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Abstract The Next Release Problem (NRP) is a combinatorial optimization problem that aims to
find a subset of software requirements to be delivered in the next software release, which maximize
the satisfaction of a list of clients and minimize the effort required by developers to implement
them. Previous studies have applied various metaheuristics, mostly genetic algorithms. Estimation
of Distribution Algorithms (EDA), based on probabilistic modelling, have been proved to obtain
good results in problems where genetic algorithms struggle. In this paper we propose to adapt three
EDAs to tackle the multi-objective NRP in a fast and effective way. Results show that EDAs can be
applicable to solve the NRP with rather good quality of solutions. Furthermore, we prove that their
execution time can be significantly reduced using a per-iteration solution subset selection method
while maintaining the overall quality of the solutions obtained, and they perform the best when
limiting the search time as in an interactive tool that requires fast responsiveness. The experimental
framework, code and datasets have been made public in a code repository.

1 Introduction

Successfully managing software releases is one of the major challenges in Software Engineering.
As the product goal grows and project scope gets expanded, the difficulty of delivering valuable
features to clients increases substantially. Client interests are usually defined in terms of software
requirements, which are then prioritized and selected for the next software release. However, when
there are many clients, it is frequent that their concerns are different or even opposed, leading to
difficult choices to balance overall clients satisfaction. Furthermore, complexity of requirements has
to be taken into account, in order to not surpass developers expected capacity for the next release.
This problem, named Next Release Problem (NRP), pursues finding a set of requirements for a
release that satisfy clients as much as possible and optimize development efforts. This is a strong
NP-hard problem, as proved in [2], and is usually solved manually by experts judgement. Given
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that solving the NRP is critical for a software project success, and that it has to be solved every
time a release is planned, it is an interesting candidate to be automated by means of optimization
methods. Most previous works tackle the NRP by means of evolutionary techniques, being genetic
algorithms (GAs) the preferred choices. However, Estimation of Distribution Algorithms (EDA), a
subfamily of evolutionary algorithms, are known to guide the search in a more informed way than
other population-based algorithms such as GAs, and they have previously been proved to perform
better than local search in selection contexts such as feature selection [5].

In this work, we evaluate the applicability of EDAs, which have only been proposed to solve the
NRP in a single previous study [29]. We have adapted three different EDAs to solve the multi-objective
version of the NRP (see Section 2.2). We compared them against widely used GAs by following fair
comparison state-of-art recommendations, and we optimize our proposed algorithms so that their
search may finish in a short period of time while obtaining a high performance. Specifically, we pose
the following research questions (RQ):

• RQ1: Do EDAs outperform state-of-the-art multi-objective NRP evolutionary algorithms?
• RQ2: Can we speed up the search by reducing the non-dominated solutions kept at each iteration

by means of Solution Subset Selection without decreasing the quality indicators?
• RQ3: Which algorithm performs the best when setting a search time limit, as needed in a real-time

application for the decision maker?

We aim to provide insights into the strengths and limitations of these algorithms, and their potential
for real-world applications.

This article is structured as follows: Section 2 presents a summary of previous works, the problem
at hand and state-of-art recommendations. In Section 3, EDAs and our three proposed algorithms
are described. The experimental evaluation, along with the algorithms, datasets and methodology
applied are listed in Section 4. Section 5 presents and discusses the results of the experimentation.
Lastly, we conclude this work in Section 6.

2 Related work

2.1 Next Release Problem

The solution of the Next Release Problem (NRP) is one of the applications in the field of Search-
Based Software Engineering (SBSE) [17], where Software Engineering related problems are tackled
by means of search-based optimization algorithms [35].

The NRP was firstly formulated by Bagnall et al. [3]. In its definition, a subset of requirements
has to be selected, having as goal meeting the clients needs, minimizing development effort and
maximizing clients satisfaction. They applied a variety of metaheuristic techniques, such as sim-
ulated annealing, hill climbing and GRASP, but combining the objectives of the problem into a
single-objective function. In a later study, Greer and Ruhe [15] examined the generation of feasible
assignments of requirements to increments, considering various resource constraints and perspec-
tives of stakeholders. They utilized GAs as the chosen optimization technique to solve the NRP.
Subsequently, Baker et al. [4] showcased the application of metaheuristic techniques to real-world
NRP, surpassing expert judgment. Their study employed simulated annealing and greedy algorithms.
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In another research, del Sagrado et al. [11] applied ACO (Ant Colony Optimization) to solve the
NRP. All of these approaches followed a single-objective formulation of the problem.

The current formulation of the NRP, proposed by Zhang et al. [36], consists in finding a can-
didate subset of requirements to implement in the next release of a software project. The set of
𝑛 candidate requirements is denoted as 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑛}. These requirements are proposed to
a set 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑚} of 𝑚 clients. Clients are not equally important, and a set of weights
𝑊 = {𝑤1, 𝑤2, . . . , 𝑤𝑚} defines the numeric importance of each client (higher means client more
relevant). Each client provides an importance value 𝑣𝑖 𝑗 to each requirement, that denotes how prior-
itary or valuable the requirement is. These importances are hold in a 𝑚 × 𝑛 matrix. Moreover, each
requirement has an associated cost or effort of implementation defined by a set 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑛}
of requirement efforts, in which each 𝑒𝑖 belongs to a requirement 𝑟𝑖 [18]. Finally, the total satisfaction
of implementing each requirement is calculated and stored in a set 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛}, in which
each requirement’s satisfaction is measured as the weighted sum of all importance values from all
clients for that requirement: 𝑠 𝑗 =

∑𝑚
𝑖=1 𝑤𝑖 × 𝑣𝑖 𝑗 .

Although EDA approaches have been applied to SBSE problems, only one work [29] has used
EDAs to solve the NRP without modelling dependencies, to the authors’ knowledge. From the most
recent reviews, in Ramı́rez et al. [31] only an EDA application to software testing [32] is referenced;
and in Gupta et al. [16] and Alba et al. [1] EDA approaches are not mentioned or matched to any
solution of the NRP.

2.2 Multi-Objective Next Release Problem

A multi-objective optimization (MOO) version of the NRP is a suitable approach. In MOO, the
problem objectives are not combined but tackled separately. This implies that instead of obtaining
a single solution as output of the search, a Pareto front of non-dominated solutions [8] is returned.
This Pareto front is formed by a set of solutions that are non-dominated by any other of the set. This
new formulation applied to NRP is called Multi-Objective Next Release Problem (MONRP) [36]. In
this case, a solution 𝑥 = [𝑒𝑥 , 𝑠𝑥] that holds the two objectives of the problem, is said to dominate
other solution 𝑦 = [𝑒𝑦 , 𝑠𝑦] only if 𝑒𝑦 and 𝑠𝑦 are worse than 𝑒𝑥 and 𝑠𝑥 , respectively. Conversely,
the solutions are non-dominated among them as long as neither of them dominates the other. Thus,
the MONRP consists of finding a subset 𝑋 of 𝑅, containing the requirements to be implemented for
the next software release that maximize clients satisfaction and minimize development efforts. The
MONRP objectives are the following:

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑆(𝑋) =
∑︁
𝑗∈𝑋

𝑠 𝑗

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐸 (𝑋) =
∑︁
𝑗∈𝑋

𝑒 𝑗

(1)

Several works have solved the MONRP, being the first one the proposal of Zhang et al. [36]. In
their work, they tackled each objective separately, exploring the non-dominated solutions (NDS).
Finkelstein et al. [14] also used a multi-objective approach considering different measures of fairness,
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and applying evolutionary algorithms, such as ParetoGA and NSGA-II [10] to solve the MONRP.
Other works that continued to explore evolutionary algorithms to solve the MONRP are those of
Durillo et al. [13, 12]. They proposed two GAs, NSGA-II and MOCell (Multi-Objective Cellular
genetic algorithm), as well as an evolutionary procedure, PAES (Pareto Archived Evolution Strategy).
Jiang et al. [23] presented a different approach using an ACO (Ant Colony Optimization) algorithm.
Charan Kumari et al. [6] proposed the use of a hybrid differential evolution strategy [30]. Notably,
none of these works considered the interactions between requirements. Subsequently, studies started
considering and designing requirement interactions. Sagrado et al. [33] and Souza et al. [34] addressed
the MONRP with interactions by applying ACO. Finally, Chaves-González et al. [7] proposed the use
of a Multi-Objective Ant Bee Colony (MOABC), a swarm intelligence evolutionary-based algorithm.
Both Sagrado et al. [33] and Chaves-González et al. [7] compared their proposals against genetic
(NSGA-II) and greedy (GRASP) algorithms.

In the literature, there are studies that tackled the MONRP without modelling problem constraints
[14, 23, 13, 12, 6] and studies that considered them [34, 33, 7]. These constraints include not only
requirement interactions, but also a total effort limitation or Budget (B). However, this Budget limit
is not commonly used in the MOO version of the problem, because it just filters the most expensive
solutions, which can be easily done in a visual manner by the decision maker. In our proposal, we
did not model requirement dependencies, neither the constraint of total effort.

2.3 Fair comparison

In the studies previously referenced, there is a wide variety of metrics used to measure the quality
of the Pareto front obtained by an algorithm: Hypervolume (HV), Δ-Spread, Spacing, etc. However,
not all quality metrics are appropriate to evaluate MOO Pareto fronts. Li et al. [26] provide a
methodological guidance to choose the appropriate quality indicators to evaluate the quality of a
Pareto front. Pareto compliant [38] metrics (those that for a solution 𝑋 that dominates other solution
𝑌 , always provide a metric evaluation for 𝑋 better than the metric evaluation obtained by 𝑌 ) are
recommended to tackle MOO problems such as the MONRP. A subset of recommended Pareto
compliant metrics that we have chosen is the following:

• Hypervolume (HV) [37]. Is the most widely used metric to assess Pareto fronts in multi-objective
problems in SBSE. It denotes the space covered by the set of non-dominated solutions. In order
to compute it, a reference point is needed, and it should be the same for all algorithms under
comparison.

• Δ-Spread [9]. It measures the dispersion of the solutions in the Pareto front. Thus, the smaller the
Δ-Spread value is for a set of non-dominated solutions, the better (more uniform). Interpretation
of Δ-Spread is only fair on bi-objective problems, which is the case for the canonical MONRP
with Effort and Satisfaction objectives. Thus, although it cannot be said it always behaves as
Pareto compliant, it is reliable when computed on bi-objective problems.
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• Unique Non Dominated Front Ratio (UNFR) [26]. It measures the ratio of solution points in
the 𝑃𝑟𝑒 𝑓 1 which belong to the solution set of the evaluated algorithm. That is, it measures the
contribution (from 0 to 1) of an algorithm to the 𝑃𝑟𝑒 𝑓 .

2.4 Solution Subset Selection

Multi-objective algorithms update a NDS (commonly named 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒) set at each iteration of their
execution and return it when finished. However, the size of the 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒 set directly affects quality
indicators of the resulting Pareto front, such as HV. Furthermore, algorithms under comparison can
be run under different population sizes or number of iterations, which can lead to 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒 sets of
unequal size that, ultimately, will provoke biased comparison of quality indicators. To solve this issue,
[22] recommends that each algorithm returns a subset of the final 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒 set found. Usually,
this is done by running a solution subset selection (SSS) by means of a greedy forward search based
on HV at the end of the execution. Besides, in [20] it is stated that the size of the subset has only
minor effects in the results of a comparison, so a fixed SSS size can be set for all algorithms under
comparison. Lastly, reducing the returned Pareto fronts, that usually contain hundreds of solutions,
can help the decision maker by simplifying the process of navigating them [21].

3 Estimation of Distribution Algorithms

EDAs are evolutionary algorithms based on probabilistic modelling and were designed as an alterna-
tive to GAs [25]. As GAs, EDAs are population-based algorithms, however instead of relying upon
the goodness of genetic operators, EDAs apply a more normative approach. This approach consists
of three steps: (i) select a subset of promising individuals from the current population; (ii) from
this subset, learn a probability distribution of variables to optimize; (iii) sample a new population
using the estimated probability distribution. As no crossover nor mutation operators are needed, the
number of hyperparameters decreases, thus simplifying algorithm configuration. The pseudocode of
a multi-objective version of a generic EDA adapted to solve the MONRP is detailed in Algorithm 1.

The complexity of an EDA is related to the degree of explicit interrelations (dependencies) it
allows. Thus, we can find univariate EDAs, such as UMDA and PBIL, with no explicit dependen-
cies modelling, that implicitly catch the interrelations between variables by means of an evaluation
function (as in GAs); and multivariate EDAs such as the bivariate MIMIC, where the dependencies
among the variables are explicitly tackled by constructing a graphical structure that codifies the
dependencies in the probabilistic model (e.g. a Bayesian network [24]).

UMDANRP

In Univariate Marginal Distribution Algorithm (UMDA) [25, Ch. 4] the JPD is factorized as the
product of marginal distributions:

1 A Pareto reference (𝑃𝑟𝑒 𝑓 ) is the set of non-dominated solutions obtained by merging all Pareto fronts returned by
the algorithms being evaluated after their execution
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Algorithm 1 𝐸𝐷𝐴𝑁𝑅𝑃

procedure 𝐸𝐷𝐴𝑁𝑅𝑃(𝑚𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 𝑆𝑆𝑠𝑖𝑧𝑒)
𝑛𝑑𝑠 ← ∅ ⊲ initialize the 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒

𝑃 ← generateRandomPopulation() ⊲ generate first population randomly
for 𝑖 = 0 to 𝑚𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 ← selectIndividuals(𝑃) ⊲ select non-dominated individuals
𝑝𝑟𝑜𝑏𝑀𝑜𝑑𝑒𝑙 ← learnProbModel(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠) ⊲ learn the probability model
𝑃 ← sampleNewPopulation(𝑝𝑟𝑜𝑏𝑀𝑜𝑑𝑒𝑙) ⊲ sample individuals based on distribution
𝑛𝑑𝑠 ← updateNDS(𝑃, 𝑛𝑑𝑠) ⊲ update set of non-dominated solutions

end for
𝑛𝑑𝑠 ← solutionSubsetSelection(𝑛𝑑𝑠, 𝑆𝑆𝑠𝑖𝑧𝑒) ⊲ find subset that maximizes HV
return 𝑛𝑑𝑠

end procedure

𝑝(x) =
𝑛∏
𝑖=1

𝑝(𝑥𝑖)

The 𝑈𝑀𝐷𝐴𝑁𝑅𝑃 follows a structure similar to that of Algorithm 1. It starts creating a random
population and, at each generation, it selects the non-dominated individuals of the population, learns
the probability model 𝑝 from them (using maximum likelihood estimation with or without Laplace
smoothing), and samples a new population using 𝑝 (notice that as no dependency is considered, each
variable/requirement is sampled from its marginal probability distribution). Finally, new individuals
are evaluated, and the 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒 is updated with the new non-dominated individuals found. After
execution, it returns a subset of the final 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒. This subset is the result of applying an SSS
process with a pre-fixed 𝑆𝑆𝑠𝑖𝑧𝑒 of solutions.

PBILNRP

Population-Based Incremental Learning (PBIL) [25, Ch. 4] combines the mechanisms of a gen-
erational GA with simple competitive learning. Differently to UMDA, in which populations are
transformed into a probability model whose only purpose is to sample new populations, PBIL algo-
rithm attempts to create a probability model which can be considered a prototype for high evaluation
vectors for the function space being explored. Furthermore, UMDA learns a new model at each
iteration without keeping nor evolving any knowledge from the past iterations, while PBIL refines
one model through all the generations. In a manner similar to the training of a competitive learning
network, the values in the probability model are gradually shifted towards representing those in
high evaluation vectors. Thus, the behaviour of PBIL diverges from the default EDA (Algorithm 1)
by initializing a probability vector instead of a population. Then, rather than selecting individuals,
learning a probability model and sampling a new population, PBIL first samples individuals from its
probability model and then selects a random individual from the 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒 and use it to update
the probability vector in two steps:
(1) 𝑝(𝑥𝑖) = 𝑝(𝑥𝑖) · (1.0 − 𝐿𝑅) + 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖 · 𝐿𝑅, being 𝑖 the 𝑖𝑡ℎ variable position, and 𝐿𝑅 the
learning rate hyperparameter, ranging from 0 to 1.
(2) If (𝑃𝑟𝑜𝑏𝑟𝑎𝑛𝑑 < 𝑃𝑟𝑜𝑏𝑚𝑢𝑡 ): 𝑝(𝑥𝑖) = 𝑝(𝑥𝑖) · (1.0 − 𝑀𝑆) + 𝑟 · 𝑀𝑆, 𝑟 being a random number
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∈ {0, 1} and 𝑀𝑆 the mutation shift hyperparameter, ranged from 0 to 1.

MIMICNRP

Mutual Information Maximization for Input Clustering (MIMIC) [25, Ch. 4] is an EDA capable of
explicitly modelling some of the interdependencies among variables. In particular, in MIMIC a chain
is used as graphical model, so all the variables (but the root) directly depend on exactly one variable.
Given a permutation (or chain) 𝜋 = (𝑖1, 𝑖2, ..., 𝑖𝑛), the model is factorized as:

𝑃𝜋 (𝑥) = 𝑃(𝑥𝜋1 ·
𝑛∏
𝑖=2

𝑃(𝑥𝜋𝑖 |𝑥𝜋𝑖−1 ),

where 𝑝(𝑥𝑖𝑛 ) and 𝑝(𝑥𝑖 𝑗 |𝑥𝑖 𝑗+1 ), 𝑗 = 1, ..., 𝑛− 1 are, respectively, estimated by the marginal and condi-
tional relative frequencies of the corresponding variables within the subset of selected individuals at
each generation. MLE with or without Laplace smoothing is used for parameter estimation from the
subset of selected individuals at each generation. The objective of MIMIC is to find a permutation
𝜋 such that its 𝑝𝜋 (𝑥) minimizes the Kullback-Leibler information divergence (expressed using the
Shannon entropy) between the probability function 𝑝(𝑥) and the probability functions 𝑝𝜋 (𝑥) of the
class 𝑃𝜋 (𝑥). Its learning phase behaves as a greedy algorithm that firstly selects 𝑥𝑖𝑛 as the variable
with the smallest estimated entropy. Then, it consecutively selects a variable from the set of not
chosen variables whose average conditional entropy (with respect to the previous variable) is the
smallest.

𝑀𝐼𝑀𝐼𝐶𝑁𝑅𝑃’s method also fits into the general EDA-based scheme described in Algorithm 1,
using the explained approach for learning. In the sampling phase, probabilistic logic sampling (PLS)
[19] is used to respect the chain order during the simulation.

Solution Subset Selection

At the end of each iteration in Algorithm 1, the NDS found is used to update the general 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒.
This update process tends to be very slow as the population size increases, and it is a problem which
does not exist in other optimized algorithms such as NSGA-II, which contains an embedded process
to perform a fast filtering of non-dominated solutions.
When the search loop finishes in Algorithm 1, we apply a SSS process (solutionSubsetSelection),
which consists in selecting a fixed-size subset from the 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒 which maximizes its HV. This
is done to perform fair comparison among algorithms (Section 2.3). However, it may be used also
to reduce the current 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒 at each iteration, hopefully not decreasing the performance of
quality indicators, what would lead to faster search time. Thus, this addition of SSS at the end of
each iteration is also proposed and evaluated, and consequently used to answer RQ2.

4 Experimental evaluation

In this section we present the algorithms, datasets and experimental approach. To ensure repro-
ducibility, the source code for the algorithms, implemented in Python 3.8.8, along with the experi-
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mentation setup and datasets used are available at the following repository: https://github.com/uclm-
simd/monrp/tree/igpl23.

4.1 Algorithms under comparison

Our experimentation framework includes 6 algorithms, for which four metrics have been computed:
the three quality indicators (HV, Δ-Spread and UNFR) introduced in Section 2.3 and execution time
(seconds).

• EDANRP. Instanced with the three multi-objective EDAs proposed in Section 3: 𝑈𝑀𝐷𝐴𝑁𝑅𝑃 ,
𝑃𝐵𝐼𝐿𝑁𝑅𝑃 and 𝑀𝐼𝑀𝐼𝐶𝑁𝑅𝑃 .

• Single-Objective GA. It combines the two objective functions of the MONRP into a single
objective function by using a weighted aggregation. Then, it updates its 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒 with new
individuals after each generation.

• NSGA-II. The Non-dominated Sorting Genetic Algorithm-II [10] is a state-of-the-art multi-
objective GA. It uses elitism and ranks each individual based on the level of non-dominance.

• AGE-MOEA-II. The Adaptive Geometry Estimation based MOEA II [28] is a recent multi-
objective GA that uses a novel method to model the non-dominated front. It has been adapted
to keep the global 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒 and perform the SSS stage, making it possible to use it in our
comparison framework.

The ranges of parameters used in the experimentation for each algorithm are described in Section
4.2, for further detail.

Algorithm performance has been measured using two widely used public datasets (P1 and P2), taken
from previous NRP studies [15, 33], and another four created synthetically (S1, S2, S3 and S4)
due to the lack of datasets with high number of requirements, so that algorithms can be tested in
significantly larger instances. The whole evaluation corpus is shown in Table 1. Each dataset contains
a set of proposed requirements, defined by a vector of efforts, one effort value for each requirement.
Clients are also included, defined by a vector of weights. The importance that each client gives to
each requirement is also contained in the dataset, by means of a matrix of values, in which each value
represents the importance of a requirement for a client. Dataset P1 [15] includes 20 requirements
and 5 clients. Dataset P2 [33] includes 100 requirements and 5 clients. Datasets S1-S4 range from
40 to 200 requirements, and reach up to 150 clients; thus, S3 and S4 are the most complex datasets
in our evaluation corpus.
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Table 1: Two publicly available and four synthetic datasets.

Dataset P1 P2 S1 S2 S3 S4
#Clients 5 5 15 50 100 150

#Requirements 20 100 40 80 140 200

4.2 Methodology

Each algorithm is run 30 times. Based on guidance by [20] and [22], after each execution a set S
of size 𝑆𝑆𝑠𝑖𝑧𝑒 = 10 solutions is selected by means of a greedy HV-based forward SSS run over the
𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒 returned by the algorithm. Then, the mean HV (reference point = (1.1,1.1)) andΔ-Spread
metrics are computed from S. After all algorithms have finished their executions, a reference Pareto
(𝑃𝑟𝑒 𝑓 ) is constructed selecting the NDS from a pool made of all the S sets returned by all executions
from all algorithms.

In order to answer RQ1 and RQ3, and also following guidance by [22], we run all algorithms
configured through a grid search of hyperparameter values. Then, the best configuration found
for each algorithm (in terms of HV) is the one used when comparing their performance. All al-
gorithms have two hyperparameters in common, and these are the ranges of values set for them:
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒 = {100, 200, 500, 700, 1000} and #𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = {50, 100, 200, 300, 400}. GA and
NSGA-II were also tested with 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = {0.1, 0.3}.
All the algorithms find their best results when configured with the maximum 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒,
except for AGE-MOEA-II which converges with 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒 = 700. Regarding the number of
iterations, both GA and𝑈𝑀𝐷𝐴𝑁𝑅𝑃 are very fast to converge, only needing 50 and 100 iterations, re-
spectively. On the other hand, 𝑃𝐵𝐼𝐿𝑁𝑅𝑃 , 𝑀𝐼𝑀𝐼𝐶𝑁𝑅𝑃 , NSGA-II and AGE-MOEA-II use the largest
number of iterations (400). GA and NSGA-II obtain better results with 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.3.

RQ2 aims to find if search time can be decreased by reducing the size of the 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒
maintained by the algorithm, without decreasing the algorithm performance. Thus, we add the same
SSS process (previously only run at the end of each execution) at the end of each iteration. Then,
we measure the change caused in the four metrics. The SSS cannot be applied to NSGA-II, which
already runs its own embedded fast non-dominated sorting strategy, not compatible with applying
SSS at the end of each iteration.

Lastly, in order to answer RQ3, we set a time threshold for the search of each algorithm. Then, we
identify the best configuration and compare algorithms again using only the results from executions
that do not last over that time. Following this procedure, we aim to find which algorithm would best
fit in a real scenario where a decision maker uses an interactive computed-aided project management
tool, with a maximum search time of 150 seconds.
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5 Results and analysis

In this section, results are shown and ordered in the appropriate flow to answer the three RQs stated
in Section 1.

5.1 RQ1: Do EDAs outperform state-of-the-art MONRP evolutionary algorithms?

Given the best configuration found for each algorithm, as explained in Section 4.2, we compared
the three EDA proposals and the three GAs, using quality indicators that are Pareto compliant (HV,
UNFR and Δ-Spread), and execution time. We also logged the number of non-dominated solutions
found in the final 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒 returned by each algorithm. We show the results for the largest dataset,
S4, in Table 2, and we summarize the conclusions obtained, which generalize for the rest of datasets.
All tables and plots for all datasets are available in the same public repository as the source code.

Table 2: Results for dataset S4 using the best configurations.

Method HV UNFR Δ−Spread Time(s) #NDS
𝐺𝐴 0.6475 0.0011 0.6928 3531.5 181.3
𝑈𝑀𝐷𝐴𝑁𝑅𝑃 0.7635 0.0012 0.5717 693.9 359.8
𝑃𝐵𝐼𝐿𝑁𝑅𝑃 0.4819 0.0008 0.5985 635.9 70.1
𝑀𝐼𝑀𝐼𝐶𝑁𝑅𝑃 0.7827 0.0019 0.6050 9681.6 614.9
𝑁𝑆𝐺𝐴 − 𝐼 𝐼 0.8231 0.0079 0.6179 75704.9 1000.0
𝐴𝐺𝐸 − 𝑀𝑂𝐸𝐴 − 𝐼 𝐼 0.7597 0.0038 0.6065 5110.9 922.7

Fig. 1: Pareto Front of each algorithm and Pareto Reference, dataset S4.

In Table 2 we can see results that are representative of the general case: NSGA-II outperforms
the other algorithms in terms of HV and UNFR. However, its execution time is extremely long.
The 𝑀𝐼𝑀𝐼𝐶𝑁𝑅𝑃 proposal is the one which is closer to it. Conversely, 𝑈𝑀𝐷𝐴𝑁𝑅𝑃 and 𝑃𝐵𝐼𝐿𝑁𝑅𝑃

outperform in terms of Δ-Spread. Figure 1 plots, for each algorithm, the 10 solutions selected in
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the SSS process, for each of the 30 executions. That is, 300 solutions are plotted and, thus, the
general area covered by each one can be easily noticed. Although 𝑀𝐼𝑀𝐼𝐶𝑁𝑅𝑃 and 𝑈𝑀𝐷𝐴𝑁𝑅𝑃 are
capable of finding solutions as balanced as those found by the NSGA-II, the former can also find
good extreme solutions.
Regarding the results considering all datasets: in terms of HV and UNFR, NSGA-II outperforms in
5/6 datasets. On the contrary, 𝑈𝑀𝐷𝐴𝑁𝑅𝑃 , 𝑃𝐵𝐼𝐿𝑁𝑅𝑃 and 𝑀𝐼𝑀𝐼𝐶𝑁𝑅𝑃 obtain the best Δ-Spread
results in 5/6 datasets. In terms of execution time, NSGA-II is, by far, the most time-consuming
algorithm.
As a conclusion for RQ1, NSGA-II performs the best in two out of the three metrics used to evaluate
algorithms’ performance, given that algorithms are allowed to run during all the time they may need
to converge.

5.2 RQ2: Can we speed up the search by reducing the non-dominated solutions kept
at each iteration by means of SSS without decreasing the quality indicators?

There are two main tasks at each iteration of all the algorithms under evaluation: learning + sampling
and updating the 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒 with the new NDS set found in the iteration. We computed the mean
time used in each of these tasks. Results are similar for all datasets, and we provide the corresponding
to dataset S4 in Figure 2, showing the mean times obtained by all possible hyperparameters configu-
rations of the algorithms (see Section 4.2). Clearly, NGSA-II has a reduced percentage of time used
in its embedded fast filtering and ordering process at each iteration; however, the other algorithms
spend a great portion of time to update the 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒: while NSGA-II spends 20% of its time,
𝑈𝑀𝐷𝐴𝑁𝑅𝑃 and 𝑃𝐵𝐼𝐿𝑁𝑅𝑃 use more than 80% of the total time, 𝑀𝐼𝑀𝐼𝐶𝑁𝑅𝑃 takes 30%, GA up to
96%, and AGE-MOEA-II uses near 80% of its search time to filter non-dominated solutions. Thus,
although GA, AGE-MOEA-II and the EDA proposals are already faster to converge than NSGA-II, it
is clear that they can be even faster by reducing the time to update the 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒 at each iteration.
In order to do so, we decided to apply the SSS process not only at the end of the execution, but also
as a last step at the end of each execution. Hence, the size of 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒 would be kept constant
(𝑆𝑆𝑠𝑖𝑧𝑒 = 10 in our case) and thus its update should be significantly faster.

Fig. 2: Mean time in algorithms execution used to update the 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒.



12 Pérez-Piqueras et al.

Time results, shown in Table 3(a), for GA, AGE-MOE-II and the three EDA proposals prove that
a great reduction of execution time when solving S4 makes it worth to insert the SSS process at the
end of each iteration. All time reductions are statistically significant (Wilcoxon paired test), in all
datasets.
Thus, RQ2 has been partially answered. Evolutionary algorithms, such as GA, AGE-MOEA-II
and our 𝐸𝐷𝐴𝑁𝑅𝑃 proposals, can be sped up by reducing the size of their 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒 once per
iteration. With regards to the second part of RQ2, Table 3(b, c, d) shows the change experimented
by the algorithms in the three quality indicators. It can be observed that HV increases in the case
of 𝑃𝐵𝐼𝐿𝑁𝑅𝑃 . In the other 4 algorithms, the decrease of HV is so small that it can be said to
remain constant, while having a great reduction in execution time. UNFR increases in 4 out of the
5 algorithms. The uniformity in the Δ-Spread of solutions found is the only quality indicator which
is slightly worse. In fact, in other datasets and algorithms, this change is not significant. Figure 3
shows the box plot for the four mentioned metrics, where it can be seen that not only mean values
are improved, but also variability in results is commonly reduced. Thus, we conclude that applying
the SSS procedure at each iteration is a worth decision, since HV (the most representative and
used quality indicator of NDS) remains constant or even increases in some cases, while drastically
reducing the execution time, improving UNFR and slightly worsening Δ-Spread.
Figures and tables for the rest of our experimentation corpus provide the same conclusions, and are
available in the same public repository as our source code.

Table 3: Change in mean metrics for S4 when applying SSS at each iteration.

Time(s) HV
Algorithm Before After %Change p-value Before After %Change p-value
𝐺𝐴 775.5 109.5 -78.19% 5.96E-08 .631 .630 -0.07% 2.98E-07
𝑈𝑀𝐷𝐴𝑁𝑅𝑃 1523.2 695.9 -52.54% 5.96E-08 .753 .751 -0.26% 5.96E-08
𝑃𝐵𝐼𝐿𝑁𝑅𝑃 173.6 61.7 -57.08% 5.96E-08 .421 .472 12.14% 5.96E-08
𝑀𝐼𝑀𝐼𝐶𝑁𝑅𝑃 1645.5 1158.6 -25.99% 5.96E-08 .762 .759 -0.29% 5.96E-08
𝐴𝐺𝐸 − 𝑀𝑂𝐸𝐴 − 𝐼 𝐼 1310.6 510.4 -49.63% 5.96E-08 .715 .715 -0.05% 6.56E-06

(a) (b)
UNFR Δ-Spread

𝐺𝐴 .0007 .0008 16.94% 2.91E-04 0.6922 0.6953 0.46% 5.58E-03
𝑈𝑀𝐷𝐴𝑁𝑅𝑃 .0007 .0009 40.61% 2.06E-05 0.5709 0.6027 5.59% 5.96E-08
𝑃𝐵𝐼𝐿𝑁𝑅𝑃 .0002 .0001 -46.31% 1.81E-03 0.5797 0.5922 2.20% 6.31E-04
𝑀𝐼𝑀𝐼𝐶𝑁𝑅𝑃 .0004 .0005 3.03% 9.69E-02 0.5997 0.6251 4.22% 8.34E-07
𝐴𝐺𝐸 − 𝑀𝑂𝐸𝐴 − 𝐼 𝐼 .0019 .0019 3.3% 3.94E-01 0.6236 0.6141 -1.45% 3.67E-02

(c) (d)

5.3 RQ3: Which algorithm performs the best when setting a search time limit, as
needed in a real time application for the decision maker?

The final aim in solving the MONRP is to help the decision maker to create a plan for a given set of
requirements. Commonly, this is performed in a support or CARE (Computer Aided Requirement
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Fig. 3: Box plot illustrating the change in metrics for S4 when applying SSS at each iteration.

Engineering) [27] tool. Thus, the output returned by the search is expected not to take a very long
time. In this case, we have set a time threshold of up to 150 seconds. Any result obtained by the
algorithms longer than the threshold is ignored when identifying the best result for each algorithm
among all its configurations. Furthermore, we make the comparisons using the SSS process per
iteration, since in RQ2 we learned that this does not affect performance while reducing execution
time.
In this case, as it can be seen in Table 4, in dataset S4 our EDA proposals 𝑈𝑀𝐷𝐴𝑁𝑅𝑃 and
𝑀𝐼𝑀𝐼𝐶𝑁𝑅𝑃 outperform NSGA-II in the three quality indicators. In fact, by looking at UNFR and
Figure 4 we can see that NSGA-II does not have time to find any solution which belongs to the
𝑃𝑟𝑒 𝑓 . In the rest of our corpus, the only different result is that 𝑀𝐼𝑀𝐼𝐶𝑁𝑅𝑃 obtains higher HV than
𝑈𝑀𝐷𝐴𝑁𝑅𝑃 . With respect to AGE-MOEA-II, it is a very competitive algorithm. It obtains a very
good HV value and one of the lowest execution times. However, 𝑈𝑀𝐷𝐴𝑁𝑅𝑃 and 𝑀𝐼𝑀𝐼𝐶𝑁𝑅𝑃

outperform it in HV, although only 𝑈𝑀𝐷𝐴𝑁𝑅𝑃 outperforms it regarding UNFR and Δ−Spread.

Method HV UNFR Δ−Spread Time(s) #NDS
𝐺𝐴 .6468 .0010 .6877 117.9 10
𝑈𝑀𝐷𝐴 .7563 .0010 .5809 133.8 10
𝑃𝐵𝐼𝐿𝑁𝑅𝑃 .5356 .0001 .5866 113.3 10
𝑀𝐼𝑀𝐼𝐶𝑁𝑅𝑃 .7692 .0001 .6422 254.7 10
𝑁𝑆𝐺𝐴 − 𝐼 𝐼 .6282 .0000 .7455 112.9 100
𝐴𝐺𝐸 − 𝑀𝑂𝐸𝐴 − 𝐼 𝐼 .7321 .0009 .6292 114.5 10

Table 4: Results for dataset S4 using the best configuration with search time < 150s.
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Fig. 4: Pareto Front of each algorithm and Pareto Reference, with search time<150s, dataset S4.

6 Conclusions

We proposed an adaptation of three EDAs to solve the MONRP, and compared them against three
well-known GAs. We found that if algorithms are given all the time they need to converge, NSGA-II
performs the best. Regarding execution time, NSGA-II is the slowest due to its search process, but not
due to the time used to sort non-dominated solutions, since it implements a fast sorting algorithm. We
inserted an SSS step at the end of each iteration, in order to alleviate the cardinality of 𝑁𝐷𝑆𝑎𝑟𝑐ℎ𝑖𝑣𝑒
in 𝐺𝐴, 𝐴𝐺𝐸 −𝑀𝑂𝐸𝐴− 𝐼 𝐼 and our 𝐸𝐷𝐴𝑁𝑅𝑃 proposals, and we observed that it drastically reduced
the mean execution time while significantly maintaining overall quality indicators’ performance.
Additionally, variability in all metrics was reduced in most cases.
Lastly, we conclude that NSGA-II is not an appropriate algorithm to solve the MONRP in interactive
tools due to its execution time. After thresholding the search time to an applicable value in order to
make the decision maker not wait too long, our 𝑀𝐼𝑀𝐼𝐶𝑁𝑅𝑃 and 𝑈𝑀𝐷𝐴𝑁𝑅𝑃 proposals arise as
the best choices to be applied to maximize the HV obtained, as well as UNFR and Δ−Spread in the
case of 𝑈𝑀𝐷𝐴𝑁𝑅𝑃 . In future works, we plan to focus on exploiting SSS in the constrained version
of the MONRP, and to explore the inclusion of more objectives.
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