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A B S T R A C T

In the development of a software product, the Next Release Problem is the selection of the most appropriate
subset of requirements (tasks) to include in the next release of the product, such that the selected subset
maximises the overall satisfaction of the stakeholders and minimises the total cost. Furthermore, in most cases,
requirements or tasks cannot be developed independently, as there are dependencies between them, which
must be respected in the selection for the next release. In this paper, we approach the Next Release Problem
as a constrained bi-objective optimisation problem. The main contribution is the design of an Estimation
of Distribution Algorithm that exploits domain knowledge, i.e. the dependencies between the requirements,
to define the structure of a Bayesian network that models the relationships between the binary variables
(requirements) to be optimised. The use of a Bayesian network with a fixed structure reduces the complexity
of the search process, since it is unnecessary to learn the structure at each iteration of the algorithm. Moreover,
it ensures that the sampled individuals are always valid with respect to the required dependencies. The second
main contribution is the generation of a corpus of synthetic datasets with cost estimations derived from agile
and classic management methodologies. Standard multi-objective metrics are computed in order to assess our
proposal and compare it with other evolutionary multi-criterion optimisation algorithms, determining that it
is the optimal choice when dealing with complex datasets.
. Introduction

Software projects, both new development and enhancement
rojects, go through a series of phases during their life cycle. Among
hese phases are requirements elicitation, requirements selection, de-
ign, implementation, testing, deployment, etc. Many of these steps
ay be tedious, difficult to succeed in or very time-consuming; thus, a
ew set of techniques has been developed over the last two decades
n order to alleviate these problems. Concretely, the Search-Based
oftware Engineering (SBSE) paradigm (Harman et al., 2012a) refers
o the reformulation of software engineering problems into new or
raditional search-based optimisation algorithms, which find optimal
r near-optimal solutions in a search space. The main reason for this
eformulation is that many problems in software engineering need
o optimise two or more objectives, resulting in computationally in-
ractable problems which do not allow for an exhaustive search. The
efinition of software engineering problems as optimisation ones opens
he door to the use of a plethora of classic and novel methods:, such
s genetic algorithms (Katoch et al., 2021), particle swarm optimisa-
ion (Gad, 2022), ant colony optimisation (Dorigo et al., 2006) and
stimation of distribution algorithms (Larrañaga and Lozano, 2001).
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E-mail address: Pablo.Bermejo@uclm.es (P. Bermejo).

This work deals with the software development phase of require-
ments selection, known as the Next Release Problem (NRP) (Bagnall
et al., 2001; Iqbal and Alam, 2021), one of the five most common
Search-Based Software Engineering (SBSE) problems (Chen and Li,
2023). The NRP addresses the task of selecting a subset of requirements
to be delivered in the next release or increment of the product, optimis-
ing certain objectives while fulfilling given restrictions. The NRP needs
to be solved under any software project management methodology; that
is, requirements selection is a problem to be solved in both classic (PMI,
2021; Imani, 2017) and agile (Beck, 1999; Schwaber and Sutherland,
2020) methodologies. In a classic or plan-driven approach, a large and
complete set of requirements is previously elicited and then, for each
release of the final product, a subset of these requirements needs to be
selected under certain restrictions. When the development of a software
product is being managed in an agile or value-driven manner, the NRP
needs to be solved more frequently (at least once per increment) and,
although the cardinality of the requirements set could be lower than in
classic methods, this set is updated continuously and an NRP solution
is thus not valid after a few days or weeks. Furthermore, some projects
https://doi.org/10.1016/j.engappai.2023.106555
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scale agile teams and the set of requirements grows as large as in classic
projects but still with the same update rate.

The basic formulation of the NRP mixes the objectives to be op-
timised, commonly minimising cost and maximising satisfaction, into
a single objective in order to facilitate or simplify the search process.
A budget 𝐵 is then used to limit the search, establishing as many
nstances of the problem for the same dataset as values are set for 𝐵.

Subsequently, NRP started to be addressed as a multi-objective problem
(MONRP) (Zhang et al., 2007; Durillo et al., 2009; Geng et al., 2018;
Rahimi et al., 2022), in such a way that objectives are not mixed. Solu-
tions are then collected in Pareto fronts using the dominance criteria,
and returned to the decision-maker in order to evaluate which fits best,
given the current situation of the project. In the MONRP version of the
problem, the search with a budget 𝐵 is not typically limited, mainly
because solution objectives are not merged, so the decision-maker can
visually choose the desired satisfaction/cost ratio.

The method to deal with search objectives is not the only feature
that distinguishes the formulation of NRP; the management of require-
ments dependencies is also particular (del Sagrado et al., 2015; Hamdy
and Mohamed, 2019). Some planned requirements may imply the pre-
vious or posterior development of other requirements, or they may be
mutually exclusive. Thus, the NRP does not only need to maximise satis-
faction while minimising cost, but this must also be done while respect-
ing certain constraints between requirements. This makes it a NP-hard
problem, as proven in Almeida et al. (2018), and so it has been com-
monly solved with metaheuristic optimisation search algorithms, such
as ACO (del Sagrado et al., 2015), PSO (Hamdy and Mohamed, 2019),
GRASP (Pérez-Piqueras et al., 2022), Simulated Annealing (Baker et al.,
2006) and NSGA-II (Durillo et al., 2011). Non metaheuristic approaches
based on integer programming (Dong et al., 2022) and pursuing any-
time behaviour (Domínguez-Ríos et al., 2019) have also been proposed.
However, almost no attention has been focused on the use of Estimation
of Distribution Algorithms (EDAs) (Larrañaga and Lozano, 2002). This
is striking in view of the results obtained by this family of methods
in a related problem such as feature selection (Guyon and Elisseeff,
2003; Abdollahzadeh and Gharehchopogh, 2022), both in its single-
objective (Bermejo et al., 2011) and multi-objective versions (Maza
and Touahria, 2019). In fact, it was only very recently that the first
approach to the NRP using EDAs appeared (Pérez-Piqueras et al., 2023),
but the proposal is limited to the use of univariate EDAs, which cannot
explicitly deal with requirements dependencies.

In this work, we propose the FEDA-NRP (Fixed-structure EDA)
algorithm, which takes advantage of the EDA search properties and of
the fact that all dependencies among requirements in the Next Release
Problem are known in advance. Furthermore, the preferred application
niche for FEDA-NRP will be complex problems, with a large number
of requirements and dependencies between them, since this is where
exploiting domain knowledge directly in the algorithm will be a major
advantage. The main contributions of this work are the following:

(i) The development of a multivariate estimation of distribution
algorithm (FEDA-NRP) to cope with the constrained bi-objective
next release problem. The prior knowledge domain is used to
construct a Bayesian network that models the requirement de-
pendencies, thus avoiding the structural learning phase and
accelerating the efficiency of the algorithm. Furthermore, all
individuals sampled from this model are valid with respect to
the constraints provided (dependencies).

(ii) The generation of a public corpus of synthetic datasets with
different complexities in the number of requirements and de-
pendencies, and different project management context (classic
and agile cost estimation). We hope that this corpus can be used
as a reference in future studies, so it is available in a public
repository.1

1 https://doi.org/10.5281/zenodo.7247877 (Pérez-Piqueras et al., 2022).
2

(iii) A comprehensive comparative experimental study to assess the
strengths and weaknesses of FEDA-NRP with respect to state-
of-the-art algorithms dealing with the bi-objective next release
problem, which follows the guidelines and suggestions from
recent literature for fair comparison of multi-objective search
algorithms (Ishibuchi et al., 2022) and comparing the most
suggested quality metrics (Li et al., 2020). It should be noted
here that all algorithms are adapted in the sampling or selection
phase to respect the constraints (dependencies) provided.

(iv) The code of FEDA-NRP and the rest of the algorithms used in the
comparison are publicly available, as well as the scripts needed
to reproduce the experiments included in this work.2

In the following sections, we will explain a number of concepts
in greater detail: We introduce the single and multi-objective NRP
(Section 2.1) and then the management of requirements dependencies
(Section 2.2). Next, in Section 3 we present an overview of the state of
the art, citing classic and recent related works. Then, in Section 4 we
present our proposed method FEDA-NRP, giving further detail with an
example in Section 4.3. Our experimental framework is decomposed
into several parts: First, Section 5.1 presents the process to sample
a new corpus of public datasets; Sections 5.4, 5.2 and 5.5 provide
the fine-grained details about the evaluation metrics, algorithms and
experiment configuration. Reproducibility information is described in
Section 5.6. Finally, Section 5.7 presents the quality metrics and visual
indicators computed to assess the goodness of the compared algorithms,
and, in Section 6, we summarise the main conclusions and propose
future work.

2. The next release problem

In this section, we introduce some necessary concepts related to
the NRP. First, we define the Multi-Objective NRP (MONRP) and then
explain the concept of requirements dependencies or interactions. We
introduce different types of dependencies, which are the most common,
and also how to convert some types into others. We also cite relevant
works, some of which do not deal with the interaction constraints and
others that do.

2.1. The (multi-objective) next release problem

The Multi-Objective NRP (MONRP) can be defined by a set 𝑅 =
{𝑟1, 𝑟2, … , 𝑟𝑛} of 𝑛 candidate software requirements, which are sug-
gested by a set 𝐶 = {𝑐1, 𝑐2,… , 𝑐𝑚} of 𝑚 clients. In addition, a vec-
tor of costs or efforts is defined for the requirements in 𝑅, denoted
𝐸 = {𝑒1, 𝑒2,… , 𝑒𝑛}, in which each 𝑒𝑖 is associated with a requirement
𝑟𝑖 (Harman et al., 2012b). Each client has an associated weight, 𝑊 =
{𝑤1, 𝑤2,… , 𝑤𝑚}, which measures its importance. Moreover, each client
gives an importance value to each requirement, depending on their
needs and goals with respect to the software product being developed.
Thus, the importance that a requirement 𝑟𝑗 has for a client 𝑐𝑖 is given
by a value 𝑣𝑖𝑗 , such that a zero value represents client 𝑐𝑖 having no
interest in implementation of the requirement 𝑟𝑗 . An 𝑚 × 𝑛 matrix is
used to hold all the importance values in 𝑣𝑖𝑗 . The overall satisfaction
provided by a requirement 𝑟𝑗 is denoted as 𝑆 = {𝑠1, 𝑠2,… , 𝑠𝑛} and is
measured as a weighted sum of all importance values for all clients, as
expressed in Eq. (1):

𝑠𝑗 =
𝑚
∑

𝑖=1
𝑤𝑖 × 𝑣𝑖𝑗 (1)

The MONRP involves finding a decision vector 𝑋, which includes
the requirements to be implemented for the next software release, 𝑋 ⊆
𝑅, which contains the requirements that maximise clients satisfaction
and minimise development efforts.

2 https://github.com/UCLM-SIMD/MONRP/tree/eng_app_ai23.

https://doi.org/10.5281/zenodo.7247877
https://github.com/UCLM-SIMD/MONRP/tree/eng_app_ai23
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Fig. 1. Pareto Front with five non-dominated solutions in MONRP.

The MONRP objectives are expressed in Eqs. (2) and (3):

𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝑆(𝑋) =
∑

𝑗∈𝑋
𝑠𝑗 (2)

𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝐸(𝑋) =
∑

𝑗∈𝑋
𝑒𝑗 (3)

In addition, requirements in vector 𝑋 might have to satisfy the
onstraints of the problem. These constraints are related to the inter-
ctions between requirements and to the total effort or budget of the
evelopment.

Defining the NRP as a multi-objective (cost-value) optimisation
roblem has the advantage that a single solution to the problem is not
ought, but rather a set of solutions, the Pareto front. In this way, any
olution from this set can be chosen by the decision-maker, according
o the conditions, situation and restrictions of the software product
evelopment.

The Pareto front is a vector or set of configuration values for the
ecision variables that satisfies the problem constraints and optimises
he objective functions. Thus, the Pareto front contains a set of solutions
hat are not dominated by any other, named non-dominated solutions
NDS). Given a solution vector 𝑥 = [𝑥1, 𝑥2,… , 𝑥𝑗 ] where 𝑗 is the number
f problem objectives, it dominates a solution vector 𝑦 = [𝑦1, 𝑦2,… , 𝑦𝑗 ]

if and only if 𝑦 is not better than 𝑥 for any objective 𝑖 = 1, 2,… , 𝑗. In
addition, there must exist at least one objective 𝑥𝑖 that is better than
the corresponding 𝑦𝑖 of 𝑦. Conversely, two solutions are non-dominated
as long as neither of them dominates the other.

A common practice consists on maintaining an archive of all the
non-dominated solutions (𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒) found during the search. Solu-
tions in 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒 are then used for the evaluation of quality metrics
in order to assess the algorithm. Fig. 1 is an example of a Pareto front
with an NDS set for MONRP, in which both objectives are normalised so
that their value range is [0,1]. The value for Satisfaction is reversed so
that it may be interpreted in the same sense as Cost; thus, point (0,0) is
the ideal point and the nearer the solutions are to this point, the better
they are.

2.2. Requirements dependencies in NRP

Software development commonly deals with requirements which
are dependent on one another, mostly in an inclusive or sometimes in
3

an exclusive way. When solving the NRP (either in the basic or MONRP
version), these dependencies also need to be taken into account. In Carl-
shamre et al. (2001), authors define several types of dependencies or
interactions from the review of several software projects. In del Sagrado
et al. (2015), they are paraphrased in the following set of 5 types of
requirements interactions:

• Implication (requires; 𝑟𝑖 ⇒ 𝑟𝑗): a given requirement must be
implemented before implementing another.

• Combination (AND; 𝑟𝑖⊙𝑗): two requirements should be included
in the same release.

• Exclusion (OR): implementing one requirement excludes another.
• Revenue: developing a given requirement changes the value or

satisfaction of other requirements.
• Cost: developing a given requirement changes the cost of other

requirements.

Carlshamre et al. (2001) suggests that implication and combination
interactions are the most important types, and should thus be tackled
with higher priority than exclusion and non-functional dependencies.
A combination dependency in software development has more of a
semantic need than a technological one; that is, sometimes it makes
more sense to present two new functionalities together. It is the requires
or implication which expresses a hard dependency for technological
reasons. In terms of NRP, this means that, having an implication
dependency 𝑟𝑖 ⇒ 𝑟𝑗 , if at some step the search algorithm selects 𝑟𝑖
then 𝑟𝑗 must also be selected. Since NRP solutions do not rank the
selected requirements, making sure that both requirements are selected
is enough to solve the implication. Moreover, in order to fulfil an AND
dependency 𝑟𝑖 ⊙ 𝑟𝑗 (see Fig. 2(a)), this can be applied in practice as
having a new requirement 𝑟𝑖,𝑗 (Fig. 2(b)), which stands as the delivery
of the two requirements together, as done in del Sagrado et al. (2015).
Furthermore, in the case of having 𝑟𝑖 ⊙ 𝑟𝑗 and 𝑟𝑗 ⊙ 𝑟𝑘, we can associate
the three requirements first as 𝑟𝑖,𝑗 ⊙ 𝑟𝑘 and then join them as 𝑟𝑖,𝑗,𝑘.
Note that as this group of variables is then managed as a single one,
it has the side effect of reducing the problem dimensionality. Finally,
after transforming this combination interaction, the implications from
parents and to children of the resulting requirement is the union of the
original ones (Fig. 2(c)). Thus, when designing the search algorithm,
the most practical decision is to make it capable of dealing with
implication dependencies.

3. Related work

The NRP was first formulated by Bagnall et al. (2001). In the current
definition of NRP, a subset of requirements has to be selected, with
the goal being to meet the clients’ needs, minimising development
effort and maximising clients’ satisfaction. They applied a variety of
metaheuristics techniques, such as simulated annealing, hill climbing
and GRASP, but combining the objectives of the problem into a single-
objective function. Later, Baker et al. (2006) also solved the NRP as a
budget-constrained single-objective version of the problem, similarly to
the feature subset selection problem.

Other studies started formulating the NRP as a multi-objective
optimisation (MOO) problem, with the first being the proposal of Zhang
et al. (2007). This new formulation, known as the Multi-Objective
Next Release Problem (MONRP) or Cost-Value Model, is based on
Pareto dominance (Coello Coello et al., 2007). In this approach, each
objective is tackled separately, exploring the non-dominated solutions
(NDS). Many works tackling the MONRP make use of the Pareto
Archived Evolutionary Strategy (PAES) (Knowles and Cornes, 1999),
as in Chaves-Gonzalez et al. (2015), Chaves-González et al. (2015) and
Marghny et al. (2022), consisting of maintaining a 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒 found
during the search. Finkelstein et al. (2009) also applied multi-objective
optimisation considering different measures of fairness.

From the most recent reviews in SBSE, regarding Ramírez et al.
(2020), only an EDA application to software testing (Sagarna and
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ozano, 2005) is referenced; and in Gupta et al. (2016) and Alba et al.
2021) EDA approaches are neither mentioned nor matched to any
olution of the NRP. To the best of our knowledge, the first work
sing EDAs to solve the NRP is Pérez-Piqueras et al. (2023), where
he authors solve the NRP with the UMDA and PBIL univariate EDA.
n that study, both EDAs outperform genetic algorithms (NSGA-II), and
his advantage increases as the number of requirements in the problem
nstances also gets larger.

Most NRP works, such as Durillo et al. (2011), Jiang et al. (2010)
nd Coello Coello et al. (2007), do not treat requirements dependen-
ies. The first approaches that solve the single-objective NRP handling
ependencies are authored by del Sagrado et al. (2011) and Souza
t al. (2011), adapting global search algorithms based on Ant Colony
ystems. Both proposals operate by representing dependencies in a
raph that is also used to perform the search. In subsequent works, del
agrado et al. (2015) also tackled requirements dependencies in the
ulti-objective version of the NRP, by formally defining graphs which

epresent all dependency types, reconstructing them, so that, in the end,
nly implication dependencies are present in the graph. Thus, during
he search, they remove connections between a selected requirement
nd its OR-related requirements. Apart from ACO, other swarm-based
pproaches have been considered to deal with the MONRP by using im-
lications dependencies, such as particle swarm optimisation (Hamdy
nd Mohamed, 2019) and artificial bee colony (Chaves-Gonzalez et al.,
015).

. FEDA-NRP: a multi-objective EDA capable of using the a priori
nown structural relations between requirements dependencies
or the NRP

In Pérez-Piqueras et al. (2023), the authors use univariate EDAs to
ope with the MONRP. However, univariate EDAs are unable to explic-
tly manage requirement interactions, i.e. dependencies. This drawback
an be overcome by using more complex EDA models, which explicitly
anage dependencies between problem variables. In fact, n-variate

DAs (e.g. EBNA Larrañaga et al., 2000 and BOA Pelikan et al., 1999) o

4

earn a probabilistic graphical model at each iteration in order to cap-
ure the underlying dependencies in the current population. However,
his would be needless in the MONRP because the dependencies are one
f the inputs (constraints) to the problem, and are thus known from the
ery beginning. In this section, we first briefly introduce some notions
bout EDAs, and then present our proposal, FEDA, a multivariate EDA
ith a fixed structure of dependencies to cope with the MONRP.

.1. Estimation of distribution algorithms

Stochastic global search algorithms are expected to capture the
nderlying interdependencies among items under selection, in this case,
equirements. That is why evolutionary algorithms such as GA and EDA
ypically obtain better results than local search ones.

In the EDA, the search is not guided by the use of genetic operators
ut by machine learning and inference processes. Thus, in EDA, the
oal is to use the best individuals in the population as instances to
earn the joint probability distribution (JPD) over the set of variables
o be optimised, that is, the inclusion or not of requirements, in our
ase. This probability distribution explicitly collects the relationships
etween the variables in the best individuals, and so sampling from it
hould theoretically produce a better subset of individuals (population).
owever, the JPD is intractable even for a small number of variables,
nd thus Bayesian networks (BNs) (Koller and Friedman, 2009) emerge
s the perfect candidate to model the JPD, given that their combination
f graph and probability theory allows them to properly factorise the
PD. Furthermore, many machine learning and simulation algorithms
re available in the literature to deal with BNs. Therefore, in practice,
Ns constitute the core of EDAs, giving rise to different algorithms
epending on the degree of probabilistic dependencies allowed to be
odelled by the BN.

Formally, univariate EDAs assume that the 𝑛-dimensional JPD fac-
orises as a product of 𝑛 marginal and independent probability distri-
utions, that is 𝑝𝑙(𝑥) =

∏𝑛
𝑖=1 𝑝𝑙(𝑥𝑖). The canonical representative of this

dea is the Univariate Marginal Distribution Algorithm (UMDA) (Müh-
enbein, 1997). UMDA𝑎, i.e. the adaptation of UMDA to the multi-

bjective case, starts by creating a random population, and at each
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generation it selects the non-dominated individuals of the population,
learns the probability model 𝑝𝑙 from them, and samples a new popu-
ation using 𝑝𝑙. In contrast to UMDA, in which populations are trans-
ormed into a probability model whose only purpose is to sample new
opulations, the Probability Based Incremental Learning (PBIL) (Baluja,
994) algorithm attempts to create a probability model which can be
onsidered a prototype for high evaluation vectors for the function
pace being explored. In a manner similar to the training of a competi-
ive learning network, the values in the probability model are gradually
hifted towards representing those in high evaluation vectors.

As mentioned, in order to explicitly manage the requirements in-
erdependencies, more complex EDAs are needed, that is, EDAs able
o cope with multivariate dependencies among the variables to be
ptimised. This is the case of the Estimation of Bayesian Networks
lgorithm (EBNA) (Larrañaga et al., 2000) which uses an unconstrained
ayesian Network (BN) (Koller and Friedman, 2009) to model the
ependencies between the variables. In a BN, the joint probability
istribution is factorised as:

(𝑥1,… , 𝑥𝑛) =
𝑛
∏

𝑖=1
𝑝(𝑥𝑖|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑥𝑖)), (4)

which means that a marginal probability distribution 𝑝𝑗 (𝑥𝑖) is estimated
for each configuration 𝑗 of values for 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑥𝑖). Thus, the number of
parameters to be estimated (and stored) grows exponentially on the
number of parents. If 𝑥𝑖 has no parents, a single marginal probability
distribution is estimated.

In EBNA, at each iteration, the algorithm learns a BN from a dataset
consisting of the best evaluated individuals in the current population.
This BN is then sampled in order to obtain a new population. It is
worth noting here that while the BN structure learning from data is
an NP-hard problem, sampling from it can be performed with linear
complexity on the number of variables.

4.2. FEDA-NRP

In both the basic formulations of NRP and the multi-objective
MONRP, a common input available before solving the problem is the
set of requirements dependencies or interactions. In Section 2.2 we
saw that, of the different types of interactions, implication 𝑟𝑖 ⇒ 𝑟𝑗
and combination 𝑟𝑖 ⊙ 𝑟𝑗 are the most important, with it being possible
to eliminate the latter by merging the two requirements together in
the same delivery (see example in Fig. 2). Furthermore, implications
of the type Finish-to-Start (PMI, 2021) are the most common type
of interaction in software projects, since they are internal hard-logic
dependencies with a technological sense and are usually provided by
the development team.

Therefore, we can assume that the set of requirements and their
dependencies, known in advance, can be described in the form of
a directed acyclic graph (DAG), 𝐺 = (𝑅,𝐸), where 𝑅 is the set of
requirements and 𝐸 is the set of edges which codifies the dependencies
among them. For instance, 𝐺 = (𝑅 = {𝑟0, 𝑟1, 𝑟2, 𝑟3, 𝑟4}, 𝐸 = {𝑟0 ⇒

𝑟2, 𝑟1 ⇒ 𝑟2, 𝑟2 ⇒ 𝑟4}), represents a domain with 5 requirements
{𝑟0, 𝑟1, 𝑟2, 𝑟3, 𝑟4}, such that requirements 𝑟0, 𝑟1 and 𝑟3 do not depend on
any other requirement, while 𝑟2 is directly affected by the inclusion of
𝑟0 or 𝑟1 in the selection of requirements, and 𝑟4 is directly affected by
the inclusion of 𝑟2. Fig. 3 shows the resulting graph 𝐺.

The availability of the requirements graph as domain knowledge is
of great importance because it actually represents the structure of a BN
modelling the interdependencies between all the requirements. There-
fore, we can avoid the most computationally demanding process in a
multivariate EDA, i.e. structural learning, because parameter learning
can be done in a very efficient manner once the structure is known.
However, we can go one step further by simplifying the complexity of
the BN model considered. To do so, we must be aware of the semantics
induced by the set of dependencies between the requirements. Thus,
we can observe that the inclusion of requirement 𝑟 ∈ 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑟 ) in
𝑖 𝑗

5

Fig. 3. Graph example with a prefixed structure for requirements dependencies.

the selected set of requirements is enough to force also the inclusion
of 𝑟𝑗 in the selection, regardless of whether the other requirements in
𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑟𝑗 ) have been included. On the other hand, we must consider
that 𝑟𝑗 can be selected even if no element of 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑟𝑗 ) has been
selected. This behaviour is well known in the BN literature under the
name of leaky binary noisy-OR gate (see e.g. Rohmer (2020) and Onisko
et al. (2001)):

‘‘Consider a set of 𝑛 possible causes {𝑥1,… , 𝑥𝑛} for an effect 𝑦,
such that, each cause 𝑥𝑖 can produce effect 𝑦 with probability
𝑝𝑖 independently of the presence of any other subset of causes.
Furthermore, there is a leak probability, 𝑝0, of the effect being true
even if all the causes are false’’.

The advantage of using this type of gate to model a relation
⟨𝑥𝑗 |𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑥𝑗 )⟩ in a BN is that only |𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑥𝑗 )| + 1 parameters are
eeded instead of 2|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑥𝑗 )|. In our problem, we can go even further,
ecause as a dependency 𝑟𝑖 ⇒ 𝑟𝑗 means a deterministic relation, that
s, 𝑝(𝑟𝑗 |𝑟𝑖) = 1, then 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑛 = 1, and we only have
o store the leak probability 𝑝0 of 𝑟𝑗 being true (selected) when all
ts parents are false (non selected). As a result, our proposal FEDA-
RP has the same learning and space complexity as a univariate EDA
lgorithm, e.g. UMDA, as we only have to estimate and store vector of
ength 𝑛, 𝑝𝑟𝑜𝑏𝑠[ ], containing a single parameter for each requirement:
𝑟𝑜𝑏𝑠[𝑖] = 𝑝(𝑟𝑖 = 1).

Having described the probabilistic graphical model and its ad-
vantages, which can be used as basis for our proposal FEDA-NRP
(Fixed dependency model Estimation of Distribution Algorithm for the
NRP) to cope with the MONRP, we now describe the main FEDA-NRP
parts/steps, showing its pseudocode in Algorithm 2.

A high-level overview of FEDA-NRP, as depicted in Fig. 4, performs
as follows. The population of individuals, defined by requirements
and dependencies (see Section 4.2.1), is firstly initialised following
the ancestral order of the BN structure. The algorithm manages two
different archives of non-dominated solutions: a local one containing
the NDS in the current population and a global one that contains
the NDS visited (and currently being non-dominated) from the first
iteration up to the current one. The main loop updates a global set
of NDS with the current population (see Section 4.2.2), which will be
returned at the end of the execution, as well as a local set of NDS, while
the termination condition is not met. The probability model previously
defined (see Section 4.2.3) is updated using the local set of NDS (see
Section 4.2.5). Then, a new population is sampled using the probability
model (see Section 4.2.4). Sampled individuals will respect the BN

dependencies structure and will thus not require repairing.
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Fig. 4. High-level overview diagram of FEDA-NRP.
.2.1. Individual representation
As in the rest of population-based algorithms used to solve the

ONRP, each solution (individual) is represented by a vector of
ooleans of length 𝑛 = |𝑅|, where the 𝑖th value indicates the inclusion
r not of a requirement 𝑟𝑖 in the next release.

.2.2. NDS
FEDA-NRP applies a PAES strategy, and so non-dominated solutions

ound during the search are stored. In particular, two archives are
aintained: a global one, 𝑛𝑑𝑠𝑎𝑟𝑐ℎ𝑖𝑣𝑒, containing all the non-dominated

olutions visited; and a local one, 𝑛𝑑𝑠𝑙𝑜𝑐𝑎𝑙, which contains the non-
dominated solutions in the current population. 𝑛𝑑𝑠𝑙𝑜𝑐𝑎𝑙 will be used as
the dataset to learn the parameters of the probabilistic model at each
FEDA-NRP iteration.

4.2.3. Model initialisation
Our probabilistic graphical model 𝑝𝑟𝑜𝑏𝑀𝑜𝑑𝑒𝑙 is a 𝐵𝑁 formed by

the graphical structure 𝐺 and the probabilities 𝑝𝑟𝑜𝑏𝑠[ ]. The graphical
tructure 𝐺 to be used is obtained from the problem domain, as depen-
encies between the requirements are provided as input (𝐺). The leaky
inary noisy-OR is used to model all the nodes having a non-empty set
f parents.

With respect to the parameters needed, a uniform distribution is
sed to initialise the probability of each requirement, i.e. 𝑝𝑟𝑜𝑏𝑠[𝑖] =
(𝑟𝑖 = 1) = 0.5, for 𝑖 = 1,… , 𝑛.

.2.4. Sampling
As is common in multivariate EDAs, probabilistic logic sampling

PLS) (Henrion, 1988) is used, adapted, in our case, to the use of leaky
oisy-OR gates.

First, an ancestral order 𝜎 with respect to 𝐺 is needed. That is, an
rdering of the requirements such that 𝑟𝑖 cannot precede any of its
arents. The existence of at least one ancestral order for the variables in

is guaranteed because 𝐺 is a DAG. In our notation, 𝜎[𝑖] = 𝑟𝑗 means

6

that requirement 𝑟𝑗 is placed in the 𝑖th position of the ordering. For
instance, in the graph depicted in Fig. 3, a possible topological ordering
is 𝜎 = [𝑟3, 𝑟0, 𝑟1, 𝑟2, 𝑟4].

To obtain a new sample 𝑠, we apply Algorithm 1, which iterates over
the requirements following the ordering stored in 𝜎. If the requirement
𝑟𝑖 has no parents in 𝐺, then it is selected (i.e. 𝑠[𝑖] = 1) if a random
number generated in [0, 1] is smaller than or equal to 𝑝(𝑟𝑖 = 1) (𝑝𝑟𝑜𝑏𝑠[𝑖]).
On the other hand, if 𝑟𝑖 has parents in 𝐺, then we are sure they have
been previously visited by the sampling process because of the ancestral
ordering, and thus its sampled values are already stored in 𝑠. If so,
we select the values in 𝑠 corresponding to 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑟𝑖)𝐺 (𝑠↓𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝐺 (𝑟𝑖))
and if this (sub)vector contains at least one value equal to 1, then 𝑟𝑖 is
selected because of the dependencies. Otherwise, we proceed as in the
no-parents case, sampling from the leak probability stored in 𝑝𝑟𝑜𝑏𝑠[𝑖].

4.2.5. Learning
As described in previous sections, there is no need for structural

learning in FEDA-NRP, because the graph structure is predefined (or
fixed) by the dependencies between requirements. Therefore, only
parameter learning is needed.

Because of the use of the leaky noisy-OR gate to model the nodes
corresponding to requirements with parents, we only have to estimate
the probability vector 𝑝𝑟𝑜𝑏𝑠[ ] of length 𝑛, with:

𝑝𝑟𝑜𝑏𝑠[𝑖] =

⎧

⎪

⎨

⎪

⎩

𝑝(𝑟𝑖 = 1) if 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑟𝑖) = ∅

𝑝(𝑟𝑖 = 1|𝑎𝑙𝑙 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 = 0) if 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑟𝑖) ≠ ∅

Therefore, all the probabilities required can be computed using
e.g. maximum likelihood estimation (MLE) from the frequencies ob-
tained in a single pass over the data (subset of individuals). However,
there is a special case that should be treated with caution, which is
that of a requirement 𝑟𝑖 whose value is 0 in all the individuals that
constitute the dataset, that is, 𝑟 is never selected. If we use MLE in
𝑖
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Algorithm 1 Sampling pseudocode (modified PLS)
procedure GetSample(𝑝𝑟𝑜𝑏𝑀𝑜𝑑𝑒𝑙 = (𝐺 = (𝑅,𝐸), 𝑝𝑟𝑜𝑏𝑠); 𝜎)

𝑠 ← [0, 0,… , 0] ⊳ vector of zeroes of length |𝑅|
𝑃 ← initPop(𝐺) ⊳ initialisation
evaluate(𝑃 ) ⊳ compute both MONRP objectives
for 𝑗 = 0 to |𝑅| do

𝑟𝑖 ← 𝜎[𝑗]
if 𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝐺(𝑟𝑖) ≠ ∅ then ⊳ leaky noisy-OR gate

if 𝑠↓𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝐺 (𝑟𝑖) contains at least a 1 then
𝑠[𝑖] ← 1

else if (𝑟𝑎𝑛𝑑𝑜𝑚([0, 1]) ≤ 𝑝𝑟𝑜𝑏𝑠[𝑖]) then
𝑠[𝑖] ← 1

end if
else ⊳ node with no parents

if (𝑟𝑎𝑛𝑑𝑜𝑚([0, 1]) ≤ 𝑝𝑟𝑜𝑏𝑠[𝑖]) then
𝑠[𝑖] ← 1

end if
end if

end for
return 𝑠

end procedure
Algorithm 2 FEDA-NRP pseudocode
procedure FEDA(𝐺, 𝑝𝑜𝑝𝑆𝑖𝑧𝑒, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)

𝑛𝑑𝑠𝑎𝑟𝑐ℎ𝑖𝑣𝑒 ← ∅
𝜎 ← ancestralOrdering(𝐺)
𝑝𝑟𝑜𝑏𝑀𝑜𝑑𝑒𝑙 ← initProbabilisticModel(𝐺) ⊳ Section 4.2.3
for 𝑖 = 0 to 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do

𝑃 ← samplePop(𝑝𝑟𝑜𝑏𝑀𝑜𝑑𝑒𝑙, 𝜎, 𝑝𝑜𝑝𝑆𝑖𝑧𝑒) ⊳ call 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 times Algorithm 1
evaluate(𝑃 ) ⊳ compute both MONRP objectives
𝑛𝑑𝑠𝑙𝑜𝑐𝑎𝑙 ← getLocalNDS(𝑃 )
𝑛𝑑𝑠𝑎𝑟𝑐ℎ𝑖𝑣𝑒 ← updateNDS(𝑛𝑑𝑠𝑙𝑜𝑐𝑎𝑙)
𝑝𝑟𝑜𝑏𝑀𝑜𝑑𝑒𝑙 ← learnProbModel(𝑝𝑟𝑜𝑏𝑀𝑜𝑑𝑒𝑙,𝑛𝑑𝑠𝑙𝑜𝑐𝑎𝑙) ⊳ Section 4.2.5

end for
return 𝑛𝑑𝑠𝑎𝑟𝑐ℎ𝑖𝑣𝑒

end procedure
6

𝑃

this case, 𝑃 (𝑟𝑖 = 1) will be zero, and thus solutions selecting 𝑟𝑖 will no
longer be obtained. Therefore, to avoid this undesired behaviour, we
keep the value of 𝑝𝑟𝑜𝑏𝑠[𝑖] unchanged, that is, the value is not modified
in the learning step. Evidently, some other possibilities are available,
such as smoothing (e.g. Laplace) for parameter estimation, but this one
has worked properly for the problem at hand.

4.2.6. FEDA-NRP scheme
Finally, using the previously described processes as building blocks,

the pseudocode of FEDA-NRP is shown in Algorithm 2. As can be
observed, FEDA-NRP follows a PAES strategy, that is, as explained
in Section 2.1, an 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒 is maintained along the whole process,
being updated with the set of non-dominated solutions found at each
iteration.

4.3. Example

This section provides an example based on the dependencies codi-
fied by the graph 𝐺 shown in Fig. 3, considering [𝑟3, 𝑟0, 𝑟1, 𝑟2, 𝑟4] as the
ncestral ordering for sampling.

.3.1. Model initialisation
Given 𝐺 in Fig. 3, prior probabilities for selecting requirements

ithout parents and leak probabilities for selecting requirements with
arents are set to 0.5. Thus, 𝑝𝑟𝑜𝑏𝑠 = [0.5, 0.5, 0.5, 0.5, 0.5].

.3.2. Population sampling
Let us detail the sampling of an individual by using Algorithm 1 and
= [𝑟3, 𝑟0, 𝑟1, 𝑟2, 𝑟4]. We start with 𝑠 = [0, 0, 0, 0, 0].

7

• 𝜎[0] = 𝑟3. As 𝑟3 has no parents in 𝐺, we sample a random uniform
number in [0, 1], say 𝑢 = 0.72. As 𝑢 ≤ 𝑝(𝑟3 = 1)? (0.72 ≤ 0.5?) is
false, 𝑠[3] remains 0.

• 𝜎[1] = 𝑟0. As 𝑟0 has no parents in 𝐺, we sample a random uniform
number in [0, 1], say 𝑢 = 0.91. As 𝑢 ≤ 𝑝(𝑟0 = 1)? (0.91 ≤ 0.5?) is
false, 𝑠[0] remains 0.

• 𝜎[2] = 𝑟1. As 𝑟1 has no parents in 𝐺, we sample a random uniform
number in [0, 1], say 𝑢 = 0.51. As 𝑢 ≤ 𝑝(𝑟1 = 1)? (0.51 ≤ 0.5?) is
false, 𝑠[1] remains 0.

• 𝜎[3] = 𝑟2. As 𝑟2 has {𝑟0, 𝑟1} as parents, we first check whether 𝑠[0]
or 𝑠[1] are 1. As this is not the case, we sample a random uniform
number in [0, 1], say 𝑢 = 0.17. As 𝑢 ≤ 𝑝(𝑟2 = 1|𝑠0 = 𝑠1 = 0)?
(0.17 ≤ 0.5?) is true, we set 𝑠[2] = 1.

• 𝜎[4] = 𝑟4. As 𝑟4 has {𝑟2} as parent, we first check whether 𝑠[2] is
1. As this is the case we directly set 𝑠[4] = 1.

Therefore, our sample is 𝑠 = [0, 0, 1, 0, 1]. Let us consider 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 =
, and that the sampling process produces:

= {[0, 0, 1, 0, 1]; [0, 0, 0, 0, 1]; [0, 0, 1, 1, 1]; [0, 0, 0, 0, 0];

[0, 1, 1, 0, 1]; [1, 1, 0, 1, 1]}

4.3.3. Selecting non-dominated solutions
Let us assume that, after evaluating the population, the following

set of non-dominated solutions are identified:

𝑛𝑑𝑠𝑙𝑜𝑐𝑎𝑙 = {[0, 0, 1, 0, 1]; [0, 0, 0, 0, 1]; [0, 0, 0, 0, 0]; [1, 1, 0, 1, 1]}

They will constitute our local archive of NDS as well as the global

one, because this is the first iteration of FEDA-NRP.
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Fig. 5. Marginal/conditional probabilities for each requirement.

.3.4. Probabilistic model learning
By taking 𝑛𝑑𝑠𝑙𝑜𝑐𝑎𝑙 = {[0, 0, 1, 0, 1]; [0, 0, 0, 0, 1]; [0, 0, 0, 0, 0];

[1, 1, 0, 1, 1]} as our dataset, we simply compute the proper frequencies
to estimate the new 𝑝𝑟𝑜𝑏𝑠 vector.

• 𝑝𝑟𝑜𝑏𝑠[0] = 𝑝(𝑟0 = 1) = 1
4 = 0.25

• 𝑝𝑟𝑜𝑏𝑠[1] = 𝑝(𝑟1 = 1) = 1
4 = 0.25

• 𝑝𝑟𝑜𝑏𝑠[2] = 𝑝(𝑟2 = 1|𝑟0 = 𝑟1 = 0) = 1
3 = 0.33

• 𝑝𝑟𝑜𝑏𝑠[3] = 𝑝(𝑟3 = 1) = 1
4 = 0.25

• 𝑝𝑟𝑜𝑏𝑠[4] = 𝑝(𝑟4 = 1|𝑟2 = 0) = 2
3 = 0.67

Please note that for requirements having a non-empty set of parents
𝑟2 and 𝑟4), only the individuals for which all the parents have a value
qual to zero are considered to compute the estimated probability.

Therefore, the new probabilistic model to be used in the next
teration has the fixed graphical structure and parameters 𝑝𝑟𝑜𝑏𝑠 =
0.25, 0.25, 0.33, 0.25, 0.67]. Fig. 5 shows the result.

. Experimental framework

We performed an exhaustive experimentation not only with our
roposed method FEDA-NRP but also, for comparison reasons, with
nivariate and bivariate EDAs (UMDA, PBIL, MIMIC), and two ad-
anced multi-objective genetic algorithms: AGE-MOEA-II and C-TAEA,
ll adapted to deal with dependencies. Due to the lack of public NRP
atasets, we sampled a corpus with instances of software products
anaged under different contexts, which also constitutes an important

ontribution of this work. In the following sections, we introduce the
ampling process and the resulting datasets. We then provide some
etail about the quality metrics used for the evaluation. Finally, we
xplain the methodology followed in the execution of the different
lgorithms and the results obtained.

.1. Datasets

In 2015, Chaves-Gonzalez et al. (2015) explained that due to the
rivacy policies followed by software development companies, the only
wo publicly available datasets were those included in their work,
hich we denote as p1 (Greer and Ruhe, 2004) and p2 (del Sagrado
t al., 2015) in Table 1 (p stands for public). These public datasets have
low number of requirements, and present only a few implication and

ombination dependencies.
Later, Almeida et al. (2018) dealt with several corpuses of different
izes and interactions complexity: Classic and Realistic datasets (Ren

8

et al., 2012), and a new corpus of their own sampling. Souza et al.
deal with 72 synthetic datasets in Souza et al. (2011), with a number
of requirements from 20–50 and implication interactions with a density
of implications of up to 20% of requirements; however, they are not
public yet. Apart from Greer and Ruhe (2004) and del Sagrado et al.
(2015), we also found two public datasets in Karim and Ruhe (2014);
however their complexity is similar to p1 and p2, and thus we do not
consider them, as our goal is to deal with more complex instances.

In the absence of public datasets of higher dimensionality, we
decided to sample synthetic datasets with a wide range in the number of
requirements, stakeholders, number of implication interactions, density
of interactions and average length of implied requirements by the
same requirement. The reason we are interested in a large range in
the number of requirements is that software projects may contain not
only tens of requirements, but in the order of hundreds. This is even
more common in projects managed in a plan-driven manner, where
requirement elicitation results in a very large output of features to be
developed.

Furthermore, we decided to sample datasets related to both projects
managed under classic and agile methodologies. Thus, we generated
four agile and four classic datasets (named aX and cX). Lastly, we
sampled the dX datasets with a classic management context, similar to
in 𝑐𝑋, but with a greater complexity in requirements and dependencies.
Table 1 summarises the different properties of the public and synthetic
datasets sampled and used in our experiments. Our corpus can be
divided into four kinds of datasets:

• 𝑝𝑋 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠: two small datasets used in several works, such as
in del Sagrado et al. (2015). p1 comes from a real dataset, and it
has very few requirements (20) and also very few dependencies
(7). p2, a public synthetic dataset, provides a more realistic
dataset in the sense of its complexity, although the number of
dependencies and requirements is still quite small.

• 𝑎𝑋 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠: commonly, agile projects have a low number of ac-
tively managed stakeholders, although the received buy-in in the
development of the product is more constant. Thus, aX datasets
present a lower number of stakeholders. Since requirements are
not decided a priori, with a long elicitation process, requirements
and dependencies between them are not typically large for a
given minor or functional release. Thus, we produced datasets
with few dependencies and requirements. On the other hand, two
aX datasets have many requirements. Effort estimations are com-
puted using a Fibonacci scale, similar to common agile estimation
techniques.

• 𝑐𝑋 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠: classic or plan-driven datasets tend to have many
requirements and, due to long and expensive planning, also nu-
merous dependencies. Furthermore, due to usual processes of
managing stakeholders interests, it is also common to identify
more stakeholders than in agile datasets. Effort values were simu-
lated by using the Function Points (FP) size metric extracted from
the 2015 version of the International Software Benchmarking
Standards Group3 (ISBSG) dataset, using the two highest cate-
gorical values from the Unadjusted Function Points rating column,
‘New development’ from Development type and ‘IFPUG 4+’ from
the Count approach column. This procedure is used to generate
percentiles 25, 50, 75 of total FP of a classic project, in order to
generate a realistic sample of a classic estimation of requirements.
This size generation is done by selecting randomly, for a given
number of requirements, a list of costs that sums up to the
percentile value.

• 𝑑𝑋 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠: following the same procedure as in cX, we simulate
the most complex classic projects, with the largest number of
requirements and dependencies. In fact, this is the case in which
the MONRP might be of greater help for the decision-maker.

3 https://www.isbsg.org/.

https://www.isbsg.org/
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Table 1
Datasets used in our experiments: 2 public dataset, 4 agile, 4 low scale classic, and 4
large scale classic management.

Dataset #Stakeholders |𝑅| 𝑂 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝐷

p1 5 20 7 0.350 1.857
p2 5 100 29 0.290 2.690
a1 5 50 18 0.360 2.222
a2 15 50 18 0.360 2.722
a3 5 200 74 0.370 1.946
a4 15 200 75 0.375 2.253
c1 15 50 20 0.400 2.400
c2 100 50 17 0.340 3.529
c3 15 200 69 0.345 1.942
c4 100 200 75 0.375 2.093
d1 15 200 88 0.440 3.352
d2 50 200 88 0.440 4.852
d3 15 300 131 0.437 3.771
d4 50 300 145 0.483 3.697

Table 1 summarises all the datasets used in this work. |𝑅| is the
number of requirements, 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒(𝑟𝑖) is the number of requirements
implied by requirement 𝑟𝑖, and 𝑂 is the number of requirements with
an implication dependency towards one or more requirements, as ex-
pressed in Eq. (5). %𝑅 is 𝑂∕|𝑅|, that is, the percentage of requirements
in the dataset which imply other(s) requirement(s), and is referred to
as density, ranging [0,1]. Finally, 𝐷 is the average number of implica-
tions in requirements with implication interaction with one or more
requirements (Eq. (6)).

𝑂 =
|𝑅|
∑

𝑖=1
𝐼(𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒(𝑟𝑖) > 0) (5)

𝐷 =
∑

|𝑅|
𝑖=1 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒(𝑟𝑖)

𝑂
(6)

The benchmark of datasets created is publicly available for down-
load in Pérez-Piqueras et al. (2022).

5.2. Algorithms

Apart from FEDA, three well-known EDA algorithms form part of
our experimentation framework (UMDA, PBIL and MIMIC) and two
recent multi-objective genetic algorithms (AGE-MOEA-II and C-TAEA)
that are capable of dealing with dependencies. These were found to
perform better than the NSGA-II (Deb et al., 2002) and NSGA-III (Deb
and Jain, 2014), two advanced versions of NSGA (Srinivas and Deb,
1994), which is commonly used for comparison in MONRP studies.

• AGE-MOEA-II (Adaptive Geometry Estimation based MOEA II)
(Panichella, 2022) is presented and evaluated, being found it out-
performs (in the hypervolume indicator) four multi- and many-
objective evolutionary algorithms, using a novel method to model
the non-dominated front.

• C-TAEA (Li et al., 2019), an Evolutionary Algorithm that main-
tains two archives (one for convergence and the other for diver-
sity) during a constrained search, outperforming in a benchmark
of multi- and many-objective problems with a relatively small
number of variables (requirements if applied to MONRP).

Since datasets p1 and p2 contain combination interactions (𝑟𝑖⊙𝑗),
those dependencies were eliminated by joining both requirements in a
new one 𝑟𝑖,𝑗 , as in del Sagrado et al. (2015). The two genetic algorithms
are explicitly designed to deal with dependencies.

The five competing algorithms, UMDA, PBIL, MIMIC, AGE-MOEA-II
and C-TAEA, were adapted to deal with implication dependencies in
a straightforward manner. Thus, after generating a set of individuals,
if an individual contains 𝑟𝑖 with 𝑟𝑖 ⇒ 𝑟𝑗 , then 𝑟𝑗 is also set in the
individual vector of selected requirements.
9

FEDA-NRP and all the competing algorithms maintain the
𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒 through their execution. Since the competing algorithms
were adapted, we refer to them as UMDA𝑎, PBIL𝑎, MIMIC𝑎, AGE-MOEA-
II𝑎 and C-TAEA𝑎 .

.3. Evaluation indicators

The following are some of the most commonly applied and reli-
ble quality metrics used to assess both convergence and diversity of
olutions:

• Hypervolume (HV) (Zitzler and Thiele, 1998). This is the most
widely used metric to assess Pareto fronts in multi-objective
problems in SBSE. It denotes the space covered by the set of non-
dominated solutions. In order to compute it, a reference point
is needed, which should be the same for all algorithms under
comparison.

• Unique Nondominated Front Ratio (UNFR) (Li et al., 2020). This
metric requires computing a Pareto reference (PRef), which is a
set of non-dominated solutions obtained by merging all Pareto
fronts returned by the algorithms being evaluated after their
execution. Thus, UNFR measures the ratio of solution points in the
PRef that belong to the solution set of the evaluated algorithm.
That is, it measures the contribution (from 0 to 1) of an algorithm
to the PRef.

• Generational Distance+ (GD+) (Veldhuizen and Lamont, 1998).
This covers the convergence aspect of the quality of a solution
set, measuring the Euclidean distance of the solution set to the
ideal PRef. Consequently, this metric is to be minimised. For each
solution, its GD is the minimum of the distances to each point
in the Pareto front. In order to make GD compliant with Pareto
dominance, GD+ enhances GD by measuring distances between
points, using only the objective coordinates that are superior in
the PRef to those from the solutions set being measured.

• 𝛥-Spread (Deb, 2001). This measures the dispersion of the solu-
tions in the Pareto front. Thus, the smaller the 𝛥 value is for a set
of non-dominated solutions, the better (more uniform).

HV may serve as a general representation of the four quality aspects,
but the other three metrics give a more granular detail of spread and
uniformity (𝛥-Spread), convergence (GD+), and cardinality related to
the PRef (UNFR).

5.4. Evaluation

Since datasets are sampled using different scales for agile and classic
types, evaluation of Satisfaction and Cost of each solution vector is
computed with a prior scaling of requirement value and cost, using
a min–max normalisation. Consequently, all non-dominated solutions
returned by the executed algorithms are in the range [0,1].

Based on guidance by Ishibuchi et al. (2022, 2020) for fair com-
parison, we compute all metrics from a subset selection of solutions
from the resulting 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒. Concretely, we run a hypervolume-based
greedy forward subset selection to choose 10 solutions.

With regard to HV, it is always computed using the same reference
point. In order to decide an appropriate reference point, we drew on
the guidance in Li et al. (2020) to set the HV reference point in a
bi-objective problem:

𝑟𝑒𝑓𝑥 = 𝑛𝑎𝑑𝑖𝑟𝑥 + 𝑟𝑎𝑛𝑔𝑒𝑥∕10
𝑟𝑒𝑓𝑦 = 𝑛𝑎𝑑𝑖𝑟𝑦 + 𝑟𝑎𝑛𝑔𝑒𝑦∕10
The nadir point is the worst point found by algorithms during a

search. Since we normalise both Satisfaction and Cost, our worst value
is 1 for both metrics (Satisfaction is plotted as 1 − Satisfaction). Range
is the difference between the best and worst point found. The best
possible value for each metric is 0, so the x and y values of the reference
oint for both goals are set as:

𝑟𝑒𝑓𝑥 = 𝑟𝑒𝑓𝑦 = 1 + (1 − 0)∕10 = 1.1
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Regarding the GD+ metric, the necessary PRef is a proxy set for the
ideal Pareto front. Thus, we build the PRef filtering the non-dominated
solutions set from a pool made of all the 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒 sets found by all
the algorithms executed under all the hyperparameter configurations
detailed in Section 5.5.

Finally, it is worth mentioning an important aspect of the UNFR
metric. In the case of this work, since the PRef is obtained from such
a great number of algorithms and configuration combinations (see
Section 5.5), it presents a high number of solutions. Furthermore, each
algorithm is not evaluated using all solutions from its corresponding
𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒, but using a selected subset of 10 points from its correspond-
ing 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒. Thus, the UNFR value for each algorithm tends to be
quite low, and the maximum possible is never 1, since |𝑃𝑅𝑒𝑓 | ≫ 10.
In any event, greater UNFR values are desirable.

5.5. Experiment configuration

Each algorithm is executed 30 times. After each execution, a set
 of 10 solutions is selected from 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒 to compute HV and 𝛥-
pread metrics. In the case of GD+ and UNFR, they cannot be computed
ntil the PRef is constructed; that is, until the 30 executions for all
lgorithms have finished. Then, GD+ and UNFR are computed from the
et  obtained in each execution. Finally, all the metrics are averaged
ver the 30 runs.

Lastly, with respect to the hyperparameter configuration of algo-
ithms (population size, maximum number of generations, . . . ), we
ollow the recommendations in Ishibuchi et al. (2022), which suggest
hat algorithms should be run under their best possible configuration.
hus, the experimental results for algorithms shown in Section 5.7
ome from the 30 executions of each algorithm under its best con-
iguration found. Appendix contains the range of values for each
yperparameter, and we identify the best configuration found for each
lgorithm after evaluating a grid search over all the hyperparameters.
wo hyperparameters are common in all algorithms (Population Size
nd Number of Iterations), with values: Population Size = {100, 200,
00, 700, 1000} and #Iterations = {50, 100, 200, 300, 400}. All
lgorithms yield their best results (measured by HV) when using a
opulation Size = 1000, the maximum value among the 5 given for
his hyperparameter. With respect to the number of iterations, all
lgorithms but UMDA𝑎 need many iterations to converge, usually the
aximum (400) or almost the maximum (300 in FEDA) value among

he possible ones. UMDA𝑎 seems to converge very quickly, since in
out of 14 datasets it yields its best results with just 100 or fewer

enerations, in both agile and classic projects.

.6. Reproducibility

All experiments were run under the same runtime environment. The
achines used had 32 Gb of RAM, of which only 8 Gb were used, and

wo 3.00 GHz 4-core Intel Xeon E5450 processors. The operating system
sed was a CentOS Linux 7 with a 64-bit architecture. All the algo-
ithms and the experimentation setup were implemented by the authors
f this work using Python 3.8.8, with the exception of the AGE-MOEA-II
nd C-TAEA algorithms, which were run using the Python-based Pymoo
ackage (Blank and Deb, 2020). All our code is available at the fol-
owing repository: https://github.com/UCLM-SIMD/MONRP/tree/eng_
pp_ai23; the sampled datasets are also available at the following
epository: https://doi.org/10.5281/zenodo.7247877 (Pérez-Piqueras
t al., 2022). Additional packages and libraries used to support numeric
perations, metric calculations and data visualisation can be found in
he list of package requirements inside the GitHub repository, with
he following being the most important packages: matplotlib, numpy,

andas, scipy, pymoo. t

10
Table 2
Quality metrics in datasets: public (𝑝𝑋) and agile (𝑎𝑋).

Dataset Method HV UNFR GD+ 𝛥-Spread ∣NDS∣

p1 UMDA𝑎 0.898 0.070 0.036 0.642 35.8
PBIL𝑎 0.908 0.079 0.028 0.532 38.7
MIMIC𝑎 0.835 0.105 0.063 0.650 39.0
AGE-MOEA-II𝑎 0.908 0.079 0.028 0.532 40.0
C-TAEA𝑎 0.888 0.059 0.037 0.621 20.4
FEDA-NRP 0.895 0.053 0.039 0.685 35.3

p2 UMDA𝑎 0.780 0.002 0.046 0.559 145.0
PBIL𝑎 0.732 0.002 0.017 0.572 101.5
MIMIC𝑎 0.817 0.001 0.019 0.597 350.8
AGE-MOEA-II𝑎 0.794 0.019 0.007 0.641 326.6
C-TAEA𝑎 0.680 0.013 0.026 0.639 173.6
FEDA-NRP 0.793 0.001 0.033 0.602 209.7

a1 UMDA𝑎 0.864 0.022 0.030 0.576 67.0
PBIL𝑎 0.897 0.046 0.003 0.608 110.8
MIMIC𝑎 0.850 0.029 0.028 0.561 131.7
AGE-MOEA-II𝑎 0.898 0.056 0.006 0.531 133.5
C-TAEA𝑎 0.838 0.055 0.003 0.551 90.7
FEDA-NRP 0.873 0.011 0.018 0.581 94.9

a2 UMDA𝑎 0.929 0.047 0.028 0.592 47.2
PBIL𝑎 0.974 0.077 0.003 0.610 73.6
MIMIC𝑎 0.913 0.043 0.034 0.596 79.1
AGE-MOEA-II𝑎 0.989 0.105 0.000 0.626 81.5
C-TAEA𝑎 0.890 0.095 0.007 0.652 48.1
FEDA-NRP 0.943 0.013 0.018 0.631 51.0

a3 UMDA𝑎 0.803 0.002 0.067 0.581 126.5
PBIL𝑎 0.656 0.002 0.028 0.570 62.9
MIMIC𝑎 0.814 0.000 0.052 0.606 85.4
AGE-MOEA-II𝑎 0.772 0.016 0.013 0.656 307.6
C-TAEA𝑎 0.665 0.013 0.034 0.686 189.5
FEDA-NRP 0.824 0.003 0.048 0.592 153.9

a4 UMDA𝑎 0.792 0.001 0.064 0.587 143.4
PBIL𝑎 0.658 0.001 0.024 0.568 64.6
MIMIC𝑎 0.805 0.000 0.049 0.585 80.5
AGE-MOEA-II𝑎 0.746 0.014 0.013 0.633 324.3
C-TAEA𝑎 0.647 0.010 0.034 0.659 182.2
FEDA-NRP 0.802 0.003 0.052 0.617 170.3

5.7. Results

We ran the six algorithms under comparison (FEDA, UMDA𝑎, PBIL𝑎,
MIMIC𝑎, AGE-MOEA-II𝑎 and C-TAEA𝑎) using their best hyperparameter
configuration found (see Appendix), and run over our corpus of 14
datasets (Section 5.1).

In this section, we provide the values obtained for each dataset
in the four quality metrics (HV, UNFR, GD+, Spread) and the mean
cardinality of the final 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒. We also show a visual indicator
scatter plot) for qualitative assessment.
Quality metrics
In Tables 2, 3 and 4, for each dataset, we highlight in bold the best

etric value among the six algorithms.
The most important and widely used quality metric in the literature

s HV, since it is Pareto compliant and summarises the four dimensions
o be assessed on solution vectors.

With respect to the datasets with the lowest complexity, that is,
hose with fewer than 200 requirements (𝑝1-𝑎2, 𝑐1, 𝑐2), it can be
bserved that there is no clear winner for the HV metric; with AGE-
OEA-II𝑎 being that with more wins (three out of six datasets). On the

ther hand, FEDA-NRP is the winner in the case of the datasets with
he highest complexity in terms of number of requirements (|𝑅|) and

(see Table 1). Our proposed FEDA-NRP reaches the highest hyper-
olume in all cases but one (𝑎4 with 200 requirements, .802 vs .805
n MIMIC). That is, as the number of requirements and requirements
nteractions increases, FEDA-NRP is able to find better solution subsets
han the other algorithms. Furthermore, the greatest outperformance
f FEDA-NRP with respect to the other algorithms is in 𝑑𝑋 datasets
hat represent classic-managed software products, with this scenario

https://github.com/UCLM-SIMD/MONRP/tree/eng_app_ai23
https://github.com/UCLM-SIMD/MONRP/tree/eng_app_ai23
https://github.com/UCLM-SIMD/MONRP/tree/eng_app_ai23
https://doi.org/10.5281/zenodo.7247877
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Table 3
Quality metrics in classic (𝑐𝑋) datasets.

Dataset Method HV UNFR GD+ 𝛥-Spread ∣NDS∣

c1 UMDA𝑎 0.882 0.027 0.030 0.607 79.3
PBIL𝑎 0.903 0.043 0.004 0.615 105.7
MIMIC𝑎 0.888 0.039 0.016 0.602 143.5
AGE-MOEA-II𝑎 0.924 0.052 0.005 0.661 135.0
C-TAEA𝑎 0.846 0.056 0.002 0.633 93.5
FEDA-NRP 0.897 0.014 0.017 0.605 90.2

c2 UMDA𝑎 0.858 0.020 0.051 0.563 69.6
PBIL𝑎 0.942 0.046 0.003 0.603 103.5
MIMIC𝑎 0.848 0.025 0.030 0.618 159.0
AGE-MOEA-II𝑎 0.945 0.055 0.003 0.607 142.3
C-TAEA𝑎 0.802 0.045 0.011 0.601 97.2
FEDA-NRP 0.932 0.038 0.007 0.556 98.3

c3 UMDA𝑎 0.878 0.003 0.063 0.570 65.7
PBIL𝑎 0.741 0.003 0.039 0.652 36.9
MIMIC𝑎 0.884 0.002 0.050 0.605 50.1
AGE-MOEA-II𝑎 0.869 0.033 0.014 0.648 131.9
C-TAEA𝑎 0.747 0.029 0.024 0.672 76.8
FEDA-NRP 0.906 0.003 0.044 0.638 57.4

c4 UMDA𝑎 0.820 0.001 0.077 0.583 61.0
PBIL𝑎 0.734 0.004 0.041 0.602 48.4
MIMIC𝑎 0.817 0.004 0.046 0.633 56.3
AGE-MOEA-II𝑎 0.795 0.042 0.011 0.663 95.2
C-TAEA𝑎 0.670 0.032 0.032 0.684 67.8
FEDA-NRP 0.850 0.004 0.051 0.615 59.5

Table 4
Quality metrics in complex classic (𝑑𝑋) datasets.

Dataset Method HV UNFR GD+ 𝛥-Spread ∣NDS∣

d1 UMDA𝑎 0.794 0.003 0.072 0.563 123.8
PBIL𝑎 0.720 0.002 0.039 0.582 71.2
MIMIC𝑎 0.803 0.001 0.055 0.592 77.2
AGE-MOEA-II𝑎 0.711 0.016 0.016 0.674 278.1
C-TAEA𝑎 0.610 0.011 0.036 0.704 161.7
FEDA-NRP 0.810 0.003 0.052 0.594 141.5

d2 UMDA𝑎 0.801 0.003 0.056 0.571 147.9
PBIL𝑎 0.693 0.001 0.026 0.575 79.6
MIMIC𝑎 0.795 0.000 0.047 0.567 81.9
AGE-MOEA-II𝑎 0.721 0.014 0.016 0.652 322.4
C-TAEA𝑎 0.619 0.012 0.033 0.671 211.5
FEDA-NRP 0.808 0.002 0.047 0.596 200.3

d3 UMDA𝑎 0.763 0.001 0.07 0.570 124.1
PBIL𝑎 0.644 0.002 0.033 0.563 71.0
MIMIC𝑎 0.757 0.000 0.061 0.612 74.6
AGE-MOEA-II𝑎 0.649 0.014 0.023 0.663 236.6
C-TAEA𝑎 0.569 0.011 0.041 0.700 147.5
FEDA-NRP 0.798 0.002 0.045 0.600 166.1

d4 UMDA𝑎 0.750 0.001 0.066 0.569 148.0
PBIL𝑎 0.645 0.002 0.032 0.572 80.3
MIMIC𝑎 0.750 0.000 0.056 0.583 79.6
AGE-MOEA-II𝑎 0.630 0.012 0.022 0.673 295.8
C-TAEA𝑎 0.554 0.007 0.040 0.709 190.5
FEDA-NRP 0.779 0.001 0.045 0.606 192.4

being where the MONRP is most commonly applied and more useful
due to the need for long-term planning. Fig. 6 shows the mean HV for
each algorithm as the number of requirements increases. Together with
requirements, the number and density of dependencies also increases.
Thus, the search space is more difficult to explore since it is much more
restricted. Consequently, the diversity of solutions tends to decrease
as well as the HV. In the case of a larger number of requirements
(200 and 300), FEDA-NRP presents a better average HV than the other
algorithms. This difference in HV (distance from the FEDA-NRP brown
line to the other lines) increases with the number of requirements.
This can be better appreciated in Fig. 7, which shows the difference in
the mean HV, between FEDA-NRP and each of the other algorithms,
ordered by number of requirements. As can be seen, this difference
increases in all cases when the number of requirements exceeds 100,
particularly in the case of PBIL𝑎 and the two recent multi-objective
11
Fig. 6. Mean hypervolume in datasets with the same number of requirements.

Fig. 7. FEDA-NRP diverges from the rest of algorithms, in terms of hypervolume, as
the number of requirements increases.

algorithms AGE-MOEA-II𝑎 and C-TAEA𝑎. It is also of interest to mention
that only when datasets have more than 100 requirements does FEDA-
NRP start to diverge from MIMIC𝑎. With 300 requirements, FEDA-NRP
is not just superior in HV to all algorithms, but is also much faster
than its main competitors (AGE-MOEA-II𝑎, C-TAEA𝑎, and MIMIC𝑎), as
explained later in the Time discussion.

Looking at Table 4, it might seem that FEDA-NRP obtains the best
HV values because of the high cardinality of the final 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒
obtained. However, as previously stated, all the metrics are computed
from a subset of the same size (10). Thus, it is worth recalling here that
in pursuit of a fair comparison (see Section 5.4) all quality metrics are
computed from solution sets of the same size.

Nevertheless, in complex datasets and when the focus is not set on
HV but on quality metrics that measure just one of the four measure-
ment aspects of non-dominated sets, AGE-MOEA-II𝑎 performs the best
in terms of UNFR and GD+, and UMDA𝑎 performs the best in terms of
𝛥-Spread. With respect to these metrics, it is again worth mentioning
that, as explained in Section 5.4, since PRef is computed from all the
solutions found by all the algorithms, the UNFR computed for a given
algorithm is always very low and far from 1. For example, in dataset p1,
the PRef is made up of 38 points. Since each execution of an algorithm
returns a 10-points subset from the resulting 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒, its maximum
UNFR possible is 10/38 = 0.2632.

Statistical analysis of quality metrics
For each metric, we run the Friedman test, a non-parametric group

test for dependent samples (the same 14 datasets are used as input
in the 6 algorithms). When the Friedman test detects a significant
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Table 5
Mean values for each algorithm in less and more complex datasets.

Method HV UNFR GD+ 𝛥-Spread

Simple datasets (|𝑅| ≤ 100)

UMDA𝑎 0.868 0.031 0.037 0.590
PBIL𝑎 0.893 0.049 0.009 0.590
MIMIC𝑎 0.858 0.040 0.032 0.604
AGE-MOEA-II𝑎 0.910 0.061 0.008 0.600
C-TAEA𝑎 0.824 0.054 0.014 0.616
FEDA-NRP 0.889 0.022 0.022 0.610

Complex datasets (|𝑅| ≥ 200)

UMDA𝑎 0.800* 0.002* 0.067* 0.574∙
PBIL𝑎 0.686* 0.002* 0.033 0.586*
MIMIC𝑎 0.803* 0.001* 0.052* 0.598
AGE-MOEA-II𝑎 0.737* 0.020∙ 0.016∙ 0.658*
C-TAEA𝑎 0.635* 0.016* 0.034* 0.686*
FEDA-NRP 0.822∙ 0.003* 0.048* 0.607*

difference between the compared algorithms, a post hoc test is run:
pairwise comparisons with Wilcoxon signed-rank test, with correction
of the 𝑝-value for multiple comparisons reducing the false discovery
rate. A significance level of 5% was used. Table 5 shows the mean value
obtained for each metric, distinguishing between simple datasets (≤100
requirements) and the most complex datasets (≥200 requirements). If
the post-hoc test shall be run (because the Friedman test is significant),
then we mark with ∙ the algorithm with the best mean value, and then
with * the algorithms found to be statistically different from the control
algorithm in the post-hoc tests. Thus, if an algorithm is not marked
with *, it is not significantly different from the control. Conclusions
vary from simple to complex datasets; that is, the best performing
algorithms depend on the number of requirements and dependencies.
When dealing with simple datasets (𝑝1, 𝑝2, 𝑎1, 𝑎2, 𝑐1 and 𝑐2), the post-
hoc tests find no algorithm to be statistically worse than the control
algorithm, in any of the quality indicators.

In the case of algorithms with more dependencies and requirements
(𝑎3, 𝑎4, 𝑐3, 𝑐4, 𝑑1-𝑑4), which is the target of our proposal, FEDA-NRP
obtains the highest HV, being significantly better than UMDA, PBIL,
MIMIC, AGE-MOEA-II and C-TAEA (all the algorithms). In the case of
our interest lying in metrics which solely reflect one quality dimension
with respect to closeness to PRef, then AGE-MOEA-II is the one which
performs the best. That is, it finds most of its solutions close to, or on,
the PRef, but as can been seen in the visual indicators (plots), this is at
the cost of finding medium or high Cost solutions. However, although
not shown here for the sake of clarity, the execution time of AGE-
MOEA-II, together with C-TAEA, is much greater than that of any of
the other algorithms. This, supports us in recommending FEDA-NRP
rather than any of the other algorithms in our experimental framework
(see Time discussion below) for the case of problems (software projects)
with a high number of requirements to be planned.

As a final comment on these results, let us analyse the role played
by the type of BN used as graphical model in the different EDAs
considered. If we focus on the degree of dependencies allowed, we can
order the models as FEDA-NRP (multivariate) ≻ MIMIC (bivariate) ≻
UMDA and PBIL (univariate). Thus, comparing them can be viewed as
a sort of ablation study where, at each step, we reduce the number of
dependencies allowed, thus simplifying the graphical model. From the
results in Table 5, in particular for the complex cases, which are the
main target of this proposal, we can observe that the rank is exactly
FEDA-NRP ≻ MIMIC ≻ UMDA ≻ PBIL. Therefore, as expected, the
expressiveness of the Bayesian networks considered plays a key role
in the behaviour of the corresponding EDA.

Visual indicator with plotting of solution subsets
Apart from quality metrics, visual indicators are also useful not only

to qualitatively assess the goodness of the solutions subsets, but also
to compare the regions in which each algorithm behaves the best. If
the decision-maker prefers middle or knee solutions, algorithms with
12
Fig. 8. Visual indicator of algorithm searches for dataset a1.

high HV would again be the best choice. In this work, we present three
plots as visual indicators for three datasets with different number of
requirements: a1 (|𝑅| = 50), c3 (|𝑅| = 200) and d3 (|𝑅| = 300), although
the complete set of images is available in the public repository.4 In
Figs. 8–10, for each algorithm, we show the  found in one of the
30 executions. Since || is set to 10, we plot the Pareto Front with
a line across the 10 points. Evidently, statistical tests and values in
tables are computed from the 30 executions. The PRef constructed is
plotted in order to qualitatively assess the goodness of each algorithm
with respect to the optimal Pareto front, and is also constructed using
all the points from all the execution for all algorithms, thus seeking to
define an ideal Pareto Front.

Fig. 8 shows that in the case of a small dataset, all the algorithms are
capable of searching through the balanced (knee) solutions area. PBIL𝑎,
MIMIC𝑎 and FEDA-NRP are the only ones that find close solutions in the
areas that minimise the Cost of development, while FEDA-NRP is the
only one capable of finding extreme solutions in the area of Satisfaction
maximisation. Similar behaviour is observed in the rest of the datasets
with a low number of attributes. With this case being more common in
agile project management, because requirements are created dynami-
cally, any of the mentioned algorithms would be a good choice to solve
the MONRP in such contexts. As shown in Table 5, in less complex
datasets, there is no significant difference for HV, and so a good choice
would be to use the fastest of the four mentioned algorithms, which are
FEDA-NRP and PBIL𝑎 (see Time discussion below).

With regards to classic management datasets with greater complex-
ity in terms of requirements and dependencies, we can observe the
behaviour of the algorithms in Figs. 9 and 10. The scatter plot in Fig. 9
shows that PBIL𝑎 only remains close to PRef in the Cost minimisation
area, and is unable to find solutions in the balanced (knee) or maximi-
sation (extreme right) zones for Satisfaction. Thus, its performance in
terms of HV decreases drastically with the increase in the complexity
of the project, which is exactly the opposite in the case of FEDA. As can
be seen, AGE-MOEA-II𝑎 and C-TAEA𝑎 solutions both fail at minimising
Cost and can only maximise Satisfaction; furthermore, not only does
FEDA-NRP find balanced solutions close to PRef, but is also able to
find solutions along the entire search space, returning solutions which
minimise Cost, maximise Satisfaction or balances both objectives.

A similar situation can be interpreted from Fig. 10: PBIL𝑎 really
contributes to the PRef in solutions that minimise Cost until the limit in
which balanced (knee) solutions start. Exactly the opposite happens for
AGE-MOEA-II𝑎 and C-TAEA𝑎, which contribute to the PREF in solutions
that maximise Satisfaction until the balanced solutions area starts,

4 https://github.com/UCLM-SIMD/MONRP/tree/eng_app_ai23.

https://github.com/UCLM-SIMD/MONRP/tree/eng_app_ai23
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Fig. 9. Visual indicator of algorithm searches for dataset c3.

Fig. 10. Visual indicator of algorithm searches for dataset d3.

hich is where FEDA-NRP outperforms in the search process, in terms
f closeness to PRef and, in general, in HV. Thus, it is visually clear
corroborated from results in Table 4) that FEDA-NRP would be the
est option to be applied in large and complex datasets, specially in
hose commonly found in classic project management.

We thus prove that our proposed method is able to successfully use
he knowledge about dependencies in the learning and sampling phases
f EDA, which truly helps to find good solution sets in large datasets
hile maintaining a linear memory complexity similar to univariate
lgorithms such as UMDA.

With the help of the visual indicators, we have found that MIMIC𝑎,
MDA𝑎 and FEDA-NRP algorithms are those that explore the complete
idth of the search space, with FEDA-NRP being the one that gets

losest to PRef, thus obtaining greater HV in the most complex datasets
especially for the classic-management datasets 𝑑𝑋). Also in complex
atasets, PBIL and genetic algorithms can only obtain good solutions for
ne of the objectives (left or right side of the PRef). Regarding UMDA𝑎,
he solutions it finds are not excessively close to each other, which is
hy this algorithm obtained the best 𝛥-Spread values, so its strongest
oint would be the ability to provide more different solutions to the
ecision-maker.
Time
C-TAEA𝑎 is the algorithm that takes longest to finish its search,

aking from 1.5 (best case) to 2.5 h (worst case). This time does not
ust depend on the complexity of the dataset, but also on other two
ssues: (1) the complexity of the algorithm itself and (2) the cardinality
 o

13
Table A.6
Number of wins for each set of hyperparameter configurations in the FEDA-NRP
algorithm.

PopSize #Iters. Datasets HV Wins

1000 300 [a1, a2, c2, c3, d2, p1] [0.873, 0.944, 0.932, 0.906,
0.808, 0.895] 6

1000 50 [a3, a4, d4] [0.8244, 0.8047, 0.781] 3
1000 400 [c1, c4] [0.8999, 0.8521] 2
1000 200 [d1, p2] [0.8099, 0.7955] 2
1000 100 [d3] [0.8011] 1

Table A.7
Number of wins for each set of hyperparameter configurations in the AGE-MOEA-II𝑎
algorithm.

PopSize #Iters. Datasets HV Wins

[a1,a2,a3,a4, [0.8978,0.9891,0.7723,0.7456,
1000 400 c1,c2,c3,c4, 0.9242,0.9454,0.8692,0.795, 12

d2,d3,d4,p2] 0.7211,0.6495,0.6302,0.7943]
700 400 [d1] [0.7156] 1
100 200 [p1] [0.9078] 1

of the 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒, which depends on the capability of the algorithm
to find non-dominated solutions in the search space. As the number
of non-dominated solutions found increases, the filtering of 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒
takes longer after each iteration.

The next most time-consuming algorithms are AGE-MOEA-II𝑎,
which may take up to 50 min to run its search, and MIMIC𝑎 with up to
30 min. Then, FEDA-NRP runs it search with a maximum duration of
13 min. Hence, we conclude that, in a real-world context in which plan-
driven projects (to which 𝑑𝑋 datasets belong) schedule a very large set
of requirements to be delivered in the following months, our results
support that FEDA-NRP is the best algorithm to solve the MONRP. It is
capable of finding the statistically best solutions in the global quality
metric of HV, and is also about twelve times faster than C-TAEA𝑎, five
times faster than AGE-MOEA-II𝑎. FEDA-NRP is also twice as fast as
MIMIC𝑎, and statistically better in terms of HV, UNFR and GD+. Lastly,
EDA-NRP is the only algorithm that can provide the decision-maker
ith a variety of candidate solutions which range from both extreme
reas (minimise Cost or maximise Satisfaction) to the balanced zones
djacent to the PRef in the search space from which to choose (as shown
n the Visual indicators).

. Conclusions and future work

The main contribution of this work is FEDA-NRP, a multivariate
DA to solve the MONRP which explicitly models dependencies be-
ween requirements. Embedding the knowledge about requirements
nteractions in the learning and sampling phases of an EDA helps to
btain good solution sets for the MONRP problem in complex datasets,
n terms of hypervolume, balance and cardinality of the number of
olutions. The use of the leaky binary noisy-OR gate in the model allows
s to maintain a linear complexity while dealing with multivariate
nformation.

The second contribution of the study is the creation of a benchmark
f synthetic datasets covering different dimensions of requirements
anagement in agile and classic software projects developments. The

ariety of this benchmark facilitated the evaluation of the tested al-
orithms in different regimes. We made this corpus publicly available
o promote future research on MONRP, as well as our software to
nsure reproducibility and fair comparison. In particular, in this paper,
rigorous experimental evaluation was carried out considering this

orpus and involving six algorithms, the main conclusion of which is
he superiority of FEDA-NRP over the rest of the tested algorithms
hen considering the most complex cases and the balance obtained
etween time required and accuracy of the solutions. It is in the case

f complex problems (projects with a large number of requirements)
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Table A.8
Number of wins for each set of hyperparameter configurations in the C-TAEA𝑎 algorithm.

PopSize #Iters. Datasets HV Wins

[a1, a2, a3, a4, c1, [0.8375, 0.8902, 0.6647, 0.6471, 0.8459,
1000 400 c2,c3, c4, d4, 0.8024, 0.7467, 0.6696, 0.6104, 13

d1, d2, d3, p2] 0.619, 0.5686, 0.5541, 0.6801]
100 400 [p1] [0.8881] 1
o
c
o

c
r

Table A.9
Number of wins for each set of hyperparameter configurations in the UMDA𝑎

lgorithm.
PopSize #Iters. Datasets HV Wins

1000 50 [a1, a3, c3, c4, d1, p1] [0.864, 0.803, 0.878, 0.820, 6
0.795, 0.878]

1000 400 [a2, d4] [0.930, 0.752] 2
1000 300 [a4, c1] [0.794, 0.882] 2
1000 200 [c2, d2] [0.863, 0.802] 2
1000 100 [d3, p2] [0.765, 0.771] 2

Table A.10
Number of wins for each set of hyperparameter configurations in the PBIL𝑎

lgorithm.
PopSize #Iters. Datasets HV Wins

1000 400 [a1, c1, c2, c3, c4, [0.897, 0.903, 0.942, 0.741, 0.734, 10
d1, d2, d3, d4, p2] 0.718,0.693,0.644,0.645,0.739]

700 400 [a2, a3, a4] [0.974, 0.657, 0.658] 3
200 300 [p1] [0.895] 1

Table A.11
Number of wins for each set of hyperparameter configurations in the MIMIC𝑎

lgorithm.
PopSize #Iters. Datasets HV Wins

1000 400 [a4, c1, c3, c4, [0.8051, 0.8885, 0.8841, 7
d1, d4, p2] 0.8165, 0.8026, 0.75, 0.8166]

1000 50 [a1] [0.854] 1
1000 100 [a2] [0.9141] 1
1000 300 [a3, c2, d3] [0.8158, 0.8634, 0.7574] 3
1000 200 [d2] [0.7962] 1
200 200 [p1] [0.835] 1

that FEDA-NRP obtained the best HV results of all the algorithms. It
is worth noting that its main competitors (in terms of HV) are also
EDAs: UMDA and MIMIC, the latter taking twice as long as FEDA-NRP,
and UMDA performing worse in terms of UNFR and GD+, besides HV.
Another substantial advantage of FEDA-NRP with respect to these EDAs
is that it finds the best balanced solutions close to the Pareto Reference,
facilitating the decision-maker’s choice for a candidate solution.

On the other hand, the main limitation of our proposal is that it
requires as input the definition of all dependencies between require-
ments, although this is also the main motivation of our work. Without
explicitly defined dependencies, the Bayesian network would be an
empty graph, i.e., all variables would be independent of each other,
so FEDA-NRP would be reduced to the UMDA algorithm.

As future work, it would be interesting to measure the complexity
added by keeping the 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒 updated during the search, and to
ptimise this process by updating the solution subset selection per
teration, instead of only once after the search has finished.
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Appendix. Algorithm hyperparameter selection

In this section, we show the range of values for hyperparameters
tuned in each algorithm included in our experiments, as well as the
number of wins over datasets.

All the algorithms were configured with hyperparameters PopSize
= {100, 200, 500, 700, 1000} and #Iterations = {50, 100, 200, 300,
400}. In total, 25 configurations per dataset.

With respect to concrete PBIL𝑎 hyperparameters, we fixed learning
rate, mutation probability and mutation shift to 0.1. UMDA and MIMIC
used a selection scheme based on non-dominance and selection of a
fixed number of 50 individuals.

The goodness of a configuration is measured in terms of the HV of
the returned 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒.

Since our global corpus contains 14 datasets (Table 1), the total
number of wins for a given algorithm is 14. The configuration (row)
with more wins is then selected as the configuration of the correspond-
ing algorithm for the experiment results shown in Section 5.7. Please
note that there are cases in which a configuration with fewer #𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
r #𝑃𝑜𝑝𝑆𝑖𝑧𝑒 than others obtain the same HV; that is, the algorithm
onverges quickly. In that case, the configuration with less #𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
r #𝑃𝑜𝑝𝑆𝑖𝑧𝑒 is considered as the winner.

Tables A.6–A.11 show the results for FEDA, AGE-MOEA-II𝑎, C-
TAEA𝑎 UMDA𝑎, PBIL𝑎 and MIMIC𝑎, respectively. In each table, the
onfiguration with a greater number of wins can be interpreted as the
ecommended best configuration, and is that applied in our experi-
ents.
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