & Liebig, 2022; Golatkar et al., 2020), finetuning-based
approaches (Liu et al., 2024b; Fan et al., 2023), and loss correction-related unlearning (Adolphs et al.,
2022; Wang et al., 2023; Di et al., 2024).
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