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Reconstructing, Understanding, and Analyzing Relief-Type
Cultural Heritage from a Single Old Photo

Figure 1: We propose a multi-task neural network to predict multi-modal feature maps including depth, semantics and edges
from a single old photo. The proposed method not only enables monocular 3D digital reconstruction of damaged or lost
relief-type cultural heritage objects, but also improves understanding and analysis towards the relief scenario.

ABSTRACT
Relief-type cultural heritage objects are commonly found at histor-
ical sites but often manifest with varying degrees of damage and
deterioration. The traditional process of reconstructing these reliefs
is laborious and requires extensive manual intervention and spe-
cialized archaeological knowledge. By utilizing a single old photo
containing predamage information of a given relief, monocular
depth estimation can be used to reconstruct 3D digital models.
However, extracting depth variations along the edges is challeng-
ing in relief scenario due to the highly compression of the depth
values, resulting in low-curvature edges. This paper proposes an
innovative solution that leverages a multi-task neural network to
enhance the depth estimation task by integrating the edge detection
and semantic segmentation tasks. We redefine edge detection of
relief data as a multi-class classification task rather than a typical
binary classification task. In this paper, an edge matching module
that performs this novel task is proposed to refine depth estima-
tions specifically for edge regions. The proposed approach achieves
better depth estimation results with finer details along the edge
region. Additionally, the semantic and edge outputs provide a com-
prehensive reference for multi-modal understanding and analysis.
This paper not only advances in computer vision task computer
vision tasks but also provides effective technical support for the
protection of relief-type cultural heritage objects.

CCS CONCEPTS
• Applied computing→ Arts and humanities; • Computing
methodologies→Multi-task learning; Neural networks.
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1 INTRODUCTION
Relief-type cultural heritage objects, commonly found at histor-
ical sites worldwide, are important in humanistic areas such as
art, culture, history, and architecture. Unfortunately, these valu-
able cultural heritage objects often suffer from varying degrees of
damage and loss caused by natural or human factors [54]. While
scanning and photogrammetry technology can achieve permanent
three-dimensional (3D) digital preservation of their current states,
they cannot restore their appearance prior to damage and loss [60].
The traditional process of restoring these reliefs is laborious, requir-
ing extensive manual intervention and specialized archaeological
knowledge [24, 56]. Moreover, reconstruction methods for typical
3D cultural relics often involve deep learning-based point cloud
completion processes to reconstruct damaged and missing struc-
tures. However, these methods are generally suitable only for scenes
with simple structures and minimal damage [16, 44, 47]. Unfortu-
nately, these may not be applicable to relief-type cultural heritage
objects, which are typically complex in their geometric structure
and extensive in scale and quantity.

Fortunately, many of these precious reliefs are often documented
in old photos, as shown in Figure 2. These 2D monocular old photos
can serve as very effective references for the 3D reconstruction of
relief-type cultural heritage objects. First, relief scenes are different
from 3D scenes such as sculptures or 2D scenes such as paintings,
and are more like special 2.5D scenes. Second, the reliefs are usually
only meant to be viewed from the front or side. Therefore, these
two characteristics allow a single image taken, from the front, to ef-
fectively cover most of the content, providing sufficient information
for monocular algorithms.

2024-04-13 10:07. Page 1 of 1–10.
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Figure 2: Examples of damaged or lost relief: (a) Juyong Pass,
partially damaged [3]; (b) Yungang Grottoes, partially dam-
aged [66]; (c) Borobudur Temple, overall lost [39]. Old photos
with predamage information, and photos of the present situ-
ation, are presented on the top and bottom, respectively.

Pan et al. first proposed a 3D reconstruction method based on
monocular depth estimation to reconstruct buried reliefs in the
Borobudur temple [31]. Although they achieved 95% in reconstruc-
tion accuracy, their result lack detailed fine structures of the carved
items, e.g., human figure facial features and many kinds of decora-
tions. This limitation is due to the inadequate extraction of depth
variations in the edge regions that form the fine structures. In a
relief scenario, the depth values are significantly compressed com-
pared to other 3D scenarios, leading to less pronounced changes
along the edges. These edges cannot be easily detected from 2D
images, as discussed in Section 2. Pan et al. identified this character-
istic as "soft edge" and extracted this unique information based on
the curvature changes in 3D space [20]. Subsequently, a soft edge
map was straightforwardly input into their network as auxiliary
information [32]. Their experimental results demonstrated that soft
edge information effectively improves the depth estimation task in
relief data. However, from our perspective, there are three critical
limitations that still need to be addressed:

(1) The edge map is extracted from 3D points and used as an
additional input, which significantly reduces the accuracy of
their proposed model on the test data. This decrease in accu-
racy occurs because, during the testing phase, 3D points from
an old photo are unavailable, thereby leaving no effective
method to obtain an accurate edge map.

(2) The soft edge map is incorporated into the network in the
later part of the decoding stage, which limits its impact on
the depth estimation task.

(3) They represent the soft edge map as a binary image to dis-
tinguish between edge and non-edge areas as a mask for
further processing. However, the binary representation fails
to convey the 3D curvature changes inherent in soft edges,
which could provide effective clues for depth estimation task.

In this paper, we propose solutions to the aforementioned limi-
tations using a multi-task neural network equipped with a novel
edge matching module that performs a newly defined soft edge
extraction task. For the first limitation, the proposed method, based
on multi-task learning (MTL), is capable of performing both soft
edge detection and depth estimation tasks within the same neural
network. Upon proper training, this neural network can provide

accurate edge information for test data through its edge detector.
To address the second limitation, we design a novel edge matching
module that directs the depth estimation task to focus more inten-
sively on the soft edge region, thereby yielding more detailed depth
estimation result. For the third limitation, we redefine soft edge
detection as a multi-class classification problem, aimed at determin-
ing the degree of "softness" of specific edge regions. This approach
preserves the crucial curvature information, thus enhancing the
effectiveness of the depth estimation task.

Following the work of Pan et al., we introduce one of the UN-
ESCO World Heritage Sites, Borobudur Temple in Indonesia, as our
experimental subject. The temple features 2,672 bas-relief panels
on its walls, constituting the largest collection of Buddhist reliefs
in the world. Unfortunately, due to safety concerns, the temple’s
foot encasement was reinstalled, and 156 relief panels carved into
this encasement were obscured by stone walls and are now hidden
and invisible. For each of these hidden panels, a grayscale pho-
tograph taken in 1890 is preserved (refer to Figure 2) [5, 39]. We
digitize the visible reliefs into 3D models and establish a training
dataset including RGB inputs, depth, semantics, and soft edge labels
to train our proposed model. The results of our quantitative and
qualitative experiments demonstrate that our method provides a
more detailed depth map than Pan et al. and other state-of-the-art
(SOTA) depth estimation models, with richer detail in the edge
regions, leading to superior 3D digital reconstruction models. Fur-
thermore, our proposed multi-task neural network also delivers
semantic segmentation and soft edge extraction results, achieving
performance comparable to SOTA models and enhancing multi-
modal understanding and analysis of relief data.

We summarize the contributions of this paper as follows: (1) We
propose a novel multi-task network that enables the reconstruction,
understanding, and analysis of relief-type cultural heritage from
a monocular old photo; (2) We introduce a novel edge matching
module within the network that performs a newly defined soft
edge detection task, enhancing the details in the edge regions of
depth estimation results and thus enabling the reconstruction of
more accurate 3D digital models; (3) We propose a dynamic edge-
enhanced loss function to optimize the proposed neural network; (4)
We apply this method to reconstruct the Borobudur hidden reliefs
their remaining old photos, thereby aiding in the preservation of
this invaluable cultural heritage site.

2 RELATEDWORK
Relief Reconstruction and Generation: The traditional process
of reconstructing relief-type cultural heritage objects into 3D digital
models is laborious [24, 56]. Deep learning-based reconstruction
of relief objects has rarely been studied, Pan et al. first proposed
a monocular depth estimation-based approach to reconstruct the
relief from a single monocular photo[31], and improved the results
by involving soft edges in their later work[32]. However, there
are still limitations that remain to be addressed, as we describe
in Section 1. However, deep learning-based reconstruction is a
relatively common for other 3D relics. With scanned data of intact
objects, it is possible to reconstruct cultural heritage objects by point
generation approaches to fill the missing structures [16, 44, 47].
However, at present, these methods are only suitable for small
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areas of broken artifacts with simple geometries, thus they are not
very versatile for relief scenes.

Additionally, there are related studies on relief generation task
(including noncultural heritage objects). Some use 3D models for
depth compression to generate reliefs that do not meet the stan-
dards for the reconstruction of relief-type cultural heritages from
old photos [18, 19, 63]. However, it is worth mentioning that the
effect of edge information in relief has also been proven in these
works. JI et al [19] demonstrated that hierarchical relationships
change dramatically with a gradual decrease in depth, resulting
in continuous degradations of the original details. The proposed
edge optimizations in their work improved the model-to-relief re-
construction results. Other image-based methods generally rely
on other prior inputs [28, 37, 43] or human-computer interactions
(HCIs) [61]. Moreover, these studies are generally optimized for a
few specific simple characters, such as plants, human faces or other
objects with similar geometric structures[64].

Monocular Depth Estimation: Deep learning-based methods
have become the mainstream solution for monocular depth esti-
mation task because they effectively learn depth representations
in an end-to-end manner. Eigen et al. proposed the first depth esti-
mation network, which is a multi-scale fusion network, to regress
the depth value [13]. Following this, considerable improvements
have been made by utilizing or modifying superior network back-
bones [1, 15, 25], carefully designing the regression task as a clas-
sification task [6, 27], introducing more priors [35, 36, 52] and
better objective functions [53, 62]. However, despite their promis-
ing performance, they are difficult to generalize to unseen domains,
especially in relief scenes with unique data features.

Recently, several works apply diffusion model-based methods
to monocular depth estimation [12, 40]. By taking advantage of
conditional diffusion models [21], zero-shot depth estimation has
made breakthroughs [58]. However, these models require large
amounts of training data at their initial stage. Marigold is specially
designed for tuning with small amounts of data, but 74k is still
needed [21]. As data collection of cultural heritage objects is often
limited by protection purposes or data security, no large public
relief dataset is currently available. Moreover, as shown in our
experimental results, the details in depth result cannot be estimated
properly by these models. To address these demands, our research
approach is to preparing various labels on very few sample data
to perform related tasks with depth estimation based on effective
MTL architecture.

Edge Detection:Different from contours and boundaries, which
correlate with semanticallymeaningful entities, edge detection aims
to capture all significant intensity discontinuities in an image [67].
Traditional edge detectors [7, 23], learning-based methods [11, 29],
convolutional neural networks [33, 46], and recent approaches
utilizing vision Transformers [34] have been explored for edge de-
tection in 2D images. These methods focus on identifying notable
brightness changes and classify pixels into two categories: edges
and non-edges. However, as discussed in Section 1, soft edges,
which are more indicative of 3D curvature changes, cannot be
adequately represented by a binary classification. Kawakami et
al.[20] extracted soft edges in reliefs using a 3D feature highlight-
ing method that employs point opacity provided by a transparent
rendering technique[49, 51]. Subsequently, Pan et al. [32] project

these 3D soft edges onto a binary edge map and utilized it as an addi-
tional input for their depth estimation network. To further leverage
soft edge information, we project 3D soft edges onto multi-class
edge maps and use these as labels to train a deep learning-based
edge detector designed for a multi-class classification task, thereby
defining a novel soft edge detection task.

Multi-task Learning:Multi-task learning (MTL) enhances task
performance compared to independent single-task training by lever-
aging shared information and representations across tasks [8]. To
improve MTL performance, numerous efforts have focused on de-
signing encoder architectures [42, 50], predicting intermediate aux-
iliaries [57], and developing novel loss functions [10]. Several stud-
ies have demonstrated improved performance by jointly estimating
depth and semantic segmentation [14, 48]. Ji et al. [17] further es-
tablished the relationship between depth and semantics in relief
scenes in their work on semantic segmentation. Inspired by these
findings, we incorporate semantic segmentation into our MTL ap-
proach to jointly predict depth, semantics, and edges. Additionally,
to enhance the interplay between the depth estimation and edge
detection tasks, we have developed a novel edge matching module
within our proposed MTL architecture.

3 METHOD
3.1 Overview
As shown in Figure 1, we propose a multi-task neural network
to extract various features involving the information of depth, se-
mantics, and edges from a single old photo of a given relief-type
cultural heritage object. These three kinds of feature maps provide
the multi-modal data foundation for understanding and analysis of
the relief scenario. Moreover, by predicting a corresponding dense
depth map from a single old photo, the 3D digital model can be
reconstructed. This effectively addresses the widespread issue of
varying degrees of damage and loss in relief-type cultural heritage
objects, because the predamage information is often documented
in their historical photographs.

The key to improving the depth estimation results of relief data
lies in extracting more information on subtle depth variations at
the edge regions. Utilizing edge images to effectively assist in the
depth estimation task is a highly effective method. As we discussed
in 1 Introduction, Pan et al. [32] has made preliminary attempts,
but there is still significant room for improvement. Therefore, we
propose a novel method based on multi-task learning to address
this issue.

First, the soft edge extraction task is newly defined in Section 3.2
to better extract and represent the data features of the relief-type
cultural heritage objects. Second, a multi-task neural network with
novel architecture is proposed in Section 3.3 to effectively utilize the
soft edge information. The network can extract the depth, semantic,
and edge features, and further constrain the depth estimation task
to focus on the soft edge regions using a proposed edge matching
module. Finally, the dynamic edge enhanced loss function is pro-
posed in Section 3.4, so that the proposed network can be better
optimized.
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3.2 Soft edge detection task
As shown in Figure 3, traditional edge detection tasks treat the
detection of 2D edges as a binary classification problem, segregating
each pixel into either edge or non-edge regions. In public datasets,
the differential brightness within edge regions reflects the degree of
consensus among humans during the manual labeling process [30].
This method suffices for depicting brightness transitions along
edges in conventional scenes. However, the edges in relief data
signify not merely changes in brightness but variations in curvature
change across 3D space.

Figure 3: Edge Maps in the open source dataset MDBD (Top).
Variations in edge map representations of relief data (Bot-
tom), from left to right: continuous representation, binary
representation, and the proposed multi-class representation.

Therefore, we propose to define the edge detection of relief
data as a multi-classification task to better express this important
feature. As shown in Figure 3, by employing a 3D edge highlighting
technique [20], soft edge regions can be detected and subsequently
projected onto a edge map. This map features continuous pixel
values ranging from 0 to 255. Unlike related studies that directly
binaries the map for use as a mask, we categorize the pixels into
six distinct classes based on their values as detailed in Table 1.
For a given class n, the pixel value is determined by the formula
51 × n. This task is executed by the proposed soft edge detector
(see Section 3.3), which is optimized by a meticulously refined loss
function (see Equation 10).

Table 1: division rules of each class.

Range 0–49 50–99 100–149 150–199 200–249 250–255
Class 0 1 2 3 4 5
Value 0 51 102 153 204 255

3.3 Multi-task neural network
Overall structure: The network structure of our proposed method
is shown in Figure 4. The network follows an encoder-decoder
design to perform monocular depth estimation task and semantic
segmentation task, and is additionally constrained by a novel edge
matching module, which performs the soft edge detection task
proposed in Section 3.2. The encoder is composed of a modified
SwinV2 Transformer encoder following EMSAFormer [14] and a
heavyweight VIT encoder following SAM [22]. Please note that the
parameters of the SAM encoder are frozen in this work because our
dataset is not sufficient for overall fine-tuning. We utilize the SAM

encoder to leverage its zero-shot feature extraction capability to
obtain rich features. To merge the extracted features from the two
independent encoders, two patch merging layers are set behind the
SAM encoder to adjust the resolution and the number of channels
of the intermediate results. Then, the adjusted features are fused
through cross-attention to the features obtained from the SwinV2
Transformer encoder, followed by a context module. Moreover,
triple skip connections are used to retain the low-level features and
input to the two decoders. Additionally, the SwinV2 Transformer
encoder incorporates an extra input edge image, which is output by
the proposed soft edge detector of the edge matching module. The
specific information about the edge matching module, soft edge
detector, and two task decoders are as follows.

Edge matching module: As shown in Figure 4, the proposed
module comprises two soft edge detectors designed to individually
extract multi-class soft edge maps from the input monocular photo
and the output depth map, respectively. Both detectors share iden-
tical structures, detailed in the subsequent paragraph. Moreover,
the matching loss between the two produced soft edge maps is
calculated in this module, which is part of the optimization object
of the network following Equation 5. The logic behind this module
is predicated on the notion that, only when the deep prediction
results are sufficiently accurate can the edge information of details
be extracted. This will lead to an increased similarity between the
two edge result images, which in turn reduces the penalty on the
optimization objective. This module effectively imposes a directed
constraint on the depth prediction task, making it focus more on
extracting the details outlined by the soft edges.

Soft edge detector: The proposed soft edge detector is modified
from LDC [45], which is a lightweight network with just 674K
parameters. As shown in (c) of Figure 4, the detector follows a CNN
architecture with four intermediate edge maps (F1 to F4); hence,
the final result comes from the fusion of these maps through four
skip connections. The output soft edge map follows our proposed
multi-classification representation, and the pixel values reflect the
curvature change of the soft edges in 3D space. This lightweight
backbone is selected because we are trying to complete a more
complex edge detection task with a limited dataset. The parameters
pretrained on the MDBD dataset [30] are utilized in this paper.
Instead of making excessive adjustments to the detector structure,
we propose a meticulously refined loss function to complete the
newly defined task, following Equation 10 and Equation 11.

Semantic decoder and depth decoder: The decoders for the
semantic segmentation task and depth estimation task are designed
to suit the specific needs of each task. As shown in (a) and (b) of Fig-
ure 4, each decoder consists of a series of convolutional layers, batch
normalization layers and upconvolutional layers. Moreover, the fea-
ture maps, with multiple scales generated by skip connections as
we mentioned above, are fused with the intermediate results of
both decoders via the concatenation operation. For semantic seg-
mentation, the decoder projects to the number of semantic classes.
For depth estimation, the decoder regresses continuous pixel values
ranging from 0 to 255.
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Figure 4: Network structure of our proposed method. The top half shows the overall structure of the network, and the bottom
half shows the details of the (a) semantic decoder, (b) depth decoder and (c) soft edge detector, respectively.

3.4 Dynamic edge-enhanced loss function
The proposed multi-task learning network optimizes a novel dy-
namic edge-enhanced loss function. The total loss is joined by three
tasks, depth estimation, soft edge detection and semantic segmen-
tation, following Equation 1:

𝐿 = 𝛼𝐿𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 + 𝛽𝐿𝑑𝑒𝑝𝑡ℎ + 𝛾𝐿𝑒𝑑𝑔𝑒 (1)

where 𝐿𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 , 𝐿𝑑𝑒𝑝𝑡ℎ and 𝐿𝑒𝑑𝑔𝑒 denote the loss functions for the
tasks of semantic segmentation, depth estimation and soft edge
detection, respectively.𝛼 , 𝛽 and𝛾 , respectively, represent the weight
coefficients for the three tasks.

For the semantic segmentation task and depth estimation task,
we utilize the cross-entropy loss and the Silog loss [13] following
the related works, respectively:

𝐿𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 (𝑠′, 𝑠) = − 1
𝑛

𝑛∑︁
𝑖=1

𝑐∑︁
𝑘=1

𝑝
(𝑖 )
𝑘

log(𝑞 (𝑖 )
𝑘

) (2)

𝐿𝑑𝑒𝑝𝑡ℎ (𝑑
(𝑖 )
𝑒 ) = 1

𝑛

𝑛∑︁
𝑖=1

(𝑑 (𝑖 )𝑒 )2 − 𝜆𝑑

𝑛2

(
𝑛∑︁
𝑖=1

𝑑
(𝑖 )
𝑒

)2
(3)

𝑑
(𝑖 )
𝑒 = log(𝑑 (𝑖 ) ) − log(𝑑′(𝑖 ) ) (4)

where𝑛 denotes the number of pixels with valid ground truth values,
𝑐 denotes the number of categories, which is set to 4, 𝑠′ denotes
the label and 𝑠 denotes the predicted probability for each category
after applying the softmax function. 𝑑 denotes the prediction result
of depth estimation, and 𝑑′ denotes the ground truth of depth

estimation. 𝜆𝑑 is set to 0.15 to be invariant to global-scale changes
in the predicted depth map.

For the soft edge detection that we defined in this paper, a novel
dynamic loss function is proposed. The total loss in this task should
consider three terms: (a) the edge detection accuracy 𝐿𝑟 predicted
from the input monocular image, (b) the edge detection accuracy
𝐿𝑑 predicted from the output depth map and (c) the matching loss
𝐿𝑚 of the two predicted soft edge maps. The total loss 𝐿𝑒𝑑𝑔𝑒 of the
soft edge detection task can be expressed as:

𝐿𝑒𝑑𝑔𝑒 = 𝜆1𝐿𝑟 + 𝑘 (𝜆2𝐿𝑑 + 𝜆3𝐿𝑚) (5)

𝐿𝑟 = 𝑙 (𝑒𝑟 , 𝑒𝑔); 𝐿𝑑 = 𝑙 (𝑒𝑑 , 𝑒𝑔); (6)

𝐿𝑚 (𝑒𝑟 , 𝑒𝑑 ) =
1
𝑛

𝑛∑︁
𝑖=1

���𝑒 (𝑖 )𝑟 − 𝑒
(𝑖 )
𝑑

��� (7)

where 𝑙 is the loss function for the soft edge detector, with 𝑒𝑟 ,𝑒𝑑 ,𝑒𝑔
representing the edge maps detected from the input monocular
image, the edge maps detected from the input monocular image,
and the ground truth. 𝜆1, 𝜆2, and 𝜆3 are the weight coefficients for
each loss term, and𝑘 is the proposed dynamic control parameter.We
first introduce the proposed dynamic control parameter 𝑘 and then
explain the details of the loss function for the soft edge detection
task 𝑙 as follows.

Dynamic control parameter 𝑘: During the initial training
phase of the proposed network, the output depth map of the depth
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decoder is generally poor and uncertain, from which meaningless
soft edge detection results are produced. If these results are used to
calculate 𝐿𝑑 and 𝐿𝑚 , it will lead to instability 𝐿𝑒𝑑𝑔𝑒 and total loss
L, thereby affecting the learning effectiveness of each task and the
entire network. Therefore, the dynamic coefficient 𝑘 is adopted to
adjust the weights of 𝐿𝑑 and 𝐿𝑚 based on the accuracy of the depth
estimation. This dynamic coefficient 𝑘 is set as follows:

𝑘 = 1 − tanh2 (𝜆𝑘𝑑) (8)

𝑑 =
1
𝑛

𝑛∑︁
𝑖=1

���𝑑 (𝑖 ) − 𝑑′(𝑖 )
��� (9)

where𝑑 represents the accuracy of the depth estimation result using
the 𝐿1 norm, which fluctuates primarily within the range of 0.08
to 0.45. To ensure that the coefficient 𝑘 can exhibit a substantial
dynamic range within the primarily active range of 𝑑 , the scaling
coefficient 𝜆𝑘 is set to 𝜆𝑘 = 2.5, and the tanh operator is adopted.

Refined classification loss function 𝑙 : To effectively obtain
the soft edge map defined in Section 3.2, we propose a refined
classification loss function 𝑙 as follows:

𝑙 (𝑒, 𝑒′) = − 1
𝑛

𝑛∑︁
𝑖=1

[
𝑐′∑︁
𝑘=1

𝑒
(𝑖 )
𝑘

log(𝑒′ (𝑖 )
𝑘

)
]
+ 𝜆𝑒𝐿

1 (𝑒, 𝑒′) (10)

𝐿1 (𝑒, 𝑒′) = 1
𝑛

𝑛∑︁
𝑖=1

���argmax(𝑒 (𝑖 ) ) − argmax(𝑒′(𝑖 ) )
��� (11)

where 𝑒 denotes the predicted result, 𝑒′ denotes the ground truth.
𝜆𝑒 is a scaling factor, which is set to 0.2.

In the typical classification task, different categories are inde-
pendent and unordered, with equal distances between each other.
However, as shown in Table 1, the soft edge detection task that
we define is based on ordered pixel values. For example, the differ-
ence in pixel values between Class 2 and Class 0 is less than the
difference in pixel values between Class 5 and Class 0. However,
there will be no difference when calculating loss using a typical
cross-entropy loss function, which is the problem that we want to
address. To make the penalty predicting Class 5 greater than the
penalty predicting Class 2 for the given pixel of Class 0, 𝐿1 function
is added as a penalty term behind the typical cross-entropy loss.

4 EXPERIMENTAL RESULTS
4.1 Implementation Details
The proposed network was implemented in PyTorch and trained
on a Quadro RTX 6000 GPU with 24 GB of GPU memory. The
weights of the SAM ViT encoder were initialized by the ViT-B
SAM model [22] (not trainable), while the weights of the SwinV2
Transformer encoder were pretrained on ImageNet. For training, we
employed the Adam optimizer in combination with the OneCycleLR
learning rate scheduler. This scheduler had a maximum learning
rate of 0.01 and a percentage start of 0.2, spanning a total of 100
epochs. Our model was trained on the Borobudur relief dataset
provided by Pan et al. [32], consisting of 6,424 patches cropped
from only 11 images with 3072 × 1024 pixels. The total training du-
ration exceeded 34 hours, with a batch size of 4 and an input size of
640× 512 pixels. To avoid the risk of overfitting, we augmented the

images prior to feeding them into the network by applying Gauss-
ian noise, performing random resizing and cropping, adjusting
random HSV jitter, and applying horizontal flipping. For compar-
ative experiments, we adopted the following parameter settings
in the proposed loss function to achieve the best performance on
depth estimation task. For Equation. 1, 𝛼 is set to 1.0, 𝛽 to 3.0, and
𝛾 to 5.0. For Equation. 5, we set 𝜆1 to 1.0, 𝜆2 to 0.5, and 𝜆3 to 0.05.

Table 2: Quantitative results on depth and edge maps.

Depth Edge (with different GT)
RMSE↓ RMSElog↓ abs↓ sq↓ mIou↑ Accuracy↑ RMSE↓

Exp 1 9.5321 0.4023 4.0038 1.9839 - - -
Exp 2 9.4510 0.4246 3.8710 1.9429 0.6610 0.7978 -
Exp 3 9.2762 0.4014 3.5941 1.8830 0.24779 0.5703 6.5810
Exp 4 9.3647 0.4189 3.7464 1.9059 - - 7.7890
Exp 5 9.6645 0.3970 3.9379 2.0071 0.2402 0.5468 6.7043

Figure 5: Qualitative results on depth and edge maps.

2024-04-13 10:07. Page 6 of 1–10.
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4.2 Ablation Study
In this section, the effectiveness of both the proposed edge match-
ing module and conducting the soft detection task defined as a
multi-class classification problem are evaluated. We demonstrate
quantitative and qualitative experimental results on monocular
depth estimation and edge detection when different settings of
edge information are used in the proposed network. The results
of the semantic segmentation were not significantly impacted by
these settings. However, our proposed method still managed to
achieve competitive results in the semantic segmentation task on
relief data, details of which will be discussed in Section 4.3.

In our ablation studies, Exp 1 did not utilize the proposed edge
matchingmodule or any edge information. Exp 2 to Exp 5 all utilized
the proposed edge matching module, each with different settings:
Exp 2 involved binary edge, Exp 3 involved multi-class edge, Exp
4 involved continuous edge, and Exp 5 involved multi-class edge
but without using the proposed dynamic control parameter 𝑘 in
the proposed loss function as Equation 5.

As shown in Figure 5 and Table 5, the proposed edge matching
module demonstrates the most significant improvement in extract-
ing details from the edge regions. Compared to other experiments,
Exp 1 displays the worst performance, with the highest error rates
and the least detail in the edge regions. The newly defined soft
edge detection task has also proven effective, as Exp 3 yields more
accurate depth results in the edge regions than Exp 2, resulting in
lower error metrics as indicated in Table 5. While Exp 2 did manage
to extract some edge details, its depth value accuracy is inferior to
that of Exp 3 when compared to the Ground Truth (GT). Please pay
particular attention to the changes in depth values of the leaves and
human ears in Figure 5. Additionally, the soft edge maps predicted
in Exp 3, 4, and 5 present finer edges compared to the binary edge
maps predicted in Exp 2, which provides more effective reference
for understanding and analyzing relief data.

Moreover, we also observed that Exp 3 was achieved easier con-
vergence on our limited dataset compared to Exp 4 and 5. This
underscores the effectiveness of multi-class edge classification and
the introduction of the dynamic control parameter 𝑘 . Exp 4 and 5
exhibited poor convergence resulting in sub-optimal error rates,
with Exp 4 specifically yielding unsatisfactory extraction results for
continuous edge maps as illustrated in Figure 5. Please note that
the quantitative results of the edge maps on Exp 2 are for reference
only due to the use of different ground truth.

4.3 Comparison Results
In this section, we present both quantitative and qualitative compar-
ison results of our method with other state-of-the-art approaches
in depth estimation and semantic segmentation tasks as shown
in Table 3, Table 4 and Figure 6. More results are provided in our
supplementary materials.

For the depth estimation task, we compare our results with soft
edge-enhanced network [32], BTS [26], AdaBins [6], DenseDepth [2],
Swinmim [55], and the zero-shot model Depth Anything [59]. We
observed that, except for the soft edge-enhanced network proposed
by Pan et al., which only managed to capture a small portion of
the fine structure, other state-of-the-art models designed for public
datasets failed to capture the fine structure of the relief, particularly

in the soft edge regions. The zero-shot model, Depth Anything,
also failed to generalize in relief scenes, with barely any details
extracted. In Figure 6, we illustratively present detailed results from
Pan et al., Swinmim, Depth Anything with our results. We achieved
the best depth estimation results, capturing the clearest details nec-
essary for forming the fine structure without requiring additional
prior information on the test data. The quantitative comparisons
presented in Table 3 further substantiate our claims of superior per-
formance compared to other models. Additionally, we reconstruct
relief-type cultural heritage into 3D point clouds based on the depth
estimation result and calculate the cloud-to-cloud distance with the
GT on our validation data.

Table 3: Compression Results of Depth estimation task.

higher is better lower is better
𝜃1 ⩽ 1.25𝜃2 ⩽ 1.252𝜃3 ⩽ 1.253RMSERMSElog abs sq 3D distance

Eigen [13] 0.306 0.598 0.778 10.289 0.781 3.067 2.001 14.982mm
Laina [25] 0.344 0.608 0.778 10.17 0.589 3.029 1.770 8.901mm

DenseDepth [2] 0.378 0.642 0.791 9.996 0.633 3.872 2.194 7.772mm
BTS [26] 0.441 0.770 0.921 9.841 0.455 4.074 2.128 7.897mm

AdaBins [6] 0.340 0.648 0.828 9.870 0.562 3.519 2.117 7.691mm
Swinmim [55] 0.360 0.730 0.875 9.942 0.456 4.073 1.969 9.902mm

DA(zero-shot) [59] 0.320 0.567 0.728 10.041 0.818 2.371 1.929 7.128mm
Pan (extra input) [32] 0.482 0.811 0.947 9.643 0.415 3.888 1.960 5.867mm

Ours 0.571 0.849 0.939 9.276 0.401 3.594 1.883 5.680mm

For the semantic segmentation task, we compare our results
with those of JI et al. [17], SegNet [4], U-Net [38], PSPNet [65],
DeepLabV3+ [9], EMSANet [41], and EMSAFormer [14]. As illus-
trated in Table 4, our proposed method outperforms most related
works, with the exception of the approach proposed by JI et al.
This exception can be attributed to the use of both depth labels and
soft edge labels as additional inputs in the model proposed by JI et
al., which significantly enhanced the performance of their model.
Furthermore, our dataset containing 11 relief panels is smaller than
that used by Ji et al., which includes 26 relief panels.

Table 4: Compression Results of semantic segmentation task.

Network Recall Precision mIoU F1-Score Accuracy
SegNet [4] 0.6843 0.7079 0.5388 0.6932 0.7240
U-Net [38] 0.6708 0.7084 0.5251 0.6839 0.7120
PSPNet [65] 0.6953 0.7096 0.5470 0.7011 0.7184

DeeplabV3+ [9] 0.6707 0.6877 0.5200 0.6777 0.6993
EMSANet [14] 0.8301 0.8037 0.6980 0.8131 0.8646

EMSAFormer [14] 0.7818 0.7668 0.6479 0.7704 0.8397
JI (extra input) [17] 0.8961 0.8983 0.8158 0.8968 0.9053

Ours 0.8385 0.8131 0.7163 0.8243 0.8753

The proposed method has been applied to the Borobudur temple,
extracting multi-modal feature maps, including depth maps, from
old photo that recorded the appearance of 156 buried relief panels.
This approach has enabled the 3D digital reconstruction of these
panels, as illustrated in Figure 1. While there is no ground truth
available for quantitative comparisons of the buried relief objects,
we provide more qualitative comparison results in our supplemen-
tary materials.

5 CONCLUSION
In this study, we developed a multi-task learning-based method
to predict multiple feature maps containing depth, semantics, and
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Figure 6: The top half presents our best experimental results, from left to right: 3D reconstruction model, depth map, soft edge
map, and semantic map. The bottom half presents the detailed depth estimation results compared with current SOTA models.

edges from a single old photo. The proposed method not only pro-
vided comprehensive references for multi-modal understanding
and analysis but also enabled 3D digital reconstruction of relief-
type cultural heritage objects. Through the optimization measures
proposed in this paper, the limitations of related studies were ef-
fectively solved, and more precise 3D reconstruction models were
provided, which were quantitatively and qualitatively verified on
the Borobudur dataset. For future work, we may employ a point
cloud completion process over the 3D reconstruction model ob-
tained in this work to repair small portions of the side structural
information that cannot be covered within a monocular old photo.
Furthermore, we aim to extend our method to additional damaged
or lost relief-type cultural heritage sites and develop a more com-
prehensive relief dataset.
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