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ABSTRACT

Diffusion models have recently shown considerable potential in solving Bayesian
inverse problems when used as priors. However, sampling from the resulting
denoising posterior distributions remains a challenge as it involves intractable
terms. To tackle this issue, state-of-the-art approaches formulate the problem
as that of sampling from a surrogate diffusion model targeting the posterior and
decompose its scores into two terms: the prior score and an intractable guidance
term. While the former is replaced by the pre-trained score of the considered
diffusion model, the guidance term has to be estimated. In this paper, we propose a
novel approach that utilises a decomposition of the transitions which, in contrast
to previous methods, allows a trade-off between the complexity of the intractable
guidance term and that of the prior transitions. We validate the proposed approach
through extensive experiments on linear and nonlinear inverse problems, including
challenging cases with latent diffusion models as priors. We then demonstrate its
applicability to various modalities and its promising impact on public health by
tackling cardiovascular disease diagnosis through the reconstruction of incomplete
electrocardiograms. The code is publicly available at https://github.com/
yazidjanati/mgps.

1 INTRODUCTION

Inverse problems aim to reconstruct signals from incomplete and noisy observations and are prevalent
across various fields. In signal and image processing, common examples include signal deconvo-
lution, image restoration, and tomographic image reconstruction (Stuart, 2010; Idier, 2013). Other
applications extend to protein backbone motif scaffolding (Watson et al., 2023) and urban mobility
modeling (Jiang et al., 2023). Due to the presence of noise and the inherent complexity of the
measurement process, these problems are typically ill-posed, meaning they have an infinite number
of possible solutions. While many of these solutions may fit the observed data, only a few align
with the true underlying signal. Bayesian inverse problems provide a principled framework for
addressing the challenges of signal reconstruction by incorporating prior knowledge, enabling more
plausible and meaningful solutions. The a priori knowledge about the signal x to be reconstructed is
captured in the prior distribution q(x), while the information about the observation y is encoded in
the likelihood function p(y|x). Given these components, solving the inverse problem boils down to
sampling from the posterior distribution π(x) ∝ p(y|x)q(x), which integrates both prior knowledge
and observational data.

The choice of the prior distribution is crucial for achieving accurate reconstructions. If the goal
is to reconstruct high-resolution data, the prior must be able to model data with similar fine detail
and complexity. Recently, denoising diffusion models (DDMs) (Sohl-Dickstein et al., 2015; Song
& Ermon, 2019; Ho et al., 2020; Song et al., 2021b) have emerged as a powerful approach in this
context. These models can generate highly realistic and detailed reconstructions and are becoming
increasingly popular as priors. Using a DDM, a sampleX0 being approximately distributed according
to a given data distribution q of interest can be generated by iteratively denoising an initial sample
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Xn from a standard Gaussian distribution. The denoising process (Xk)
0
k=n consists of the iterative

refinement of Xk for k ∈ J1, nK based on a parametric approximation of the score ∇ log qk, where
qk(xk) =

∫
q(x0)qk|0(xk|x0) dx0, with qk|0(·|x0) being a Gaussian noising transition.

Denoising Diffusion Models form a highly powerful class of prior distributions, but their use intro-
duces significant challenges in posterior sampling. Specifically, since a DDM prior does not admit an
explicit and tractable density, conventional Markov chain Monte Carlo (MCMC) methods, such as
the Metropolis–Hastings algorithm and its variants (Besag, 1994; Neal, 2011), cannot be applied in
general. Furthermore, gradient-based MCMC methods often prove inefficient, as they tend to get
trapped in local modes of the posterior.

The problem of sampling from the posterior in Bayesian inverse problems with DDM priors has
recently been addressed in several papers (Kadkhodaie & Simoncelli, 2020; Song et al., 2021b; Kawar
et al., 2021; 2022; Lugmayr et al., 2022; Ho et al., 2022; Chung et al., 2023; Song et al., 2023a). These
methods typically modify the denoising process to account for the observation y. One principled
approach for accurate posterior sampling involves skewing the denoising process at each stage k
using the score ∇ log πk, where πk is defined analogously to qk, with q replaced by the posterior
π. This guides the denoising process in a manner that is consistent with the observation. Notably,
the posterior score ∇ log πk decomposes into two components: the prior score and an additional
intractable term commonly referred to as guidance. Previous works leverage pre-trained DDMs for
the prior score, while providing various training-free approximations for the guidance term (Ho et al.,
2022; Chung et al., 2023; Song et al., 2023a; Finzi et al., 2023). This framework enables solving
a wide range of inverse problems for a given prior. However, despite the notable success of these
methods, the approximations often introduce significant errors, leading to inaccurate reconstructions
when the posterior distribution is highly multimodal, the measurement process is strongly nonlinear,
or the data is heavily contaminated by noise.

Our contribution. We begin with the observation that the posterior denoising step, which trans-
forms a sampleXk+1 into a sampleXk, does not necessarily require the conditional scores∇ log πk+1

or∇ log πk. Instead, we demonstrate that this step can be decomposed into two intermediate phases:
first, denoising Xk+1 into an intermediate midpoint state Xℓk , where ℓk < k, and then noising back
to obtain Xk, unconditionally on the observation y. This decomposition introduces an additional
degree of freedom, as it only requires the estimation of the guidance term at the intermediate step ℓk
rather than step k + 1. Building on this insight, we introduce MIDPOINT GUIDANCE POSTERIOR
SAMPLING (MGPS), a novel diffusion posterior sampling scheme that explicitly leverages this
approach. Our algorithm develops a principled approximation of the denoising transition by utilizing
a Gaussian variational approximation, combined with the guidance approximation proposed by
Chung et al. (2023) at the intermediate steps ℓk. The strong empirical performance of our method
is demonstrated through an extensive set of experiments. In particular, we validate our approach
on a Gaussian mixture toy example, as well as various linear and nonlinear image reconstruction
tasks–inpainting, super-resolution, phase retrieval, deblurring, JPEG dequantization, high-dynamic
range–using both pixel-space and latent diffusion models (LDM). Finally, we demonstrate the versatil-
ity of our approach by applying it to cardiovascular diagnosis using reconstructed electrocardiograms,
showing that MGPS achieves significant improvements over competing methods.

2 POSTERIOR SAMPLING WITH DDM PRIOR

Problem setup. In this paper, we focus on the approximate sampling from a density of the form
π(x) := p(y|x)q(x)/Z , (2.1)

where p(y|·) : Rd → R is a non-negative and differentiable likelihood that can be evaluated pointwise,
q is a prior distribution, and Z :=

∫
p(y|x)q(x) dx is the normalizing constant. We are interested

in the case where a DDM pθ0 for the prior has been pre-trained based on i.i.d. observations from
q. As a by-product, we also have parametric approximations (sθk)

n
k=1 of the scores (∇ log qk)

n
k=1,

where the marginals (qk)
n
k=1 are defined as qk(xk) :=

∫
q(x0) qk|0(xk|x0) dx0 with qk|0(xk|x0) :=

N (xk;
√
αkx0, vkId) and vk := 1− αk. Typically, the sequence (αk)

n
k=0 is a decreasing sequence

with α0 = 1 and αn approximately equals zero for n large enough.

These score approximations enable the generation of new samples from q according to one of
the DDM sampling schemes (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021a;b; Karras
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et al., 2022). All these approaches boil down to simulating a Markov chain (Xk)
0
k=n backwards

in time starting from a standard Gaussian pn := N(0d, Id) and following the Gaussian transitions
pθk|k+1(xk|xk+1) = N (xk;m

θ
k|k+1(xk+1), vk|k+1Id), where the mean functions mθ

k|k+1 can be
derived from the learned DDM, and vk|k+1 > 0 are fixed and pre-defined variances. The backward
transitions are designed in such a way that the marginal law ofXk approximates qk; see Appendix A.1
for more details on the form of the backward transitions.

In our problem setup, we assume we only have access to the approximated scores of the prior and no
observation from neither the posterior π nor the prior q. This setup encompasses of solving an inverse
problem without training a conditional model from scratch based on a paired signal/observation
dataset; a requirement typically imposed by conditional DDM frameworks (Song et al., 2021b;
Batzolis et al., 2021; Tashiro et al., 2021; Saharia et al., 2022). On the other hand, we require access
to p(y|·). This setup includes many applications in Bayesian inverse problems, e.g., image restoration,
motif scaffolding in protein design (Trippe et al., 2023; Wu et al., 2023), and trajectory control in
traffic-simulation frameworks (Jiang et al., 2023).

Conditional score. Since we have access to a DDM model for q, a natural approach to sam-
pling from π is to define a DDM approximation based on the pre-trained score approximations
for qk. Following the DDM approach, the basic idea here is to sample sequentially from the
marginals πk(xk) :=

∫
π(x0)qk|0(xk|x0) dx0 by relying on approximations of the conditional

scores (∇ log πk)
n
k=1. The latter can be expressed in terms of the unconditional scores by using

πk(xk) ∝
∫
p(y|x0)q(x0)qk|0(xk|x0) dx0 , (2.2)

where after defining the backward transition kernel q0|k(x0|xk) := q(x0)qk|0(xk|x0)
/
qk(xk) yields

πk(xk) ∝ pk(y|xk)qk(xk) , where pk(y|xk) :=
∫
p(y|x0)q0|k(x0|xk) dx0 . (2.3)

It then follows that
∇ log πk(xk) = ∇ log qk(xk) +∇ log pk(y|xk) .

While we have a parametric approximation of the first term on the r.h.s., the second term is the
bottleneck as it involves the integration of p(y|·) against the conditional distribution q0|k(·|xk).

Existing approaches. To circumvent this computational bottleneck, previous works have proposed
approximations that involve replacing q0|k(·|xk) in (2.3) with either a Dirac delta mass (Chung et al.,
2023) or a Gaussian approximation (Ho et al., 2022; Song et al., 2023a)

q0|k(x0|xk) ≈ N (x0;m
θ
0|k(xk), v0|kId) , (2.4)

where mθ
0|k is a parametric approximation of m0|k(xk) :=

∫
x0 q0|k(x0|xk) dx0 and v0|k is a tun-

ing parameter. Using Tweedie’s formula (Robbins, 1956), it holds that m0|k(xk) = (−xk +√
αk∇ log qk(xk))/vk, which suggests the approximation mθ

0|k(xk) := (−xk +
√
αks

θ
k(xk))/vk .

As for the variance parameter v0|k, Ho et al. (2022) suggest setting v0|k = vk/αk, while Song
et al. (2023a) use v0|k = vk. When p(y|·) is the likelihood of a linear model, i.e., p(y|x) :=

N (y;Ax, σ2
yIdy), for A ∈ Rdy×d and σy > 0, it can be exactly integrated against the Gaussian ap-

proximation (2.4), yielding pk(y|xk) ≈ N (y;Amθ
0|k(xk), σ

2
yIdy + v0|kAA⊺). Chung et al. (2023),

on the other hand, use the pointwise approximation, yielding pk(y|xk) ≈ p(y|mθ
0|k(xk)). We denote

by p̃k(y|·) the resulting approximation stemming from any of these methods. Approximate samples
from the posterior distribution are then drawn by simulating a backward Markov chain (Xk)

0
k=n,

where Xn ∼ pn and then, given Xk+1, Xk is obtained via the update

Xk := X̃k + wk+1(Xk+1)∇ log p̃k+1(y|Xk+1) , where X̃k ∼ pθk|k+1(·|Xk+1) , (2.5)

and wk+1 is a method-dependent weighting function. For instance, Chung et al. (2023) use
wk+1(Xk+1) = ζσ2

y/∥y − Amθ
0|k+1(Xk+1)∥, with ζ ∈ [0, 1]. We note that the update (2.5) in

general involves a vector-Jacobian product, e.g., considering the approximation suggested by Chung
et al. (2023), ∇xk log p̃k(y|xk) = ∇xkm

θ
0|k(xk)

⊺∇x0 log p(y|x0)|x0=mθ
0|k(xk)

, which incurs an
additional computational cost compared to an unconditional diffusion step.
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3 THE MGPS ALGORITHM

In this section we propose a novel scheme for the approximate inference of π. We start by presenting
a midpoint decomposition of the backward transition that allows us to trade adherence to the prior
backward dynamics for improved guidance approximation.

We preface our description of the MGPS algorithm with some additional notations. First, consider the
DDPM forward process with transitions given by qk|j(xk|xj) := N (xk;

√
αk/αjxj , (1−αk/αj)Id)

for all (j, k) ∈ J0, nK2 such that j < k. We also define the joint law of the forward process

π0:n(x0:n) := π(x0)

n−1∏
k=0

qk+1|k(xk+1|xk) , (3.1)

when initialized with the posterior (2.1) of interest. Note that with these definitions, πk (given by
(2.3)) is the marginal of π0:n(x0:n) w.r.t. xk. The time-reversed decomposition of (3.1) writes

π0:n(x0:n) := πn(xn)

n−1∏
k=0

πk|k+1(xk|xk+1) , (3.2)

where, more generally, for all (i, j) ∈ J0, nK2 such that i < j,

πi|j(xi|xj) := πi(xi)qj|i(xj |xi)
/
πj(xj) ∝ pi(y|xi)qi|j(xi|xj) , (3.3)

where the marginals are given by (2.2), is the conditional density of Xi given Xj = xj and y.

X0 Xℓk Xk Xk+1

y

· · · · · ·

Figure 1: For each color, the different solid
arrows indicate different conditional densi-
ties that need to be approximated for a given
choice of the midpoint ℓk. The longer the
arrow, the more difficult it is to approximate
the corresponding conditional density. By
placing the ℓk midway between zero and k,
the shortest arrows are obtained.

Using the decomposition (3.2), an exact draw X0 from
(2.1) is obtained by first drawingXn from πn and then sim-
ulating recursivelyXk from the transitions πk|k+1(·|Xk+1)
for all k. However, according to (3.3), such transitions in-
volve the intractable likelihood pk(y|xk) which is hard to
approximate accurately when k is large.

Midpoint decomposition. The transition (3.3) has two
components: the conditional density pi(y|xi) and the
prior transition density qi|j(xi|xj). The approximation
pi(y|xi) ≈ p(y|mθ

0|i(xi)) of Chung et al. (2023) is ac-
curate when i is small, whereas the Gaussian approxima-
tion of qi|j(xi|xj) proposed by Ho et al. (2020) is accu-
rate when the difference |i − j| is small. Thus, in order
to combine the best of both worlds, we introduce a de-
composition that transfers the problem of sampling from
πk|k+1 to that of sampling from πℓk|k+1, i.e., drawing Xℓk given Xk+1 and y, where ℓk < k.
The parameter ℓk balances the approximation errors of the two conditional densities in (3.3);
see Figure 1. In order to make this construction, define, for each ℓ ∈ J0, kK, the bridge kernel
qk|ℓ,k+1(xk|xℓ,xk+1) ∝ qk|ℓ(xk|xℓ)qk+1|k(xk+1|xk), which is Gaussian; see Appendix A.1. By
convention, qk|k,k+1(·|xk,xk+1) = δxk .
Lemma 3.1. For all k ∈ J1, n− 1K and ℓk ∈ J0, kK it holds that

πk|k+1(xk|xk+1) =

∫
qk|ℓk,k+1(xk|xℓk ,xk+1)πℓk|k+1(xℓk |xk+1) dxℓk . (3.4)

The proof is found in Appendix A.3. Lead by the decomposition provided by Lemma 3.1, we define

π̂ℓk|k+1(xk|xk+1) :=

∫
qk|ℓk,k+1(xk|xℓk ,xk+1)π̂

θ
ℓk|k+1(xℓk |xk+1) dxℓk , (3.5)

where π̂θℓk|k+1(xℓk |xk+1) ∝ p̂θℓk(y|xℓk)p
θ
ℓk|k+1(xℓk |xk+1) with p̂θℓk(y|xℓk) := p(y|mθ

0|ℓk(xℓk))

and pθℓk|k+1(xℓk |xk+1) := qℓk|0,k+1(xℓk |mθ
0|k+1(xk+1),xk+1). Finally, for any sequence ℓ :=

(ℓk)
n
k=1 satisfying ℓk ≤ k, we define our surrogate model for π0:n and the posterior (2.1) as

π̂ℓ0:n(x0:n) := π̂n(xn)

n−1∏
k=0

π̂ℓk|k+1(xk|xk+1) , π̂ℓ0(x0) :=

∫
π̂ℓ0:n(x0:n) dx1:n , (3.6)
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where π̂n(xn) = N (xn; 0d, Id) and π̂ℓ0|1(·|x1) := δmθ
0|1(x1) (similarly to Ho et al., 2020; Song et al.,

2021a). Since the bridge kernel qk|ℓk,k+1 is Gaussian, it can be easily sampled. Hence, we only need
to focus on the approximate sampling from πℓk|k+1. Moreover, since the decomposition (3.4) is valid
for any ℓk, it can be chosen to better balance the approximation errors, as discussed above.

Choice of the sequence (ℓk)
n−1
k=1 . The accuracy of the surrogate model (3.6) ultimately depends

on the design of the sequence (ℓk)
n−1
k=1 . In fact, for a given k, note that a decrease in ℓk ensures that

the approximation p̂θℓk(y|xℓk) of pℓk(y|xℓk) becomes more accurate. For instance, setting ℓk = 0
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Figure 2: Left: average W2 with 10%–90% quantile
range. Right: distribution of the minimizing η∗.

eliminates any error of the approximate like-
lihood (since p0(y|·) = p(y|·)); how-
ever, decreasing ℓk can cause the distribution
π0|k+1(·|xk+1) to become strongly multimodal,
especially in the early stages of the diffusion pro-
cess, making the DDPM Gaussian approxima-
tion less accurate. Conversely, setting ℓk closer
to k, similar to the DPS approach of Chung et al.
(2023), improves the accuracy of the approxima-
tion of qℓk|k+1, but impairs the approximation
p̂θℓk(y|xℓk) of pℓk(y|xℓk). The choice of ℓk is
therefore subject to a particular trade-off, which
we illustrate using the following Gaussian toy example. When considering the parameterization
ℓηk = ⌊ηk⌋ with η ∈ [0, 1], we show that the Wasserstein-2 distance between π and π̂ℓ(η)0 reaches its
minimum for η around 0.5, which confirms that the additional flexibility obtained by introducing the
midpoint can provide a surrogate model (3.6) with reduced approximation error.
Example 3.2. Consider a linear inverse problem Y = AX + σyZ with Gaussian noise and prior
q = N (m,Σ), where m ∈ Rd and Σ ∈ Rd×d is positive definite. In this setting, we have access to
the exact denoiser m0|k in a closed form, which allows us to take mθ

0|k = m0|k. Moreover, since
the transition (3.5) admits an explicit expression in this case, we can quantify the approximation
error of (3.6) w.r.t. π for any sequence (ℓk)

n−1
k=1 . Note that in this case the true backward transitions

qℓk|k+1 are Gaussian and have the same mean as the Gaussian DDPM transitions, but differ in their
covariance. All necessary derivations and computational details can be found in Appendix B. We
consider sequences ℓ(η) := (ℓηk)

n
k=1 with ℓηk = ⌊ηk⌋, η ∈ [0, 1], and compute the Wasserstein-2

distance W2(π, π̂
ℓ(η)
0 ) as a function of η on the basis of 500 samples (A,m,Σ) for d = 100. The

left panel of Figure 2 displays the average error W2(π, π̂
ℓ(η)
0 ) as a function of η, while the right

panel displays the associated distribution of η∗ := argminη∈[0,1]W2(π, π̂
ℓ(η)
0 ). Figure 2 illustrates

that the smallest approximation error for the surrogate model (3.6) is reached at intermediate values
close to η = 0.5 rather than η = 1, which corresponds to a DPS-like approximation.

Variational approximation. To sample from π̂ℓ0:n in (3.6), we focus on simulating approximately
and recursively (over k) the Markov chain with transition densities (3.5). Ideally, for k = n, we
simply sample from π̂θn; then, recursively, assuming that we have access to an approximate sample
Xk+1 from π̂ℓk+1, the next state Xk is drawn from π̂ℓk|k+1(·|Xk+1). However, as π̂ℓk|k+1(·|Xk+1) is
intractable, we propose using the Gaussian approximation that we specify next.

In the following, let k ∈ J1, nK and ℓk ∈ J0, kK be fixed. For φ = (µ̂ℓk , ρ̂ℓk) ∈ (Rd)2, consider the
Gaussian variational distribution

λφk|k+1(xk|xk+1) :=

∫
qk|ℓk,k+1(xk|xℓk ,xk+1)λ

φ
ℓk|k+1(xℓk) dxℓk , (3.7)

λφℓk|k+1(xℓk) := N (xℓk ; µ̂ℓk , diag(e2ρ̂ℓk )) . (3.8)

In definition (3.8) the exponential function is applied element-wise to the vector ρ̂ℓk and diag(eρ̂ℓk )
is the diagonal matrix with diagonal entries eρ̂ℓk . Based on the family {λφk|k+1 : φ ∈ (Rd)2} and an
approximate sample Xk+1 from π̂ℓk+1, we then seek the best fitting parameter φ that minimizes the
upper bound on the backward KL divergence obtained using the data-processing inequality

KL(λφk|k+1(·|Xk+1) ∥ π̂ℓk|k+1(·|Xk+1)) ≤ KL(λφℓk|k+1 ∥ π̂
θ
ℓk|k+1(·|Xk+1)) =: Lk(φ;Xk+1) .

Here the gradient of the upper bound is given by

∇φLk(φ;Xk+1) = −E
[
∇φ log p̂θℓk(y|µ̂ℓk+diag(eρ̂ℓk )Z)

]
+∇φKL(λ

φ
ℓk|k+1 ∥ p

θ
ℓk|k+1(·|Xk+1)) ,
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Algorithm 1 MIDPOINT GUIDANCE POSTERIOR SAMPLING

1: Input: (ℓk)nk=1 with ℓn = n and ℓ1 = 1; number M of gradient steps.
2: Xn ∼ N (0d, Id), X̂n ← Xn

3: for k = n− 1 to 1 do
4: µ̂ℓk ←

√
αℓk (1−αk+1/αℓk )

1−αk+1
mθ

0|ℓk+1
(X̂ℓk+1

) +

√
αk+1/αℓk (1−αℓk )

1−αk+1
Xk+1

5: ρ̂ℓk ←
1
2 log

(1−αk+1/αℓk )(1−αℓk )
1−αk+1

6: for j = 1 to M do
7: Z ∼ N (0d, Id)

8: (µ̂ℓk , ρ̂ℓk)← OptimizerStep(∇φL̃k(·, Z;Xk+1); µ̂ℓk , ρ̂ℓk)
9: end for

10: Zℓk , Zk
i.i.d.∼ N (0d, Id)

11: X̂ℓk ← µ̂ℓk + diag(eρ̂ℓk )Zℓk
12: Xk ∼ qk|ℓk,k+1(·|X̂ℓk , Xk+1) (See (A.5))
13: end for
14: X0 ←mθ

0|1(X1)

whereZ ∼ N(0d, Id) is independent ofXk+1. The first term is dealt with using the reparameterization
trick (Kingma & Welling, 2014) and can be approximated using a Monte Carlo estimator based on
a single sample Zk+1; we denote this estimate by ∇φL̃k(φ, Zk+1;Xk+1). The second term is the
gradient of the KL divergence between two Gaussian distributions and can thus be computed in a
closed form. Similarly to the previous approaches of Ho et al. (2022); Chung et al. (2023); Song et al.
(2023a), our gradient estimator involves a vector-Jacobian product of the denoising network.

We now provide a summary of the MGPS algorithm, whose pseudocode is given in Algorithm 1.
Given (ℓk)

n−1
k=1 , MGPS proceeds by simulating a Markov chain (Xk)

0
k=n starting from Xn ∼

N (0d, Id). Recursively, given the state Xk+1, the state Xk is obtained by

1. minimizing Lk(·;Xk+1) by performing M stochastic gradient steps using the gradient
estimator∇φL̃k(·;Xk+1), yielding a parameter φ∗

k(Xk+1),

2. sampling X̂ℓk ∼ λ
φ∗
k

ℓk|k+1, where we drop the dependence on Xk+1 in φ∗
k, and then Xk ∼

qk|ℓk,k+1(·|X̂ℓk , Xk+1).

Remark 3.3. While conditionally on φ∗
k we have that X̂ℓk ∼ λ

φ∗
k

ℓk|k+1, the actual law of X̂ℓk given
Xk+1 is not a Gaussian distribution as we need to marginalize over that of φ∗

k due to the randomness
in the stochastic gradients.

A well-chosen initialization for the Gaussian variational approximation parameters is crucial for
achieving accurate fitting with few optimization steps, ensuring the overall runtime of MGPS remains
competitive with existing methods. Given X̂ℓk+1

sampled from λ
φ∗
k+1

ℓk+1|k+2 at the previous step, we
choose the initial parameter φk so that

λ
φk
ℓk|k+1(xk) = qℓk|0,k+1(xk|mθ

0|ℓk+1
(X̂ℓk+1

), Xk+1) . (3.9)

This initialization is motivated by noting that qℓk|0,k+1(·|mπ
0|k+1(Xk+1), Xk+1), the DDPM approx-

imation of πℓk|k+1(·|Xk+1), where mπ
0|k+1 is a supposed denoiser for the posterior, is a reasonable

candidate for the initialization. As it is intractable, we replace it with mθ
0|ℓk+1

(X̂ℓk+1
), our best cur-

rent guess. Finally, in Appendix C.2 we devise a warm-start approach that improves the initialization
during the early steps of the algorithm. This has proved advantageous in challenging problems.

Related works. We now discuss existing works that have similarities with our algorithm, MGPS.
In essence, our method tries to reduce the approximation error incurred by DPS-like approximations.
This has also been the focus of many works in the literature, which we review below.

When p(y|·) is a likelihood associated to a linear inverse problem with Gaussian noise, Finzi et al.
(2023); Stevens et al. (2023); Boys et al. (2023) leverage the fact that the Gaussian projection
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Figure 3: MGPS sample images for half mask (left), expand task, Gaussian blur and motion blur
(right) on the ImageNet dataset.

of q0|k(·|xk) minimizing the forward KL divergence can be approximated using the pre-trained
denoisers; see Meng et al. (2021, Theorem 1). In the considered Gaussian setting, the likelihood
p(y|·) can be exactly integrated against the estimated Gaussian projection. However, this involves
a matrix inversion that may be prohibitively expensive. Boys et al. (2023) circumvent the latter
by using a diagonal approximation which involves the computation of d vector-Jacobian products.
For general likelihoods p(y|·), Song et al. (2023b) use the Gaussian approximations of Ho et al.
(2022); Song et al. (2023a) to estimate pk(y|·) for non-linear likelihoods p(y|·) using a vanilla Monte
Carlo estimate. Zhang et al. (2023) also consider the surrogate transitions (3.5) with ℓk = k, and,
given an approximate sample Xk+1 from π̂ℓk+1, estimate the next sample Xk maximizing xk 7→
π̂θk|k+1(xk|Xk+1) using gradient ascent. They also consider improved estimates of the likelihood
pk(y|·) running a few diffusion steps. However, it is shown (Zhang et al., 2023, last subtable in Table
2) that this brings minor improvements at the expense of a sharp increase in computational cost,
which is mainly due to backpropagation over the denoisers. See also Appendix C.3 for a discussion
on how our method relates to the DPS (Chung et al., 2023) in the case where ℓk = k.

Finally, a second line of work considers the distribution path (π̂k)
0
k=n, where π̂k(xk) ∝

p(y|m0|k(xk))qk(xk) for k ∈ J0, n − 1K and π̂n = N (0d, Id). This path bridges the Gaussian
distribution and the posterior of interest. Furthermore, if one is able to accurately sample from π̂k+1,
then these samples can be used to initialize a sampler targeting the next distribution π̂k. As these
distributions are expected to be close, the sampling from π̂k can also be expected to be accurate.
Repeating this process yields approximate samples from π regardless of the approximation error
in the likelihoods. This approach is pursued by Rozet & Louppe (2023), who combines the update
(2.5) with a Langevin dynamics targeting π̂k. Wu et al. (2023) use instead sequential Monte Carlo to
recursively build empirical approximations of each π̂k by evolving a sample of N particles.

4 EXPERIMENTS

We now evaluate our algorithm on three different problems and compare it with several competitors.
We begin in benchmarking our method on toy Gaussian-mixture targets and image experiments with
both pixel space and latent diffusion models. We review the latter in Appendix A.2. Finally, we
perform inpainting experiments on ECG data. For experiments based on pixel-space diffusion models,
MGPS is benchmarked against state-of-the art methods in the literature: DPS (Chung et al., 2023),
PGDM (Song et al., 2023a), DDNM (Wang et al., 2023), DIFFPIR (Zhu et al., 2023), and REDDIFF
(Mardani et al., 2024). Regarding experiments using latent diffusion models, we compare against
PSLD (Rout et al., 2024) and RESAMPLE (Song et al., 2024). Full details on the hyperparameters
can be found in Appendix D.1. Our code for reproducing all the experiments is publicly available.1

Gaussian mixture. We first evaluate the accuracy of our method and the impact of the hyperparam-
eters on a toy linear inverse problem with Gaussian mixture (GM) as q and a Gaussian likelihood
p(y|x) := N (y;Ax, σ2

yId), where A ∈ Rdy×d and σy = 0.05. We repeat the experiment of
Cardoso et al. (2023, App B.3), where the prior is a GM with 25 well-separated strata. For this
specific example, both the posterior and the denoiser m0|k are available in a closed form. In particular,
the posterior can be shown to be a GM. The full details are provided in Appendix D.3. We consider
the settings (20, 1) and (200, 1) for the dimensions (d, dy). For each method, we reconstruct 1000

1Code available at https://github.com/yazidjanati/mgps
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Figure 4: Left: SW as a function of η with ℓk = ⌊ηk⌋.
Right: SW as a function of the number of gradient
steps, for a specific choice of (ℓk)k.

Table 1: 95 % confidence interval for the SW on the
GM experiment.

d = 20, dy = 1 d = 200, dy = 1

MGPS 2.11± 0.30 3.66± 0.53
DPS 8.93± 0.49 9.15± 0.44
PGDM 2.44± 0.36 5.23± 0.38
DDNM 4.24± 0.37 7.10± 0.50
DIFFPIR 4.14± 0.42 8.43± 0.92
REDDIFF 6.70± 0.45 8.35± 0.39

samples and then compute the sliced Wasserstein (SW) distance to exact samples from the posterior
distribution. We repeat this procedure 100 times with randomly drawn matrices A, and consider the
resulting averaged SW distance. In every replication, the observation is generated as Y = AX+σyZ
where Z ∼ N (0dy , Idy) and X ∼ q. The results are reported in Table 1. It can be observed that
MGPS with η = 0.75 outperforms all baselines in both settings. Although we have tuned the
parameters of DPS it still exhibits considerable instability and often diverges. To account for these
instabilities we set the SW to 10 when it diverges.

Ablations. Next, we perform an ablation study on the total number of gradient steps and the choice
of the sequence (ℓk)n−1

k=1 . The right-hand plot in Figure 4 shows the average SW distance as a function
of the number of gradient steps per denoising step when using ℓk = ⌊3k/4⌋. For d = 20, we observe
a monotonic decrease of the SW distance. For d = 200, the SW distance decreases and then stabilizes
after 10 gradient steps, indicating that in this case, MGPS performs well without requiring many
additional gradient steps. We also report the average SW as a function of η ∈ [0, 1] in the left-hand
plot of Figure 4, following the same sequence choices as in Example 3.2, i.e., ℓηk = ⌊ηk⌋. In both
settings, the best SW is achieved at η = 0.75. In dimension d = 200, the SW at η = 0.75 is nearly
twice as good as at η = 1, which corresponds to a DPS-like approximation. This demonstrates that
the introduced trade-off leads to non-negligeable performance gains.

Images. We evaluate our algorithm on a wide range of linear and nonlinear inverse problems with
noise level σy = 0.05. As linear problems we consider: image inpainting with a box mask of shape
150× 150 covering the center of the image and half mask covering its right-hand side; image Super
Resolution (SR) with factors ×4 and ×16; image deblurring with Gaussian blur; motion blur with
61× 61 kernel size. We use the same experimental setup as Chung et al. (2023, Section 4) for the
last two tasks. Regarding the nonlinear inverse problems on which we benchmark our algorithm, we
consider: JPEG dequantization with quality factor 2%; phase retrieval with oversampling factor 2;
non-uniform deblurring emulated via the forward model of Tran et al. (2021); high dynamic range
(HDR) following Mardani et al. (2024, Section 5.2). Since the JPEG operator is not differentiable,
we instead use the differentiable JPEG framework from Shin & Song (2017). We note that only DPS
and REDDIFF apply to nonlinear problems.

Datasets and evaluation. We test our algorithm on the 256 × 256 versions of the FFHQ (Karras
et al., 2019) and ImageNet (Deng et al., 2009) datasets using publicly available pre-trained DDMs.
For FFHQ, we use the pixel-space DDM of Choi et al. (2021) and the LDM of Rombach et al. (2022)
with the VQ4 autoencoder. For ImageNet, we use the model by Dhariwal & Nichol (2021). Due
to computational constraints, we first evaluate MGPS and competitors on all tasks using 50 random
images per dataset. We then focus on the 5 most challenging tasks, evaluating MGPS and the top 2
competitors on 1k images in Table 7. For all tasks, we report the LPIPS (Zhang et al., 2018) between
the reference image and the reconstruction, averaged over 50 images. For the five tasks tested on 1k
images, we also report the FID in Table 7. Although pixel-wise metrics like PSNR and SSIM are
less informative for multimodal posterior distributions, they are available in Tables 7 to 10. For all
the considered competitors, we use the hyperparameters proposed in their official implementations
if available, otherwise we manually tune them to achieve the best reconstructions (implementation
details in Appendix D.1). For phase retrieval, due to the task’s inherent instability, we follow the
approach of Chung et al. (2023) by selecting the best reconstruction out of four; further discussion on
this can be found in Chung et al. (2023, Appendix C.6).
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Table 2: Mean LPIPS for various linear and nonlinear imaging tasks on the FFHQ and ImageNet
256× 256 datasets with σy = 0.05. Lower metrics are better.

FFHQ ImageNet

Task MGPS DPS PGDM DDNM DIFFPIR REDDIFF MGPS DPS PGDM DDNM DIFFPIR REDDIFF

SR (×4) 0.09 0.09 0.33 0.14 0.13 0.36 0.30 0.41 0.78 0.34 0.36 0.56
SR (×16) 0.26 0.24 0.44 0.30 0.28 0.51 0.53 0.50 0.60 0.70 0.63 0.83
Box inpainting 0.10 0.19 0.17 0.12 0.18 0.19 0.22 0.34 0.29 0.28 0.28 0.36
Half mask 0.20 0.24 0.26 0.22 0.23 0.28 0.29 0.44 0.38 0.38 0.35 0.44
Gaussian Deblur 0.15 0.16 0.87 0.19 0.12 0.23 0.32 0.35 1.00 0.45 0.29 0.54
Motion Deblur 0.13 0.16 − − − 0.21 0.22 0.39 − − − 0.40

JPEG (QF = 2) 0.16 0.39 1.10 − − 0.32 0.42 0.63 1.31 − − 0.51
Phase retrieval 0.11 0.46 − − − 0.25 0.47 0.62 − − − 0.60
Nonlinear deblur 0.23 0.52 − − − 0.66 0.44 0.88 − − − 0.67
High dynamic range 0.07 0.49 − − − 0.20 0.10 0.85 − − − 0.21

Results. We report the results in Table 2 for FFHQ and ImageNet with DDM prior, and Table 3
for FFHQ with LDM prior. These reveal that MGPS consistently outperforms the competing
algorithms across both linear and nonlinear problems. Notably, on nonlinear tasks, MGPS achieves
up to a twofold reduction in LPIPS compared to the other methods with DDM prior. It effectively
manages the additional nonlinearities introduced by using LDMs and surpasses the state-of-the-art,
as demonstrated in Table 3. Reconstructions obtained with MGPS are displayed in Figure 3 and
Figure 5. Further examples and comparisons with other competitors are provided in Appendix D.6. It
is seen that MGPS provides high quality reconstructions even for the most challenging examples. For
the DDM prior, the results are obtained using the warm-start approach, see Algorithm 3, and setting
ℓk = ⌊k/2⌋ on all the tasks based on the FFHQ dataset. As for the ImageNet dataset, we use the
same configuration on all the tasks, except for Gaussian deblur and motion deblur. For these tasks we
found that using ℓk = ⌊k/2⌋1k≥⌊n/2⌋+ k1k<⌊n/2⌋ improves performance. We use a similar strategy
for the LDM prior. In Appendix D.2.1, we measure the runtime and GPU memory requirements
for each algorithm. The memory requirement of our algorithm is the same as that of DPS and
PGDM, but the runtime of MGPS with n = 300 is slightly larger. With fewer diffusion steps, the
runtime is halved compared to DPS and PGDM and comparable to that of DIFFPIR, DDNM and
REDDIFF. Still, MGPS remains competitive and consistently outperforms the baselines, particularly
on nonlinear tasks. See Table 8 and 9 for detailed results using n ∈ {50, 100} diffusion steps.

Figure 5: MGPS samples with LDM on FFHQ dataset.

Table 3: Mean LPIPS with LDM on FFHQ.
Lower metrics are better.

Task MGPS RESAMPLE PSLD

SR (×4) 0.11 0.20 0.22
SR (×16) 0.30 0.36 0.35
Box inpainting 0.16 0.22 0.26
Half mask 0.25 0.30 0.31
Gaussian Deblur 0.16 0.15 0.35
Motion Deblur 0.18 0.19 0.41

JPEG (QF = 2) 0.20 0.26 −
Phase retrieval 0.34 0.41 −
Nonlinear deblur 0.26 0.30 −
High dynamic range 0.15 0.15 −

ECG. We now explore posterior sampling algorithms beyond image tasks to show their versatility
and public health impact. Cardiovascular diseases cause one-third of global deaths, and better
detection can improve management. Wearables like smartwatches can enhance diagnosis by capturing
brief symptom episodes, particularly for conditions like paroxysmal atrial fibrillation (AF), which
may go undetected during routine medical visits. However, they offer only a partial ECG view (Lead
I instead of 12 leads) and a recent study showed the Apple Watch detected AF in only 34 of 90
episodes (Seshadri et al., 2020). To address this limitation, we propose using posterior sampling
algorithms to reconstruct incomplete electrocardiograms (ECG). An ECG is an electrical recording of
the heart’s activity in which the signals generated by the heartbeats are recorded in order to diagnose
various cardiac conditions such as cardiac arrhythmias and conduction abnormalities. Unlike static
images, ECGs constitute complex time-series data consisting of 12 electrical signals acquired using
10 electrodes, 4 of which are attached to the limbs and record the ’limb leads’, while the others record
the ’precordial leads’ around the heart. We study two conditional generation problems in ECGs. The
first is a forecasting or missing-block (MB) reconstruction problem, where one half of the ECG is
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reconstructed from the other; see fig. 8. This task evaluates the algorithm’s ability to capture temporal
information to predict a coherent signal. The second problem is an inpainting or missing-leads (ML)
reconstruction, where the entire ECG is reconstructed from the lead I; see fig. 6. The question is
whether we can capture the subtle information contained in lead I and reconstruct a coherent ECG
with the same diagnosis as the real ECG. This task is challenging because lead I, being acquired
with limb electrodes far from the heart, may contain very subtle features related to specific cardiac
conditions. We train a state-space diffusion model (Goel et al., 2022) to generate ECGs using the 20k
training ECGs from the PTB-XL dataset (Wagner et al., 2020), and benchmark the posterior sampling
algorithm on the 2k test ECGs; see appendix D.5. We report the Mean Absolute Error (MAE) and
the Root Mean Squared Error (RMSE) between ground-truth and reconstructions in Table 4. We
demonstrate that a diffusion model trained to generate ECGs can serve as a prior to solve imputation
tasks without additional training or fine-tuning, yielding superior results to a diffusion model trained
conditionally on the MB task (Alcaraz & Strodthoff, 2022). The rationale for this result is discussed
in Appendix D.5.2. We report in Table 5 the balanced accuracy of diagnosing Left Bundle Branch
Block (LBBB), Right Bundle Branch Block (RBBB), Atrial Fibrillation (AF), and Sinus Bradycardia
(SB) using the downstream classifier proposed in Strodthoff et al. (2020) (see appendix D.5.1) applied
to both ground-truth and to reconstructed samples from lead I. See appendix D.5.2 for sample figures.
MGPS outperforms all other posterior sampling algorithms with just 50 diffusion steps.

Table 4: MAE and RMSE for missing block task on the PTB-XL dataset.

Metric MGPS DPS PGDM DDNM DIFFPIR REDDIFF TRAINEDDIFF

MAE 0.111± 2e−3 0.117± 4e−3 0.118± 2e−3 0.103± 2e−3 0.115± 2e−3 0.171± 3e−3 0.116± 2e−3
RMSE 0.225± 4e−3 0.232± 4e−3 0.233± 4e−3 0.224± 4e−3 0.233± 4e−3 0.287± 5e−3 0.266± 3e−3
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Figure 6: 10s ECG reconstruction from lead I. Ground-truth in blue,
10%–90% quantile range in green, random sample in orange.

Table 5: Balanced acc. downstream diag-
nosis from ECG reconstructed from lead I.

Method RBBB LBBB AF SB

MGPS50 0.81 0.92 0.94 0.66
MGPS300 0.90 0.93 0.92 0.66
DPS 0.54 0.84 0.79 0.50
PGDM 0.65 0.87 0.88 0.55
DDNM 0.71 0.83 0.86 0.59
DIFFPIR 0.57 0.80 0.77 0.53
REDDIFF 0.73 0.86 0.88 0.60

Ground-truth 0.99 0.98 0.94 0.70

5 CONCLUSION

We have introduced MGPS, a novel posterior sampling algorithm designed to solve general inverse
problems using both diffusion models and latent diffusion models as a prior. Our approach is based on
trading off the approximation error in the prior backward dynamics for a more accurate approximation
of the guidance term. This strategy has proven to be effective in a variety of numerical experiments
across various tasks. The results show that MGPS consistently performs competitively and often
even superior to state-of-the-art methods.

Limitations and future directions. Although the proposed method is promising, it has certain
limitations that invite further exploration. First, a detailed analysis of how the algorithm’s performance
depends on the choice of the intermediate time steps (ℓk)n−1

k=1 remains a challenging but critical subject
for future research. Although our image and ECG experiments suggest that setting ℓk = ⌊k/2⌋ leads
to significant performance gains on most tasks, we have observed that using an adaptive sequence
ℓk = ⌊ηkk⌋, where ηk increases as k decreases, further enhances results on certain tasks, such as
Gaussian and motion deblurring, as well as when using latent diffusion models. A second direction
for improvement lies in refining the approximation of pk(y|·) which we believe could lead to overall
algorithmic improvements. Specifically, devising an approximation p̂θk(y|·) such that∇ log p̂θk(y|·)
does not require a vector-Jacobian product could significantly reduce the algorithm’s runtime. Lastly,
we see potential in using the two-stage approximation introduced in our warm-start strategy (see
Algorithm 3) at every diffusion step. Although this technique is promising, it currently leads to
instabilities as k decreases. Understanding and resolving these instabilities is also of key interest.
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A BACKGROUND ON DENOISING DIFFUSION MODELS

A.1 DENOISING DIFFUSION PROBABILISTIC MODELS

In this section, we provide further background on DDMs based on the DDPM framework (Ho et al.,
2020; Dhariwal & Nichol, 2021; Song et al., 2021a). We rely on definitions provided in the main text.

DDPMs define generative models for q relying only on parametric approximations (mθ
0|t)

T
t=1 of the

denoisers (m0|t)Tt=1. These approximate denoisers are usually defined through the parameterization

mθ
0|t(xt) = (xt −

√
1− αtϵθt (xt))/

√
αt (A.1)

and trained by minimizing the denoising loss

T∑
t=1

wtE
[
∥ϵt − ϵθt (

√
αtX0 +

√
1− αtϵt)∥2

]
, (A.2)

w.r.t. the neural network parameter θ, where (ϵt)
T
t=1 are i.i.d. standard normal vectors, X0 ∼ q, and

(wt)
T
t=1 are some nonnegative weights. Having trained the denoisers, the generative model for q is

defined as follows. Let (tk)nk=0 be an increasing sequence of time steps in J0, T K with t0 = 0. We
assume that tn is large enough so that qtn(xtn) =

∫
q(x0)qtn|0(xtn |x0) dx0 is approximately the

density of a multivariate standard normal distribution. For convenience, we assign the index k to any
quantity depending on tk; e.g., we denote qtk by qk. Consider the backward decomposition

q0:n(x0:n) = q(x0)

n−1∏
k=0

qk+1|k(xk+1|xk) = qn(xn)

n−1∏
k=0

qk|k+1(xk|xk+1)

of the forward process initialized at q, where qk|k+1(xk|xk+1) ∝ qk(xk)qk+1|k(xk+1|xk). Next, for
(j, ℓ, k) ∈ J0, nK3 such that j < ℓ < k, define

mℓ|j,k(xj ,xk) :=

√
αℓ/αj(1− αk/αℓ)

1− αk/αj
xj +

√
αk/αℓ(1− αℓ/αj)

1− αk/αj
xk , (A.3)

vℓ|j,k :=
(1− αℓ/αj)(1− αk/αℓ)

1− αk/αj
. (A.4)

Then the bridge kernel is

qℓ|j,k(xℓ|xj ,xk) = qℓ|j(xℓ|xj)qk|ℓ(xk|xℓ)
/
qk|j(xk|xj)

= N (xℓ;mℓ|j,k(xj ,xk), vℓ|j,kId) . (A.5)

Using the bridge kernel, q0:n is approximated using the variational approximation

pθ0:n(x0:n) = pθn(xn)

n−1∏
k=0

pθk|k+1(xk|xk+1) ,

where pθ0|1(x0|x1) = N (x0;m
θ
0|1(x1), v0|1Id), v0|1 being a tunable parameter, and

pθk|k+1(xk|xk+1) := qk|0,k+1(xk|mθ
0|k+1(xk+1),xk+1) k ∈ J1, n− 1K . (A.6)

When n = T , the denoising objective (A.2) corresponds to the KL divergence KL(q0:n ∥ pθ0:n) for a
specific choice of weights (wt)t. In practice, a DDPM is trained using the objective (A.2) with large
T but at inference n is usually much smaller.

A.2 LATENT DIFFUSION MODELS

Latent diffusion models (LDM) (Rombach et al., 2022) define a DDM in a latent space. Let
E : Rd → Rp be an encoder function and D : Rp → Rd a decoder function. We assume that these
functions satisfy D♯E♯q ≈ q, where, for instance, E♯q denotes the law of the random variable E(X)
where X ∼ q. A LDM approximating q is given by D♯pθ0, where pθ0 is a diffusion model trained on
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samples from E♯q. Finally, when solving inverse problems with LDMs, we assume that the target
distribution is instead

π(x) ∝ p(y|x)D♯E♯q(x) .
Let X ∼ π, D ∼ D♯E♯q, E ∼ E♯q, and Z ∼ π, where π(z) ∝ p(y|D♯(z))E♯q(z). For any bounded
function f on Rd, we have, following the definition of π, that

E[f(X)] =
E[p(y|D)f(D)]

E[p(y|D)]
=

E[p(y|D(E))f(D(E))]

E[p(y|D(E))]
= E[f(D(Z))] .

Hence Law(X) = Law(D(Z)). As a result, to sample approximately from π, we first sample
approximately from π using any diffusion posterior sampling algorithm with pre-trained DDM for
E♯q, then decode the obtained samples using D.

A.3 MIDPOINT DECOMPOSITION

Before we proceed with the midpoint decomposition, we first recall that under the joint distribution
obtained by initializing the posterior π with the forward process (see (3.1)), it holds that for all i < j,

πi(xi)qj|i(xj |xi) = πj(xj)πi|j(xi|xj) , (A.7)

where πi|j(xi|xj) := πi(xi)qj|i(xj |xi)/πj(xj) and integrates to one.

Proof of Lemma 3.1. Let (ℓ, k) ∈ J0, nK be such that ℓ < k. Applying repeatedly the definition of
the bridge kernel (A.5) and the identity (A.7),

qk|ℓ,k+1(xk|xℓ,xk+1) =
qk|ℓ(xk|xℓ)qk+1|k(xk+1|xk)

qk+1|ℓ(xk+1|xℓ)

=
πℓ(xℓ)qk|ℓ(xk|xℓ)qk+1|k(xk+1|xk)

πℓ(xℓ)qk+1|ℓ(xk+1|xℓ)

=
πℓ|k(xℓ|xk)πk|k+1(xk|xk+1)πk+1(xk+1)

πℓ|k+1(xℓ|xk+1)πk+1(xk+1)

=
πℓ|k(xℓ|xk)πk|k+1(xk|xk+1)

πℓ|k+1(xℓ|xk+1)
.

It then follows that

πk|k+1(xk|xk+1) =

∫
πℓ|k(xℓ|xk)πk|k+1(xk|xk+1) dxℓ

=

∫
qk|ℓ,k+1(xk|xℓ,xk+1)πℓ|k+1(xℓ|xk+1) dxℓ .

B THE GAUSSIAN CASE

B.1 DERIVATION

In this section we derive the recursions verified by the first and second moments of the marginal
distribution π̂ℓ0 of the surrogate model (3.6) in the simplified setting of Example 3.2. We recall
that in this specific example we assume that q = N(m,Σ) where (m,Σ) ∈ Rd × S++

d and
p(y|·) : x 7→ N (y;Ax, σ2

yIdy).

Denoiser and DDPM transitions. Since we are dealing with a Gaussian prior, the denoiser m0|k
can be computed in closed form for any k ∈ J1, nK. Using Bishop (2006, Eqn. 2.116), we have that

q0|k(x0|xk) ∝ q(x0)qk|0(xk|x0)

= N
(
x0;Σ0|k

(
(
√
αk/vk)xk +Σ−1m

)
,Σ0|k

)
,
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where Σ0|k := ((αk/vk)I+Σ−1)−1. Hence,

m0|k(xk) = Σ0|k
(
(
√
αk/vk)xk +Σ−1m

)
,

and we assume in the remainder of this section that mθ
0|k = m0|k. From the expression of q0|k(·|xk)

we can immediately derive the more general backward transitions qℓ|k(·|xk) for ℓ ∈ J1, k − 1K by
noting that

qℓ|k(xℓ|xk) =
∫
qℓ|0,k(xℓ|x0,xk)q0|k(x0|xk) dx0 .

From this, (A.3), (A.4), and the law of total expectation and covariance, it follows that qℓ|k(·|xk) =
N(mℓ|k(xk),Σℓ|k(xk)), where

mℓ|k(xk) = mℓ|0,k(m0|k(xk),xk) , Σℓ|k =
αℓ(1− αk/αℓ)2

(1− αk)2
Σ0|k + vℓ|0,kId .

On the other hand, the DDPM transitions are

pθℓ|k(·|xk) = qℓ|0,k(·|m0|k(xk),xk) = N(mℓ|0,k(m0|k(xk),xk), vℓ|0,kId), (B.1)

which shows that in this case, the true transitions and approximate ones differ only by their covariance.

Moments recursion. For k ∈ J0, nK, we let π̂ℓk denote the xk marginal of the surrogate model (3.6).
We remind the reader that π̂ℓn = N(0d, Id). The marginals satisfy the recursion

π̂ℓk(xk) =

∫
π̂ℓk|k+1(xk|xk+1)π̂

ℓ
k+1(xk+1) dxk+1 , k ∈ J0, n− 1K .

Since p̂θk(y|xk) = N (y;Amθ
0|k(xk), σ

2
yIdy) and mθ

0|k is linear in xk, it is easily seen that
π̂θℓk|k+1(·|xk+1) is the density of a Gaussian distribution. Consequently, by definition (3.5) and
the definition (A.5) of the bridge kernel, this is also the case for π̂ℓk|k+1(·|xk+1). Now assume that

π̂ℓk+1(xk+1) = N (xk+1; µ̂
ℓ
k+1, Σ̂

ℓ
k+1) , (B.2)

π̂ℓk|k+1(xk|xk+1) = N (xk;M
ℓ
k|k+1xk+1 + cℓk|k+1, Σ̂

ℓ
k|k+1) , (B.3)

where Mℓ
k|k+1 ∈ Rd×d, Σ̂ℓ

k|k+1 ∈ S
++
d , and cℓk|k+1 ∈ Rd. Using the definition (A.5) of the bridge

kernel we find that π̂ℓk = N(µ̂k, Σ̂k), where

µ̂ℓk = Mℓ
k|k+1µ̂

ℓ
k+1 + cℓk|k+1 ,

Σ̂ℓ
k = Mℓ

k|k+1Σ̂
ℓ
k+1M

⊺
k|k+1 + Σ̂ℓ

k|k+1 .

Iterating these updates until reaching k = 0, starting from the initialization µ̂ℓn = 0d and Σ̂ℓ
n = Id,

yields the desired moments of the surrogate posterior πℓ0. It now remains to show that the backward
transition π̂ℓk|k+1(·|xk+1) writes in the form (B.3) and identify Mℓ

k|k+1 and cℓk|k+1.

First, we write the approximate likelihood in the form

p̂θk(y|xk) = N (y; Âkxk + bk, σ
2
yIdy),

where
Âk = (

√
αk/vk)AΣ0|k, bk = AΣ0|kΣ

−1m .

We also denote by mθ
ℓ|k(xk) the mean of the Gaussian distribution with density given by the DDPM

transition pθℓ|k(·|xk) in (B.1). We have that

mθ
ℓk|k+1(xk+1) = Hℓk|k+1xk+1 + hℓk|k+1 ,

where

Hℓk|k+1 :=
αℓk(1− αk+1/αℓk)

vℓkvk+1
Σ0|k +

√
αk+1(1− αℓk)

vk+1
Id , (B.4)

hℓk|k+1 :=

√
αℓk(1− αk+1/αℓk)

vk+1
Σ0|kΣ

−1m . (B.5)
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Then, applying (Bishop, 2006, Eqn. 2.116), we get

π̂θℓk|k+1(xℓk |xk+1) = N (xℓk ; M̃
θ
ℓk|k+1xk+1 + c̃θℓk|k+1,Γℓk|k+1) ,

where
Γℓk|k+1 :=

(
v−1
ℓk|0,k+1I+ σ−2

y Â⊤
ℓk
Âℓk

)−1
,

M̃θ
ℓk|k+1 := v−1

ℓk|0,k+1Γℓk|k+1Hℓk|k+1 ,

c̃θℓk|k+1 := Γℓk|k+1

[
σ−2
y Â⊤

ℓk
(y − bℓk) + v−1

ℓk|0,k+1hℓk|k+1

]
.

Finally, following (3.5) we find that

Mℓ
k|k+1 =

√
αk/αℓk(1− αk+1/αk)

1− αk+1/αℓk
M̃θ

ℓk|k+1 +

√
αk+1/αk(1− αk/αℓk)

1− αk+1/αℓk
Id ,

cℓk|k+1 =

√
αk/αℓk(1− αk+1/αk)

1− αk+1/αℓk
c̃θℓk|k+1 .

B.2 EXPERIMENTAL SETUP

In the experiment described in Example 3.2, we set d = 100 and generate 500 instances of inverse
problems (A,m,Σ). For each instance, we compute the Wasserstein-2 distance between the resulting
posterior distribution π and π̂ℓ(η)0 .

Prior. The mean of the prior is sampled from a standard Gaussian distribution. To generate the
covariance Σ ∈ S++

d , we first draw a matrix G ∈ Rd×d with i.i.d. entries sampled from N(0, 1).
Then, for a better conditioning of Σ, we normalize the columns of G and set Σ = λ̄2I + GG⊤,
where λ̄2 is the mean of the squared singular values of G.

Likelihood. To sample an ill-posed problem, we generate a rank-deficient matrix A ∈ Rdy×d with
dy ≤ d. We sample uniformly dy from the interval Jd/10, dK and draw the entries of A i.i.d. from
N(0, 1). Regarding σy, we sample it uniformly from the interval [0.1, 0.5].

Finally, the resulting posterior is also Gaussian (Bishop, 2006, Eqn. 2.116)
π(x) ∝ p(y|x)p(x) ∝ N (x;my,Σy) ,

where Σy = (Σ−1 + (1/σ2
y)A

⊤A)−1 and my = Σy

(
(1/σ2

y)A
⊤y +Σ−1m

)
. The Wasserstein-2

distance between the true posterior and π̂ℓ(η)0 is thus (Olkin & Pukelsheim, 1982)

W2(π, π̂
ℓ
0)

2 = ∥my − µ̂ℓ0∥2 + tr
(
Σy + Σ̂ℓ

0 − 2(Σ
1
2
y Σ̂

ℓ
0Σ

1
2
y )

1
2

)
.

C MORE DETAILS ON MGPS

C.1 DETAILS ON THE LOSS

First, by the Data Processing inequality (Van Erven & Harremos, 2014, Example 2),
KL(λφk|k+1(·|xk+1) ∥ π̂ℓk|k+1(·|xk+1))

≤
∫

log
qk|ℓk,k+1(xk|xℓk ,xk+1)λ

φ
ℓk|k+1(xℓk)

qk|ℓk,k+1(xk|xℓk ,xk+1)π̂
θ
ℓk|k+1(xℓk |xk+1)

qk|ℓk,k+1(xk|xℓk ,xk+1)λ
φ
ℓk|k+1(xℓk) dxkdxℓk

=

∫
log

λφℓk|k+1(xℓk)

π̂θℓk|k+1(xℓk |xk+1)
qk|ℓk,k+1(xk|xℓk ,xk+1)λ

φ
ℓk|k+1(xℓk) dxkdxℓk

= KL(λφℓk|k+1 ∥ π̂
θ
ℓk|k+1(·|xk+1))

The gradient of φ 7→ KL(λφℓk|k+1 ∥ π̂
θ
ℓk|k+1(·|xk+1)) for a given xk+1 writes

∇φLk(φ;Xk+1)

= −E
[
∇φ log p̂θℓk(y|µ̂ℓk + diag(eρ̂ℓk )Z)

]
+∇φKL(λ

φ
ℓk|k+1 ∥ p

θ
ℓk|k+1(·|Xk+1)) (C.1)
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and the second term can be expressed in a closed form since both distributions are Gaussians, i.e.,

∇φKL(λ
φ
ℓk|k+1 ∥ p

θ
ℓk|k+1(·|xk+1))

= ∇φ

− d∑
j=1

ρ̂ℓk,j +
∥µ̂ℓk −mℓk|0,k+1(m

θ
0|k+1(xk+1),xk+1)∥2 +

∑d
j=1

e
2ρ̂ℓk,j

vℓk|0,k+1

2vℓk|0,k+1

 .

C.2 WARM START

In this section we describe the warm-start approach discussed in the main paper. The complete
algorithm with the warm-start procedure is given in Algorithm 3. The original version presented in
Algorithm 1 relies on first sampling approximately Xℓk , given Xk+1, from the surrogate transition
π̂θℓk|k+1(·|Xk+1) and then sampling Xk from qk|ℓk,k+1(·|Xℓk , Xk+1). In our warm-start approach,
which we apply only during the first iterations of the algorithm (see the hyperparameter settings in
Table 6), we draw inspiration from the decomposition

πk|k+1(xk|xk+1) =

∫
qk|1,k+1(xk|x1,xk+1)π1|ℓk(x1|xℓk)πℓk|k+1(xℓk |xk+1) dx1dxℓk . (C.2)

It suggests introducing a second intermediary step that involves sampling approximately from the
transition X1 ∼ π1|ℓk(·|Xℓk). Xk is then sampled from the bridge qk|1,k+1(·|X1, Xk+1).

In order to draw approximate samples from π1|ℓk(·|Xℓk) we leverage again a Gaussian variational
approximation λψ1|ℓk := N(µ̃1, diag(e2ρ̃1)), which we fit by minimizing a proxy of the KL divergence
between λψ1|ℓk and π1|ℓk(·|Xℓk) of which the gradient w.r.t. ψ := (µ̃1, ρ̃1) writes

∇ψLws
1|ℓk(ψ;Xℓk)|ψ0

:= −∇ψ

 d∑
j=1

ρ̃1,j −
∥Xℓk − (αℓk/α1)

1/2µ̃1∥2 + (αℓk/α1)
∑d
j=1 e

ρ̃2
1,j

2(1− αℓk/α1)


|ψ0

− E
[
∇ψ(µ̃1 + diag(eρ̃1)Z)⊺|ψ0

(∇x log p(y|·) + sθ1)(µ̃1 + diag(eρ̃1)Z |ψ0
)
]
. (C.3)

This expression corresponds to the gradient w.r.t. ψ of KL(λψ1|ℓk ∥ π1|ℓk(·|Xℓk)) combined with
the score approximation sθ1 of ∇x log q1 and the mild likelihood approximation ∇x log p1(y|·) of
∇x log p(y|·). Indeed, we have that

KL(λψ1|ℓk ∥ π1|ℓk(·|Xℓk)) = −Eλψ
1|ℓk

[
log p1(y|X1) + log q1(X1)

]
+

∫
log

λψ1|ℓk(x1)

qℓk|1(Xℓk |x1)
λψ1|ℓk(x1) dx1 .

The second term can be computed in a closed form and its gradient corresponds to the first term in
(C.3). As for the first term, under standard differentiability assumptions and applying the raparame-
terization trick, we find that

∇ψEλφ
1|ℓk

[
log p1(y|X1) + log q1(X1)

]
|ψ0

= ∇ψE
[(

log p1(y|·) + log q1
)
(µ̃1 + diag(eρ̃1)Z)

]
|ψ0

= E
[
∇ψ(µ̃1 + diag(eρ̃1)Z)⊺|ψ0

(∇x log p1(y|·) +∇x log q1)(µ̃1 + diag(eρ̃1)Z |ψ0
)
]
.

Plugging the previous approximations yields the second term in (C.3). The warm-start procedure
is summarized in Algorithm 2. We also use a single sample Monte Carlo estimate to perform
the optimization. Finally, at step k and given X̂ℓk , the initial parameter ψk of the variational
approximation is chosen so that

λψk1|ℓk(x1) = q1|0,ℓk(x1|mθ
0|ℓk(X̂ℓk), X̂ℓk) .
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Algorithm 2 WarmStart

1: Input: step k, samples (X̂ℓk , Xk+1), gradient steps M
2: µ̃1 ← m1|0,ℓk(m

θ
0|ℓk(X̂ℓk), X̂ℓk) , ρ̃1 ← 1

2 log v1|0,ℓk
3: for j = 1 to M do
4: Z ∼ N(0d, Id)

5: (µ̃1, ρ̃1)← OptimizerStep(∇ψL̃ws
1|ℓk(·, Z;Xℓk); µ̃1, ρ̃1)

6: end for
7: X̂1 ← µ̂1 + diag(eρ̂1)Z1 where Z1 ∼ N(0d, Id)

8: Xk ← mk|1,k+1(X̂1, Xk+1) + v
1/2
k|1,k+1Zk

9: Output: Xk, X̂1

Algorithm 3 MGPS with warm start strategy

1: Input: (ℓk)nk=1 with ℓn = n, ℓ1 = 1, gradient steps (Mk)
n−1
k=1 , warm start threshold w.

2: Xn ∼ N (0d, Id), X̂n ← Xn

3: X̂0 ←mθ
0|n(X̂n)

4: for k = n− 1 to 1 do
5: µ̂ℓk ← mℓk|0,k+1(X̂0, Xk+1), ρ̂ℓk ←

1
2 log vℓk|0,k+1

6: for j = 1 to Mk do
7: Z ∼ N(0d, Id)

8: (µ̂ℓk , ρ̂ℓk)← OptimizerStep(∇φL̃ℓk(·, Z;Xk+1); µ̂ℓk , ρ̂ℓk)
9: end for

10: Zℓk , Zk
i.i.d.∼ N(0d, Id)

11: X̂ℓk ← µ̂ℓk + diag(eρ̂ℓk )Zℓk
12: if k ≥ w then
13: (Xk, X̂1)←WarmStart(k, X̂ℓk , Xk+1,Mk)

14: X̂0 ← X̂1

15: else
16: Xk ← mk|ℓk,k+1(X̂ℓk , Xk+1) + v

1/2
k|ℓk,k+1Zk

17: X̂0 ←mθ
0|ℓk(Xℓk)

18: end if
19: end for
20: Output: X̂0

After having sampled X̃1 ∼ λ
ψ∗
k

1|ℓk , we use it to first sample Xk ∼ qk|1,k+1(·|X̃1, Xk+1) and then
initialize the next variational approximation λφℓk−1|k. The initial parameter φk−1 is set so that

λ
φk−1

ℓk−1|k(xℓk−1
) = qℓk−1|0,k(xℓk−1

|X̃1, Xk) ,

see line 5 in Algorithm 3.

C.3 DIFFERENCE WITH DPS

In this section, we detail the differences between MGPS and the DPS algorithm proposed in Chung
et al. (2023). While DPS cannot be seen as an instantition of our methodology, we highlight the main
differences by deriving a specific case of MGPS that closely resembles DPS.

We assume that ℓk = k for all k ∈ J1, n − 1K and that p(y|x) = N (y;A(x), σ2
yIdy) where

A : Rd → Rdy . We consider the same optimization procedure as in Algorithm 1 but we: (i) optimize
only the mean parameter µ̂k and fix the covariance of the variational approximation to vk|k+1Id, (ii)
perform a single stochastic optimization step.

Following that, the initialization strategy (3.9) boils down to setting

λ
φk
k|k+1(xk|xk+1) = pθk|k+1(xk|xk+1) (C.4)
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which means that the inital mean parameter is µ̂0
k := mk|0,k+1(m

θ
0|k+1(xk+1),xk+1). With this ini-

tialization φk 7→ KL(λ
φk
k|k+1(·|xk+1) ∥ pθk|k+1(·|xk+1)) has its global optimum attained at φk = µ̂0

k.
Thus, the gradient (C.1) writes ∇φkLk(φk;xk+1)|µ̂0

k
= −E

[
∇φk log p̂

θ
k(y|µ̂k +

√
vk|k+1Z)|µ̂0

k

]
.

Next, updating the parameters of the variational approximation using a single stochastic gradient
descent step with the gradient estimate−∇φk log p̂

θ
k(y|µ̂k+

√
vk|k+1Zk)|µ̂0

k
, where Zk ∼ N(0d, Id)

and step-size

γk =
ζσ2

y

∥y −A
(
mθ

0|k(µ̂
0
k +
√
vk|k+1Zk)

)
∥

yields the variational approximation

λ
φ∗
k

k|k+1(xk|xk+1) = N (xk; µ̂
0
k − ζ∇φk∥y −A

(
mθ

0|k(µ̂k +
√
vk|k+1Zk)

)
∥|µ̂0

k
, vk|k+1Id) .

In order to simply the expression we have used the fact that

−∇φk log p̂
θ
k(y|µ̂k +

√
vk|k+1Zk)|µ̂0

k

∥y −A
(
mθ

0|k(µ̂
0
k +
√
vk|k+1Zk)

)
∥

=
1

σ2
y

∇φk∥y −A
(
mθ

0|k(µ̂k +
√
vk|k+1Zk)

)
∥|µ̂0

k
.

Therefore, given Xk+1, a draw from the variational approximation in MGPS is obtained following
the update

Xk = X̃k − ζ∇xk∥y −A(mθ
0|k(xk))∥|xk=X̃′

k
, (X̃k, X̃

′
k)

i.i.d.∼ pθk|k+1(·|Xk+1) .

On the other hand, the DPS transition is given by

λDPS
k|k+1(xk|xk+1) := N (xk; µ̂

0
k − ζ∇xk+1

∥y −A(mθ
0|k+1(xk+1))∥, vk|k+1Id) .

and, hence a sample XDPS
k is drawn following

XDPS
k = X̃k − ζ∇xk+1

∥y −A(mθ
0|k+1(xk+1))∥|xk+1=Xk+1

, X̃k ∼ pθk|k+1(·|Xk+1) .

The difference between MGPS and DPS is in: (i) the diffusion step used for the denoiser (k for
MGPS, k + 1 for DPS), (ii) the sample where the gradient is evaluated.

D EXPERIMENTS

In this section we provide the implementation details on our algorithm as well as the algorithms we
benchmark against. We use the the hyperparameters recommended by the authors and tune them on
each dataset if they are not provided.

D.1 IMPLEMENTATION DETAILS AND HYPERPARAMETERS FOR MGPS

We implement Algorithm 1 with ℓk = ⌊k/2⌋ and use the Adam optimizer (Kingma & Ba, 2015)
with a learning rate of 0.03 for optimization. The number of gradient steps is adjusted based on the
complexity of the task: posterior sampling with the ImageNet DDM prior or FFHQ LDM prior
is more challenging and therefore requires additional gradient steps. Detailed hyperparameters are
provided in Table 6.

The warm-start strategy outlined in Appendix C.2 improved reconstruction plausibility and eliminated
potential artifacts. A similar effect was observed when performing multiple gradient steps (M = 20)
during the initial stages. For latent-space models, switching the intermediate step to ℓk = k for the
second half of the diffusion process has been crucial and significantly enhanced reconstruction quality
by mitigating the smoothing effect, which often removes important details. A similar strategy has
been useful for the Gaussian deblurring and motion deblurring tasks on the ImageNet dataset.

D.2 IMPLEMENTATION DETAILS OF COMPETITORS

DPS. We implemented Chung et al. (2023, Algorithm 1) and refer to Chung et al. (2023, App. D)
for the values of its hyperparameters. After tuning, we adopt γ = 0.2 for JPEG 2% and γ = 0.07 for
High Dynamic Range tasks.
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Table 6: The hyperparameters used in MGPS for the considered datasets.
Warm start Threshold (w) Diffusion steps ℓk Learning rate Gradient steps

FFHQ ✓ ⌊3n/4⌋ n ∈ {50, 100, 300} ⌊k/2⌋ 0.03 Mk =


20 if k ≥ n− 5

20 if k mod 10 = 0

2 otherwise

FFHQ (LDM) ✓ ⌊3n/4⌋ n ∈ {50, 100, 300} ℓk =

{
⌊k/2⌋ if k > ⌊n/2⌋
k otherwise

0.03 Mk =


20 if k ≥ n− 5

10 if k mod 10 = 0

5 otherwise

ImageNet ✓ ⌊3n/4⌋ n ∈ {50, 100, 300} ⌊k/2⌋ 0.03 Mk =


20 if k ≥ n− 5

10 if k mod 20 = 0

2 otherwise

Gaussian Mixture × – n = 300 ⌊k/2⌋ 0.1 Mk =


20 if k ≥ n− 5

20 if k mod 10 = 0

2 otherwise

PTB-XL (ECG) ✓ ⌊3n/4⌋ n ∈ {50, 300} ⌊k/2⌋ 0.03 Mk =


20 if k ≥ n− 5

5 if k mod 20 = 0

5 otherwise

DiffPIR. We implemented Zhu et al. (2023, Algorithm 1) to make it compatible with our existing
code base. We used the hyperparameters recommended in the official, released version2. Unfortu-
nately, we did not manage to make the algorithm converge for nonlinear problems. While the authors
give some guidelines to handle such problems (Zhu et al., 2023, Eqn. (13)), examples are missing
in the paper and the released code. Similarly, we do not run it on the motion deblur task as the
FFT-based solution provided in (Zhu et al., 2023) is only valid for circular convolution, yet we opted
for the experimental setup of Chung et al. (2023) which uses convolution with reflect padding.

DDNM. We adapted the implementation in the released code3 to our code base. Since DDNM
utilizes the pseudo-inverse of the degradation operator, we noticed that it is unstable for operators
whose SVD are prone to numerical errors, such as Gaussian Blur with wide convolution kernel.

RedDiff. We used the implementation of REDDIFF available in the released code4. On nonlin-
ear problems, for which the pseudo-inverse of the observation is not available, we initialized the
variational optimization with a sample from the standard Gaussian distribution.

PGDM. We relied on the implementation provided in REDDIFF’s code as some of its authors
are co-authors of PGDM. The implementation features a subtle difference with Song et al. (2023a,
Algorithm 1): in the last line of the algorithm, the guidance term g is multiplied by

√
αt but in the

implementation it is multiplied by
√
αt−1αt. This modification stabilizes the algorithm on most

tasks. For JPEG 2%, we found that it worsens the performance. In this case we simply multiply by√
αt, as in the original algorithm.

PSLD We implemented the PSLD algorithm provided in Rout et al. (2024, Algorithm (2)) and
used the hyperparameters provided by the authors in the publicly available implementation5.

ReSample We used the original code provided by the authors6 and modified it to expose several
hyperparameters that were not directly accessible in the released version. Specifically, we exposed the
tolerance ε and the maximum number of iterations N for solving the optimization problems related
to hard data consistency, as well as the scaling factor for the variance of the stochastic resampling
distribution γ. Our experiments revealed that the algorithm is highly sensitive to ε. We found that
setting it equal to the noise level of the inverse problem gave the best reconstruction across tasks and
noise levels. We set the maximum number of gradient iterations to N = 200 to make the algorithm
less computationally prohibitive. Finally, we tuned γ for each task but found it has less impact on the
quality of the reconstruction compared to ε.

2https://github.com/yuanzhi-zhu/DiffPIR
3https://github.com/wyhuai/DDNM
4https://github.com/NVlabs/RED-diff
5https://github.com/LituRout/PSLD
6https://github.com/soominkwon/resample
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D.2.1 RUNTIME AND MEMORY

To get the runtime and GPU memory consumption of an algorithm on a dataset, we average these
two metrics over both samples of the dataset and the considered tasks in Section 4.
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Figure 7: Runtime and memory requirement of the considered algorithms on datasets: FFHQ latent
space (1st row), FFHQ pixel space (2nd row), and ImageNet (3rd row). The left axis displays the
runtime in minutes, whereas the right axis the GPU memory requirement in Gigabytes (GB).

D.3 GAUSSIAN MIXTURES

In this section, we elaborate more on the Gaussian mixture experiment in Section 4, where we
consider a linear inverse problem with a Gaussian mixture as prior. Therefore, the likelihood is
p(y|·) : x 7→ N (y;Ax, σ2

yIdy). Recall that a Gaussian mixture with C ∈ N components, whose
weights, means, and covariances are wi > 0, mi ∈ Rd, and σ2

i Id, respectively, has the density

q(x) =

C∑
i=1

wiN (x;mi, σ
2
i Id) .

Denoiser. The denoiser is obtained via Tweedie’s formula (Robbins, 1956),
m0|k(xk) =

(
xk + (1− αk)∇ log qk(xk)

)
/
√
αk,

where the densities of the marginals (qk)nk=1 are straightforward,

qk(xk) =

∫
q(x0)qk|0(xk|x0) dx0 =

C∑
i=1

wi

∫
N (x0;mi, σ

2
i Id)qk|0(xk|x0) dx0

=

C∑
i=1

wiN (xk;
√
αkmi, (αkσ

2
i + vk)Id) .

Posterior. Furthermore, following Bishop (2006, Eqn. 2.116), the posterior can be shown to be a
Gaussian mixture

π(x) ∝ g(x)q(x) ∝
C∑
i=1

w̄iN (x; m̄i, Σ̄i) ,
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with new weights, covariances, and means given by
w̄i = wiN (y;Ami, σ

2
yIdy + σ2

iAA⊤) ,

Σ̄i =
(
(1/σ2

i )Id + (1/σ2
y)A

⊤A
)−1

,

m̄i = Σ̄i

(
(1/σ2

y)A
⊤y + (1/σ2

i )mi

)
,

where the weights are un-normalized.

Experimental setup. We consider two setups where d ∈ {20, 200} and generate Gaussian mixtures
of C = 25 components with means (mi)

C
i=1 = {(8i, 8j, . . . , 8i, 8j) ∈ Rd : (i, j) ∈ J−2, 2K2}, unit

covariances, and weights wi drawn from a uniform distribution on [0, 1] then normalized to sum
to 1. The linear inverse problem (y,A) is generated by first drawing the matrix A ∈ R1×d with
entries i.i.d. from N(0, 1), then sampling x∗ from the prior q and finally computing y = Ax∗ + σyε
with ε ∼ N(0, 1) to get the observation. The standard deviation of the inverse problem is fixed to
σy = 0.05 across all problem instances.

To assess the performance of each algorithm, we draw 2000 samples and compare against 2000
samples from the true posterior distribution using the Sliced Wasserstein (SW) distance by averaging
over 104 slices. In Table 1, we report the average SW and the 95% confidence interval over 100
replicates.

D.4 EXTENDED IMAGE EXPERIMENTS

To strengthen our conclusions and calculate the FID, we reran MGPS and the two closest competitors
on 1000 images for the following five tasks: half mask, JPEG, motion deblur, nonlinear deblur, and
high dynamic range, using the three priors (FFHQ, ImageNet, FFHQ-LDM). The Table 7 shows
that MGPS significantly outperforms the other competitors, including for the FID, with no significant
change in other metrics compared to what we calculated on a smaller dataset.

We extend, in Tables 8 and 9, the results in Table 2 by including MGPS with n = 50 and n = 100. In
the setting n = 100, the runtime of MGPS is twice lower than that of DPS, PGDM and comparable
to that of DIFFPIR, DDNM and REDDIFF, see Figure 7. It is also outperforming them on most of the
tasks, especially the nonlinear ones, as is seen in the table below. In the setting n = 50, MGPS has
the lowest runtime among all the methods while maintaining competitive performance.

Finally, in Appendix D.6, we present sample reconstructions on the various tasks. For each algorithm,
we generate five samples and select the four most visually appealing ones. Completely black or white
images correspond to failure cases of DPS.

D.5 ECG EXPERIMENTS

D.5.1 IMPLEMENTATION DETAILS

PTB-XL dataset We use 12-lead ECGs at a sampling frequency of 100 Hz from the PTB-XL dataset
(Wagner et al., 2020). For both training and generation, we do not use the augmented limb leads aVL,
aVR and aVF as they can be obtained with the following relations: aVL=(I-III)/2, aVF=(II+III)/2
and aVR=-(I+II)/2. This leads to inputs of shape T × 9 instead of T × 12 (where T is the length
of the signal). For evaluation metrics, we reconstruct the augmented limb leads. For the MB task,
following Alcaraz & Strodthoff (2022), we use 2.56-second ECG random crops, hence the inputs
are of shape 256× 9. For the ML task, we use the full 10-second ECGs and pad them into a tensor
of shape 1024× 9. Table 11 summarizes the input shapes for models and algorithms for each task.
Table 12 summarizes the distribution of train/val/test splits and the number of cardiac conditions
(RBBB, LBBB, AF, SB) per split. Note that for posterior sampling, we only use the test set, and for
both training and sampling we never use the cardiac condition.

Diffusion model Following Alcaraz & Strodthoff (2023; 2022), we used Structured State Space
Diffusion (SSSD) models (Gu et al., 2022; Goel et al., 2022). SSSD generates a sequence u(t) with
the following differential equation denpending on the input seuqnece x(t) and a hidden state h(t):

h′(t) = Ah(t) +Bx(t) (D.1)
u(t) = Ch(t) +Dx(t) , (D.2)
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Table 7: Mean and confidence intervals of LPIPS/PSNR/SSIM values and FID value for various linear and
nonlinear imaging tasks on 1k images for the 3 priors. Best is in bold.

FFHQ ImageNet FFHQ-LDM
Metric MGPS DDNM DIFFPIR MGPS DDNM DIFFPIR MGPS RESAMPLE

Half mask

FID 27.0 38.6 45.2 40.0 50.0 57.0 49.5 66.6
LPIPS 0.19± 0.00 0.23± 0.00 0.25± 0.00 0.30± 0.00 0.38± 0.01 0.40± 0.01 0.26± 0.00 0.30± 0.00
PNSR 15.9± 0.2 16.3± 0.2 16.1± 0.3 15.0± 0.1 16.0± 0.1 15.8± 0.1 15.6± 0.1 15.7± 0.1
SSIM 0.70± 0.00 0.74± 0.00 0.72± 0.01 0.63± 0.00 0.68± 0.01 0.67± 0.01 0.69± 0.00 0.67± 0.00

MGPS DPS DIFFPIR MGPS DPS DIFFPIR MGPS RESAMPLE

Motion deblur

FID 29.7 36.7 77.0 35.3 55.0 87.3 44.6 51.8
LPIPS 0.12± 0.00 0.17± 0.00 0.22± 0.00 0.20± 0.01 0.40± 0.01 0.39± 0.01 0.19± 0.00 0.20± 0.00
PNSR 26.7± 0.1 24.1± 0.1 27.4± 0.1 24.4± 0.1 21.4± 0.1 24.2± 0.1 26.4± 0.1 26.7± 0.1
SSIM 0.77± 0.00 0.70± 0.01 0.71± 0.00 0.67± 0.01 0.55± 0.01 0.61± 0.00 0.76± 0.00 0.72± 0.00

JPEG (QF = 2)

FID 31.6 87.6 109 61.4 128.8 92.8 45.0 65.3
LPIPS 0.15± 0.00 0.37± 0.00 0.33± 0.01 0.40± 0.01 0.60± 0.01 0.61± 0.00 0.21± 0.00 0.26± 0.01
PNSR 25.2± 0.1 19.0± 0.2 24.5± 0.1 22.2± 0.1 16.7± 0.1 22.2± 0.1 24.6± 0.1 24.8± 0.1
SSIM 0.73± 0.01 0.55± 0.02 0.70± 0.00 0.60± 0.01 0.41± 0.02 0.60± 0.01 0.71± 0.00 0.66± 0.01

Nonlinear deblur

FID 50.8 164 88.4 113 272 112 69.2 71.5
LPIPS 0.23± 0.01 0.51± 0.02 0.68± 0.01 0.43± 0.01 0.83± 0.01 0.66± 0.01 0.26± 0.01 0.32± 0.01
PNSR 24.3± 0.2 16.2± 0.5 21.9± 0.1 22.2± 0.2 9.9± 0.4 20.7± 0.2 23.9± 0.1 24.2± 0.1
SSIM 0.70± 0.01 0.45± 0.02 0.42± 0.01 0.58± 0.01 0.41± 0.01 0.241± 0.01 0.69± 0.01 0.67± 0.01

High dynamic range

FID 20.9 153 47.5 20.2 316 35.7 44.2 38.7
LPIPS 0.08± 0.01 0.40± 0.04 0.20± 0.01 0.11± 0.01 0.83± 0.02 0.20± 0.01 0.14± 0.00 0.12± 0.00
PNSR 27.0± 0.1 18.7± 0.2 21.7± 0.1 26.3± 0.2 9.9± 0.2 21.9± 0.1 25.5± 0.1 26.0± 0.1
SSIM 0.83± 0.01 0.55± 0.04 0.72± 0.01 0.83± 0.01 0.23± 0.02 0.71± 0.01 0.80± 0.01 0.83± 0.01

where A,B,C,D are transition matrices. We use the SSSDSA (Alcaraz & Strodthoff, 2022) (also
denoted as Sashimi (Goel et al., 2022)) architecture publicly available78. We parametrize the matrix
A = Λ− pp∗ where p is a vector and Λ is a diagonal matrix. This parametrization with facilitates
the control of the spectrum of A to enforce stability (negative real part of eigenvalues). We use a
multi-scale architecture, with a stack of residual S4 blocks. The top tier processes the raw audio
signal at its original sampling rate, while lower tiers process downsampled versions of the input signal.
The outputs of the lower tiers are upsampled with up-pooling and down-pooling operations and
combined with the input to the upper tier to provide a stronger conditioning signal. Hyper-parameters
are described in table 13. The selected model is the model of the last epoch. Training time is 30 hours
for 2.5 seconds ECGs, 42 hours for 10 seconds ECGs.

Algorithm parameters We use the same parameters as described in table 6 for MGPS and the
implementation described in appendix D.2 for competitors. Since we had to run the experiments over
2k samples, we set the number of diffusion steps such that the runtime approximates 30 seconds for
generating 10 samples. This leads to the parameters shown in table 14. For the ML experiment, we
also tested MGPS with 300 diffusion steps, which resulted in a runtime of 5 minutes and 30 seconds
per batch of 10 samples. The results improved, but we already outperform competitors with just 50
diffusion steps and a 30-second runtime.

Evaluation metrics For the MB task, for each observation, we generate 10 samples - instead of
100 as in in (Alcaraz & Strodthoff, 2022). We then compute the Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE) between each generated sample and the ground-truth. The final
score is the average of these errors over the 10 generated samples. We report the confidence intervals
over the test set in table 4 and table 16.

For the ML task, we use a classifier trained to detect four cardiac conditions: Right Bundle Branch
Block (RBBB), Left Bundle Branch Block (LBBB), Atrial Fibrillation (AF), and Sinus Bradycardia

7https://github.com/AI4HealthUOL/SSSD
8https://github.com/albertfgu/diffwave-sashimi/tree/master
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Table 8: Mean LPIPS/PSNR/SSIM values for various linear and nonlinear imaging tasks on the
FFHQ 256× 256 dataset. Best is in bold and second best is underlined.

Task MGPS50 MGPS100 MGPS300 DPS PGDM DDNM DIFFPIR REDDIFF

LPIPS ↓
SR (×4) 0.13 0.10 0.09 0.09 0.33 0.14 0.13 0.36
SR (×16) 0.27 0.26 0.26 0.24 0.44 0.30 0.28 0.51
Box inpainting 0.16 0.12 0.10 0.19 0.17 0.12 0.18 0.19
Half mask 0.24 0.22 0.20 0.24 0.26 0.22 0.23 0.28
Gaussian Deblur 0.21 0.18 0.15 0.16 0.87 0.19 0.12 0.26
Motion Deblur 0.19 0.15 0.13 0.16 − − − 0.21

JPEG (QF = 2) 0.20 0.17 0.16 0.39 1.10 − − 0.32
Phase retrieval 0.20 0.14 0.11 0.46 − − − 0.25
Nonlinear deblur 0.23 0.23 0.23 0.52 − − − 0.66
High dynamic range 0.13 0.09 0.07 0.49 − − − 0.20

PSNR ↑
SR (×4) 27.83 27.79 27.79 28.24 23.34 29.52 27.17 27.25
SR (×16) 20.45 20.34 20.22 20.67 17.65 22.43 20.75 21.91
Box inpainting 21.55 22.22 22.68 18.39 21.13 22.35 21.96 21.79
Half mask 15.10 15.32 15.54 14.82 16.03 16.16 15.17 16.21
Gaussian Deblur 25.09 25.19 25.89 24.20 13.36 26.69 25.89 26.72
Motion Deblur 26.07 26.64 26.48 24.24 − − − 27.58

JPEG (QF = 2) 25.00 25.23 24.94 18.50 12.76 − − 24.42
Phase retrieval 24.20 26.60 27.25 14.87 − − − 24.85
Nonlinear deblur 24.16 24.21 24.37 15.89 − − − 21.97
High dynamic range 24.77 26.07 27.74 16.83 − − − 21.25

SSIM ↑
SR (×4) 0.81 0.80 0.79 0.81 0.50 0.85 0.77 0.70
SR (×16) 0.58 0.57 0.55 0.59 0.38 0.67 0.60 0.62
Box inpainting 0.80 0.81 0.82 0.76 0.70 0.83 0.80 0.70
Half mask 0.69 0.70 0.71 0.66 0.56 0.73 0.67 0.65
Gaussian Deblur 0.71 0.73 0.75 0.69 0.14 0.77 0.73 0.76
Motion Deblur 0.77 0.78 0.77 0.71 − − − 0.71

JPEG (QF = 2) 0.75 0.74 0.73 0.51 12.76 − − 0.71
Phase retrieval 0.74 0.78 0.79 0.43 − − − 0.61
Nonlinear deblur 0.70 0.70 0.69 0.46 − − − 0.42
High dynamic range 0.79 0.81 0.86 0.48 − − − 0.71

(SB) on the PTB-XL dataset. We follow the XRESNET1D50 described in (Strodthoff et al., 2020)
with hyper-parameters reported in table 15. We apply the classifier to the ground-truth ECG of the test
set and to the samples generated from lead I. As in the MB task, for each observation, 10 samples are
generated. The output of the classifier is averaged over these 10 samples. For each cardiac condition,
we compute balanced accuracy to account for class imbalance (see table 12). The classification
threshold is selected using PTB-XL validation-set.

D.5.2 ADDITIONAL RESULTS

Discussion In table 4, we demonstrated that most posterior sampling algorithms outperform the
trained diffusion model for the missing block reconstruction task. This result is particularly interesting
as it suggests that training a diffusion model (which takes several days) is not necessary for this
task. However, when Alcaraz & Strodthoff (2023) trained the model on the reconstruction of random
missing blocks (RMB), where 50% of each lead is independently removed, the model outperformed
all posterior sampling algorithms on the MB task. We report in table 16 the results of the top
two algorithms, as well as the model trained on the MB task and the RMB task. The significant
improvement between RMB and MB can be seen as an enhancement due to data augmentation.

Generated samples

D.6 SAMPLE IMAGES

While it may appear that some of the methods underperform on some tasks/images compared
to the original publications, for instance Figure 14 and Figure 16, they still produce competitive
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Table 9: Mean LPIPS/PSNR/SSIM values for various linear and nonlinear imaging tasks on the
IMAGENET 256× 256 dataset. Best is in bold and second best is underlined.

Task MGPS50 MGPS100 MGPS300 DPS PGDM DDNM DIFFPIR REDDIFF

LPIPS ↓
SR (×4) 0.36 0.33 0.30 0.41 0.78 0.34 0.36 0.56
SR (×16) 0.58 0.55 0.53 0.50 0.60 0.70 0.63 0.83
Box inpainting 0.31 0.26 0.22 0.34 0.29 0.28 0.28 0.36
Half mask 0.39 0.34 0.29 0.44 0.38 0.38 0.35 0.44
Gaussian Deblur 0.35 0.29 0.32 0.35 1.00 0.45 0.29 0.52
Motion Deblur 0.35 0.25 0.22 0.39 − − − 0.40
JPEG (QF = 2) 0.50 0.46 0.42 0.63 1.31 − − 0.51
Phase retrieval 0.54 0.52 0.47 0.62 − − − 0.60
Nonlinear deblur 0.49 0.47 0.44 0.88 − − − 0.67
High dynamic range 0.22 0.15 0.10 0.85 − − − 0.21

PSNR ↑
SR (×4) 24.68 24.70 24.77 23.52 15.67 25.55 24.26 24.24
SR (×16) 18.56 18.42 18.04 18.22 15.80 20.43 19.37 19.95
Box inpainting 17.52 17.95 18.25 14.34 17.35 20.08 19.77 18.90
Half mask 14.98 15.14 15.60 14.65 14.36 17.06 15.79 16.96
Gaussian Deblur 22.56 21.96 20.10 21.20 9.93 23.29 22.10 23.27
Motion Deblur 23.91 25.03 24.50 21.59 − − − 24.43

JPEG (QF = 2) 21.96 22.17 22.44 16.11 5.29 − − 22.15
Phase retrieval 16.36 16.94 18.10 14.40 − − − 15.78
Nonlinear deblur 21.89 22.23 22.36 8.49 − − − 20.76
High dynamic range 23.93 25.64 27.04 9.32 − − − 22.88

SSIM ↑
SR (×4) 0.65 0.66 0.66 0.60 0.23 0.70 0.63 0.61
SR (×16) 0.41 0.38 0.35 0.40 0.24 0.50 0.46 0.47
Box inpainting 0.71 0.74 0.76 0.70 0.62 0.78 0.74 0.67
Half mask 0.61 0.63 0.65 0.55 0.53 0.69 0.63 0.62
Gaussian Deblur 0.56 0.53 0.44 0.51 0.07 0.60 0.51 0.57
Motion Deblur 0.64 0.69 0.65 0.55 − − − 0.60

JPEG (QF = 2) 0.59 0.60 0.60 0.39 0.01 − − 0.59
Phase retrieval 0.37 0.40 0.43 0.29 − − − 0.26
Nonlinear deblur 0.57 0.58 0.58 0.24 − − − 0.41
High dynamic range 0.75 0.81 0.84 0.25 − − − 0.73

Table 10: Mean LPIPS/PSNR/SSIM values for various linear and nonlinear imaging tasks on FFHQ 256× 256
dataset with LDM prior. Best is in bold and second best is underlined.

MGPS RESAMPLE PSLD MGPS RESAMPLE PSLD MGPS RESAMPLE PSLD

Task LPIPS ↓ PSNR ↑ SSIM ↑
SR (×4) 0.11 0.20 0.22 28.46 26.08 25.53 0.83 0.69 0.70
SR (×16) 0.30 0.36 0.35 20.64 21.09 21.42 0.57 0.56 0.63
Box inpainting 0.16 0.22 0.26 22.94 18.80 20.39 0.79 0.75 0.66
Half mask 0.25 0.30 0.31 15.11 14.59 14.75 0.69 0.67 0.61
Gaussian Deblur 0.16 0.15 0.35 27.57 27.44 19.95 0.79 0.75 0.47
Motion Deblur 0.18 0.19 0.41 26.49 26.85 18.14 0.77 0.72 0.39

JPEG (QF = 2) 0.20 0.26 − 24.75 24.33 − 0.72 0.67 −
Phase retrieval 0.34 0.41 − 22.21 19.05 − 0.62 0.47 −
Nonlinear deblur 0.26 0.30 − 23.79 24.44 − 0.70 0.68 −
High dynamic range 0.15 0.15 − 25.17 25.42 − 0.79 0.81 −
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Figure 8: Missing block imputation with MGPS on 2.56s 12-lead ECG. Ground-truth in blue, 10%–90%
quantile range in green, random sample in orange.
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Table 11: ECG size and input-shape per task.

Task ECG size (seconds) Total leads Used leads Input shape

MB 2,56 12 I, II, III, V1–6 256× 9
ML 10 12 I, II, III, V1–6 1024× 9

Table 12: PTB-XL dataset description.

Split All RBBB LBBB AF SB

Train 17,403 432 428 1211 503
Val 2,183 55 54 151 64
Test 2,203 54 54 152 64
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Figure 9: Missing lead reconstruction from lead I on 10s 12-lead Normal Sinus Rythm (NSR) ECGs. Ground-
truth in blue, 10%–90% quantile range in green, random sample in orange.

reconstructions on others; see for example Figure 15, Figure 18, and Figure 23. Similar patterns are
also displayed in Zhang et al. (2023, Figure 10) and Liu et al. (2023, Figure 9). With that being said,
we highlight that these discrepancies appear more frequently on the ImageNet dataset than the FFHQ
one. This can be explained by the fact that ImageNet is notoriously challenging due to its diversity,
encompassing 1000 classes. This also seems to happen on one of the most difficult tasks, namely the
half mask one.
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Table 13: ECG diffusion generative model hyper-parameters.

Hyper-parameter Value

Residual layers 4
Pooling factor [1, 2, 2]
Feature expansion 2
Diffusion embedding dim. 1 128
Diffusion embedding dim. 2 512
Diffusion embedding dim. 3 512
Diffusion steps 1000
Optimizer Adam
Number of iterations 150k
Loss function MSE
Learning rate 0.002
Batch size 128
Number of parameters 16 millions

Table 14: Number of diffusion steps used in posterior sampling algorithms for ECG tasks.

MGPS50 MGPS300 DPS PGDM DDNM DIFFPIR REDDIFF
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Figure 10: Missing lead reconstruction from lead I on 10s 12-lead Right Bundle Branch Block (RBBB) ECGs.
Ground-truth in blue, 10%–90% quantile range in green, random sample in orange.

Table 15: XRESNET1D50 downstream classifier hyper-parameters.

Hyper-parameter Value

Blocks 4
Layers per block [3, 4, 6, 3]
Expansion 4
Stride 1
Optimizer Adam
Learning rate 0.001
Batch size 0.001
Epochs 100
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Table 16: MAE and RMSE for missing block task on the PTB-XL dataset.

Metric MGPS DDNM TRAINEDDIFF-MB TRAINEDDIFF-RMB

MAE 0.111± 2e−3 0.103± 2e−3 0.116± 2e−3 0.0879± 2e−3
RMSE 0.225± 4e−3 0.224± 4e−3 0.266± 3e−3 0.217± 6e−3
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Figure 11: Missing lead reconstruction from lead I on 10s 12-lead Left Bundle Branch Block (LBBB) ECGs.
Ground-truth in blue, 10%–90% quantile range in green, random sample in orange.
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Figure 12: Missing lead reconstruction from lead I on 10s 12-lead Atrial Fibrillation (AF) ECGs. Ground-truth
in blue, 10%–90% quantile range in green, random sample in orange.
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Figure 13: Missing lead reconstruction from lead I on 10s 12-lead Sinus Bradycardia (SB) ECGs. Ground-truth
in blue, 10%–90% quantile range in green, random sample in orange.
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Figure 14: Sample reconstructions with box mask on ImageNet dataset.
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Figure 15: Sample reconstructions with half mask on FFHQ dataset.

33



Published as a conference paper at ICLR 2025

Figure 16: Sample reconstructions with half mask on ImageNet dataset.
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Figure 17: Sample reconstructions on motion deblurring task.
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Figure 18: Sample reconstructions on Gaussian deblurring task.
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Figure 19: Sample reconstructions on phase retrieval task.
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Figure 20: Sample reconstructions on JPEG 2 task.
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Figure 21: Sample reconstructions on high dynamic range task.
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Figure 22: Sample reconstructions on SR (16×) task.
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Figure 23: More sample reconstructions on SR (16×) task.
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(a) JPEG 2

(b) Outpainting with half mask

(c) SR 4×

Figure 24: Sample reconstructions with latent diffusion models on FFHQ dataset.
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Figure 25: More sample reconstructions with MGPS on the expand task.
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Figure 26: More sample reconstructions with MGPS and half mask.
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Figure 27: More sample reconstructions with MGPS and half mask.
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