
A Appendix486

A.1 Method 2487

In Method 2 the node features are not learned end-to-end by the agent, but instead generated as part488

of the environment; see also Figure 6. To this end, we employ self-supervised learning to generate489

a superpixel embedding, as explained in Section A.2. In case of a weak reward function, we find490

Method 2 preferable over Method 1 which jointly learns the node features. To generate a well491

performing agent with our method, the reward signal needs to be somewhat close to the "true" metric492

when evaluating a proposed segmentation. If it is close enough, e.g. by direct supervision or fairly493

specific priors such as the ones we use for the fruitfly dataset, we can use a weak state representation494

and learn how to extract the node features jointly (Method 1). Conversely, if the reward does not fit495

the "true" metric well, it is beneficial to remove the complexity of joint learning and provide a more496

informative state representation (Method 2).497

Figure 6: Interaction of the agent with the environment for Method 2: (a) shows the state which is
composed of the superpixel graph where each node comes with a feature vector encoding features
for the respective superpixel. This features are obtained by accumulation of pre-trained pixel-level
features per superpixel; Given the state, the agent (b) predicts edge weights on the graph; These edge
weights serve as the actions (c); the actions are processed by a graph partitioning algorithm which is
part of the environment (d); (e) shows the rewards, based on the resulting segmentation. Rewards are
obtained using a set of predefined and data dependent rules. The rewards are given back to the agent
and the episode terminates.

A.2 Self-supervised pretraining498

For self-supervised pre-training, we use a method based on the contrastive loss formulation of [49].499

Consider a graph G = (V,E), where the nodes in V = {1, 2, ..., n} correspond to the individual500

superpixels and the edges in E = {(i, j)|i 6= jandi, j ∈ V } connect nodes with adjacent superpixels.501

In addition, consider edge weights W ∈ R|E| associated with every edge. Here, we infer the weights502

from pixel-wise boundary probability predictions and normalize the weights such that
∑
w∈W w = 1503

holds. We train a 2D U-Net to predict embeddings for each node in V by pulling together pixel504

embeddings that belong to the same superpixel and pushing apart pixel embeddings for adjacent505

superpixels. The intensity of the push force is scaled by the weight of the respective edge. With pixel506

embeddings xn and node embeddings fi = 1
mi

∑
k∈si xk, where mi is the mass of the superpixel for507

node i and si is the set of indices for all pixels of the corresponding superpixel, and in accordance508

14

Figure 7: Training setup of the feature extractor. The input is a concatenation of the raw data and a
smoothed edge map of the superpixels. The superpixel over-segmentation is used in the loss again as
the supervision for learning the embedding space.

with [49] we formulate the loss as509

Lvar =
1

|N |

|N |∑
i=1

1

mi

mi∑
n=1

[d(fi, xn)− δv]2+ (12)

Ldist =
|E|∑

(i,j)∈E

w(i,j) [2δd − d(fi, fj)]
2
+ (13)

Lfeat = Lvar + Ldist (14)

Here [·]+ refers to selecting the max value from the argument and 0. The forces are hinged by the510

distance limits δvar and δdist. d(·) refers to the distance function in the embedding space. Since the511

feature extractor is trained self-supervised, we give it a smooth edge map of the superpixels as well512

as the raw data as an input, see Figure 7.513

The training of the feature extractor happens prior to training the agent, see also Section A.1.514

A.3 Reward Generation515

We seek to express the rewards based on prior rules derived from topology, shape, texture, etc. Rules516

are typically formulated per-object, Section A.8 describes the object-to-sub-graph reward mapping.517

The reward function is part of the environment and the critic learns to approximate it via Q-learning,518

enabling the use of non-differentiable functions.519

This approach can also be extended to semantic instance segmentation where in addition to the520

instance labeling a semantic label is to be predicted. To this end, each predicted object is softly521

assigned to one of the possible classes and the reward is generated specifically for the predicted class.522

We make use of this extension by separating the objects into a foreground and background class in523

our experiments.524

In addition to the sub-graph rewards our approach can also be extended to global rewards by global525

pooling of the output of the critic GNN and adding the squared difference of global action value and526

reward to Equation 4. Alternatively, the global reward can be distributed onto the sub-graph rewards527

via a weighted sum of sub-graph reward and global reward. In the second approach a different global528

reward can be specified per class in the case of the semantic instance segmentation formulation. We529

make use of the per class global reward to encode a reward for the correct number of predicted objects530

in our experiments.531

The biggest challenge in designing the reward function is to avoid local optima. Since the reward532

is derived from each predicted object, we define the reward by extracting shape features, position,533

orientation and size of objects and compare them with our expectation of the true object’s features.534

This similarity score should be monotonically increasing as the objects fit our expectation better.535

All used similarity functions are to a certain extend linear, however an exponential reward function536

can speed up learning significantly. Consider an object level reward r ∈ [0, 1], which is linear. We537

15

Figure 8: Object level rewards. We accumulate edge rewards over each object where we consider all
edges that have at least one node within the respective object. E.g. for o1 we consider all edges that
are covered by the light blue object as well as all the red "unmerge" edges.

calculate the exponential reward by538

rexp(r) =
exp(rθ)

exp(θ)
(15)

where the factor θ determines the range of the gradient in the output. We also find that it is better539

to compute the reward as a "distance function" of all relevant features rather than decomposing it540

into the features and simply summing up the corresponding rewards. In our experiments the latter541

approach behaved quite unpredictably and often generated local optima which the agent could not542

escape.543

A.4 Object level rewards544

We have tested generating the rewards based directly on the object scores instead of using the subgraph545

decomposition described in Section A.8. Since rewards are mainly derived from the features of the546

predicted objects it seems reasonable to formulate the supervision signal based directly on those547

objects. To this end we calculate a scalar reward per object as sketched in Figure 8. In this setting, the548

agent needs the information about the predicted objects when it learns from its own actions, which is549

in contradiction to the usual RL paradigm since the critic needs the predicted objects to predict the550

action values. However, the critic is not used during exploration where the objects for the explored551

actions are already available and can be used to predict action values. In this case, the critic uses a552

second GNN to predict the per-object action values. It is applied to an object’s subgraph, which is553

composed of all edges that have at least one node in common with the respective object. The graph554

convolutions are followed by a global pooling operation which yields the scalar action value. This555

GNN replaces the MLPs used in the case of the reward subgraph decomposition. After extensive556

testing, we found that this approach is always inferior to the subgraph decomposition.557

A.5 Impact of different feature space capacities558

In Table 2 we compare the performance of our method, using different numbers of dimensions in559

the space of the learned node features (the number of channels in the output of the feature extractor560

U-Net). We find that the reduced capacity of small feature spaces helps the agent perform better.561

Here we train and evaluate on the fruit fly embryo dataset.562

16

Table 2: Quantitative evaluation of our method using different feature space dimensionality. We use
Symmetric Best Dice as well as the Variation of Information metric to compare all results on the
validation set.

n feature channels SBD VI merge VI split

4 0.518± 0.018 0.889± 0.081 0.823± 0.135
12 0.493± 0.026 0.821± 0.158 1.241± 0.220
16 0.482± 0.020 0.838± 0.118 1.374± 0.357

A.6 Random seed evaluation563

Figure 9 shows the training evolution of the average subgraph reward from different random seeds.564

The model performance depends on the chosen seed and for the final comparisons we select the runs565

based on the best score. The seed is generated randomly on each run.

(a) Setup 1. Features of size 16. 10 seeds. (b) Setup 2. Features of size 12. 8 seeds.

Figure 9: Running the same setup from different random seeds reveals a stable stride for high rewards.
We select the model for comparison based on the best achieved reward (magenta line in Fig. 9a and
green line in Fig. 9b) which makes the training/validation process completely independent on any
ground truth annotations.

566

A.7 Gaussian weighting scheme567

Figure 10 shows the Gaussian weighting scheme which was used to generate the rewards for the568

fruitfly embryo data. It can be seen as a very approximate semantic segmentation and serves the569

purpose of generating a reward maximum at the very approximate segmentation without using it.570

A.8 Randomly generated subgraphs571

We select subgraphs using Algorithm 1. Subgraphs are selected randomly starting from random572

nodes and continuously adding edges to the subgraph until the desired size is reached. The size of the573

subgraph is defined by the number of edges in the graph. Algorithm 1 selects edges such that the574

subgraphs are connected and such that their density is high (low number of nodes in the subgraph).575

A.9 Multistep Reinforcement Learning576

We tested several methods that use multiple steps within one episode. In this formulation we predict577

the changes starting from an initial state rather than predicting absolute values for the edge weights.578

For example, we can start from a state defined by edge weights derived from a boundary map. Given579

that this state should be somewhat close to the desired state we expect that a few small steps within580

17

Figure 10: Weighting scheme for object rewards and merge affinity rewards, roughly encoding
foreground location. Left: weights for object rewards in green and for merge affinity rewards in red,
both are Gaussian and concentric. Right: an example of an underlying real image.

Algorithm 1: Dense subgraphs in a rag
Data: G = (V,E), l
Result: subgraphs by sets of l edges

1 Initialization:SG = ∅;
2 while E\SG 6= ∅ do
3 pq = PriorityQueue;
4 prio = 0;
5 n_draws = 0;
6 sg = ∅;
7 sgvtx = ∅;
8 i, j = (ij) s.t. (ij) ∈ E\SG;
9 pq.push(i, prio);

10 pq.push(j, prio);
11 sg = sg ∪ (ij);
12 sgvtx = sgvtx ∪ i;
13 sgvtx = sgvtx ∪ j;
14 while |sg| < l do
15 n, n_prio = pq.pop();
16 n_draws ++;
17 adj = {(nj)|∃(nj) ∈ E and ∃j ∈ sgvtx};
18 forall (nj) ∈ adj do
19 sg = sg ∪ (nj);
20 n_draws = 0;
21 if |adj| < deg(n) then
22 n_prio -= (|adj| − 1);
23 pq.push(n, n_prio);
24 if pq.size() ≤ n_draws & ∃j|(nj) ∈ E, j 6∈ sgvtx then
25 j ∈ {j|(nj) ∈ E, j 6∈ sgvtx};
26 prio ++;
27 pq.push(j, prio);
28 sg = sg ∪ (nj));
29 sgvtx = sgvtx ∪ j;
30 SG = sg ∪ SG
31 return SG

18

one episode should be sufficient. In our experiments, we have typically used three steps per episode581

and used actions that can change the weight per edge by the values in [−0.1, 0.1].582

This approach generates an action space that is exponentially larger than in the stateless formulation.583

A priori this setup might still be more stable because it is not possible to diverge from a given solution584

so fast due to the incremental changes per step. Also consider the linearity of the paths to the optimal585

state, which can be generated by giving a high quality reward at every step and not only for the final586

segmentation. Take for example an initial edge with weight 0.3 and its respective ground truth edge587

with value 0. We can give a reward that mirrors the correct confidence of the action, which in this588

case would be the negative action value r = −a. This allows us to set the discount factor of the RL589

setup to 0, because the path to the correct edge weight will be linear and the correct direction will be590

encoded in the reward at every step. Therefore the rewards for the following steps are not needed.591

Setting the discount to 0 generates a problem of equal size as the single step RL method, with the592

disadvantage that the ground truth direction of the path for each edge must be known. Therefore this593

setup is limited to fully supervised rewards only.594

Another possible setup is to give a constant reward at each non terminal step and an unsupervised595

one at the terminal step with a discount factor γ > 0. We tested this setup extensively against the596

stateless setup and found that it was not competitive.597

A.10 Hyper-parameters and network details598

For U-Net, we use the standard implementation with features maps size of 32, 64, and 128. The599

backbone for both actor and critic are GNNs. In addition, the critic employs different MLPs, one for600

each subgraph size. Most of the hyperparameters for actor, critic and U-Net are chosen empirically601

and given in the configuration files in the main repository.602

The source code with brief instructions is posted on Anonymized GitHub 1. The dataset is temporarily603

available on Google Cloud 2.604

A.11 Direct supervision605

The aim of this project has been to find a way to train a segmentation algorithm from not-necessarily-606

differentiable rules, priors and expectations for the segmented objects. Looking ahead to the next607

stages, we have also qualitatively evaluated the behavior of our setup in case direct supervision such608

as fully segmented images is available. We tried both full supervision (Fig. 11) and mixed supervision,609

using one fully segmented image and also the prior rules (Fig. 12). Under full supervision with a set610

of ground-truth edge weights, we compute the the Dice Score [50] of the predicted edge weights a611

and the ground-truth â for each sub-graph and use it as reward. We find this function to be robust by612

class imbalance present in our setup. In both cases, the agent learns to segment the circles correctly,613

demonstrating fast and robust convergence. Note, how learned pixel features converge to a state614

which strongly resembles a semantic segmentation of the image.615

1https://anonymous.4open.science/r/nips_paper_rlforseg/
2https://drive.google.com/file/d/1mHzOuIcLmZP3o4Z_F53bIHzAe6le9vSS

19

https://anonymous.4open.science/r/nips_paper_rlforseg/
https://drive.google.com/file/d/1mHzOuIcLmZP3o4Z_F53bIHzAe6le9vSS

Figure 11: An example of a fully supervised prediction on the "Circles" dataset. This was obtained
with use of the Dice score over subgraphs as a fully supervised reward using Method 1. We initialized
the the feature extractor U-Net with the pretrained embeddings from Subsection 4.1. It is interesting
to see how the features for the circles are emphasized a lot more after training.

Figure 12: An example for prediction with mixed supervision on the "Circles" dataset. The reward
was defined as follows: we use for all but for one image the unsupervised CHT reward and for one
image we make use of ground truth and the Dice score as the reward. We find that this mixed reward
setting leads to improved performance compared to the unsupervised CHT reward.

20

