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Abstract The Next Release Problem (NRP) is a combinatorial optimization problem
that aims to find a subset of software requirements to be delivered in the next
software release, which maximize the satisfaction of a list of clients and minimize
the effort required by developers to implement them. Previous studies have applied
various metaheuristics and procedures, being many of them evolutionary algorithms.
However, no Estimation of Distribution Algorithms (EDA) have been applied to the
NRP. This subfamily of evolutionary algorithms, based on probability modelling,
have been proved to obtain good results in problems where genetic algorithms
struggle. In this paper we adapted two EDAs to tackle the multi-objective NRP, and
compared them against widely used genetic algorithms. Results showed that EDA
approaches have the potential to generate solutions of similar or even better quality
than those of genetic algorithms in the most crowded areas of the Pareto front, while
keeping a shorter execution time.

1 Introduction

Successfully managing software releases is one of the major challenges in Software
Engineering. As the product goal grows and project scope gets expanded, the diffi-
culty of delivering to clients what is needed increases substantially. Clients interests
are usually defined in terms of software requirements, and these software require-
ments are built based on clients interests. Thus, when there is more than one client,
their concerns are usually different or even opposed. Furthermore, complexity of re-
quirements has to be taken into account, in order to not surpass development capacity
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at each iteration of the development cycle. Finally, the problem can get even more
complex if the possible dependencies between requirements are taken into account.

This problem, named NRP, pursues finding a set of requirements for a release
that satisfy clients as much as possible and optimize development efforts. This is a
NP-hard problem which does not have a unique and optimal solution, and is usually
solved manually by experts judgement. Given that solving the NRP is critical for a
software project success, and that it has to be solved iteratively every time a release
is planned, it is an interesting candidate to be automated by means of optimization
methods. In previous works, different search techniques have been proposed to tackle
the NRP. Most of them are based on metaheuristic techniques, being evolutionary
algorithms the ones that showed best performance. In this paper, we introduce the
possibility of applying Estimation of Distribution Algorithms (EDA) to the NRP. As
a first approach, we have applied two univariate EDAs, and compared them against
widely used genetic algorithms (GA). Experimentation results show that EDAs can
be successfully applied to the NRP and, while evolved populations are not covering
all search space areas, they can overcome GAs solutions in specific sections of the
space.

The rest of the paper is structured as follows. In Section 2, a summary of previous
works and applied procedures is made. Section 3 introduces EDA and describes
our two proposed algorithms and solution encoding. Then, in Section 4, the eval-
uation setup is described, listing the algorithms, datasets and methodology used.
Section 5 presents and discusses the results of the experimentation. Finally, Section
6 summarizes the conclusions of this study and introduces potential lines of research.

2 Next Release Problem

2.1 Related work

The solution of the NRP is one of the applications of the field of Search-Based
Software Engineering (SBSE), where Software Engineering related problems are
tackled by means of search-based optimization algorithms.

The NRP was firstly formulated by Bagnall et al. [2]. In its definition, a subset of
requirements has to be selected, having as goal meeting the clients needs, minimizing
development effort and maximizing clients satisfaction. They applied a variety of
metaheuristics techniques, such as simulated annealing, hill climbing and GRASP,
but combining the objectives of the problem into a single-objective function.

Other works started formulating the NRP as a multi-objective optimization
(MOO) problem, being the first one the proposal of Zhang et al. [15]. This new
formulation, Multi-Objective Next Release Problem (MONRP) was based on Pareto
dominance [4] and is formally defined in Section 2.2. In their proposal, they tackled
each objective separately, exploring the non-dominated solutions (NDS). Finkelstein
et al. [7] also applied multi-objective optimization considering different measures
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of fairness. All these studies applied evolutionary algorithms, such as ParetoGA and
NSGA-II [5] to solve the MONRP.

Although EDA approaches have been applied to SBSE problems, none has been
used to tackle the NRP, to the authors’ knowledge. From the most recent reviews, in
Ramirez et al. [12] only an EDA application to software testing [13] is referenced;
and in Gupta et al. [9] and Alba et al. [1] EDA approaches are not mentioned or
matched to any solution of the NRP. Thus, we find it of interest to develop new
EDA-based algorithms to be applied to the NRP.

Comparison among study proposals has been generally carried out by analyzing
the Pareto fronts and execution time returned by the algorithms. However, later works
started using a set of numerical metrics that evaluate different features of the Pareto
fronts. Most studies compare the metrics obtained from their proposals against those
obtained by other algorithms commonly applied to MOO, analyzing the performance
and the advantages and weaknesses of using each algorithm to solve the MONRP.
Based on this, we provide a similar comparison framework for our proposal.

2.2 Multi-Objective Next Release Problem

As mentioned in the introduction, the NRP requires a combinatorial optimization of
two objectives. While some studies alleviate this problem by adding an aggregate
(Single-Objective Optimization), others tackle the two objectives by using a Pareto
front of NDS, using multi-objective optimization (MOO).

In MOO, there is no unique and optimal solution, but a Pareto front of NDS [4].
The Pareto front is a vector or set of configuration values for the decision variables
that satisfies the problem constraints and optimizes the objective functions. Thus, the
Pareto front contains a set of solutions that are not dominated by any other. Given a

solution vector x = [x1,X2,...,x;] where j is the number of problem objectives, it
dominates a solution vector y = [y1, y2,...,y;] if and only if y is not better than x
for any objectivei = 1, 2,.. ., j. In addition, there must exist at least one objective x;

that is better than the respective y; of y. Conversely, two solutions are non-dominated
as long as neither of them dominates the other.

Defining the NRP as a multi-objective optimization problem gives the advantage
that a single solution to the problem is not sought, but rather a NDS set. In this
way, one solution or another from this set can be chosen according to the conditions,
situation and restrictions of the software product development. This new formulation
of the problem is known as MONRP.

The MONRP can be defined by a set R = {ry,r2, ..., r,} of n candidate software
requirements, which are suggested by a set C = {cy,¢2,...,c} of m clients. In
addition, a vector of costs or efforts is defined for the requirements in R, denoted E =
{e1,e,...,e,},inwhich each e; is associated with a requirement r; [10]. Each client
has an associated weight, which measures its importance. Let W = {wy, wa, . . ., wy, }
be the set of client weights. Moreover, each client gives an importance value to each
requirement, depending on the needs and goals that this has with respect to the
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software product being developed. Thus, the importance that a requirement r; has
for a client ¢; is given by a value v;;, in which a zero value represents that the
client ¢; does not have any interest in the implementation of the requirement r;. A
m X n matrix is used to hold all the importance values in v; ;. The overall satisfaction
provided by a requirement r; is denoted as S = {s1, 52, ..., 5.} and is measured as a
weighted sum of all importance values for all clients, thatis: s; = 3| w; X v;;. The
MONRP consists of finding a decision vector X, that includes the requirements to
be implemented for the next software release. X is a subset of R, which contains the
requirements that maximize clients satisfaction and minimize development efforts.
The MONRP objectives are the following:

Maximize S(X) = Z s;  Minimize E(X) = Z e; (1
JjeX JEX

In addition, requirements in vector X might have to satisfy the constraints of the
problem. These constraints are related to the interactions between requirements and
to the total effort of the development.

3 Proposal: univariate EDAs for the MONRP

EDAs are evolutionary algorithms based on probabilistic modelling and were de-
signed as an alternative to genetic algorithms (GAs). As GAs, EDAs are population-
based algorithms, however instead of relying upon the goodness of genetic operators,
EDAs apply a more normative approach, which consists of learning a probability
distribution from a set of promising individuals of the current population and sam-
pling the estimated distribution in order to obtain the next population [11]. As no
crossover nor mutation operator is needed, the number of hyperparameters decreases,
thus simplifying their configuration. The complexity of an EDA is related with the
degree of explicit interrelations (dependencies) it allows. Thus, in univariate EDAs
no explicit dependency is allowed and interrelations are implicitly catched by the
evaluation function (as in GAs), but when multivariate EDAs are used, the depen-
dencies among the variables are explicityly modeled.

Formally, univariate EDAs assume that the n-dimensional joint probability dis-
tribution (JPD) factorizes like a product of n univariate and independent probability
distributions, that is p;(x) = [1/-; p;(x;). Thus framework fits well in our goal for
this study as we are tackling the MONRP without dependencies between require-
ments, therefore we propose to adapt two univariate EDAs to work in the domain of
this multi-objective problem: UMDA and PBIL. Before describing each algorithm,
let us to consider some common issues: an individual is represented by a vector of
booleans of length n, where each value indicates the inclusion or not of a require-
ment of the set R; both the satisfaction and effort of each requirement are scaled
using a min-max normalization; since we only consider univariate EDA, we have
not modeled cost restrictions nor interactions between requirements (as in related



Estimation of Distribution Algorithms applied to the Next Release Problem 5

Algorithm 1 MONRP-UMDA pseudocode

procedure MONRP-UMDA(maxGenerations)
nds < 0 > empty set of non-dominated solutions
P « generateRandomPopulation()
for i = 0 to maxGenerations do
individuals < selectIndividuals(P)
probModel « learnProbModel(individuals)
P — sampleNewPopulation(probM odel)
evaluate(P)
nds < updateNDS(P, nds)
end for
return nds
end procedure

works [15, 7, 6]); finally, as we are tackling the MONRP, algorithms must return
only NDS, so at each iteration of the execution algorithms update a NDS set with
the new generated individuals.

3.1 MONRP-UMDA

In Univariate Marginal Distribution Algorithm (UMDA) [11, Ch. 3] the JPD is
factorized as the product of marginal distributions: p;(x; 6') = mpi(xs 95). The
MONRP-UMDA (Algorithm 1) starts creating a random population and, at each
generation, it selects the non-dominated individuals of the population, learns the
probability model p; from them, and samples a new population using p;. Finally,
new individuals are evaluated and the global NDS set updated by adding the new
non-dominated individuals found. After execution, it returns the NDS set.

3.2 MONRP-PBIL

Probability Based Incremental Learning (PBIL) [11, Ch. 3] combines the mecha-
nisms of a generational GA with simple competitive learning. Differently to UMDA,
in which populations are transformed into a probability model whose only purpose
is to sample new populations, PBIL algorithm attempts to create a probability model
which can be considered a prototype for high evaluation vectors for the function space
being explored. In a manner similar to the training of a competitive learning network,
the values in the probability model are gradually shifted towards representing those
in high evaluation vectors.

MONRP-PBIL (Algorithm 2) is quite similar to MONRP-UMDA, except in the
updating of the probabilistic model. First, instead of selecting always the best indi-
vidual found so far, at each iteration we randomly sampled an individual from the
NDS set. Then, we update the probability model (vector) in two steps:
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(1) V; = V; - (1.0 = LR) + bestIndividual; - LR, being i the i'" gene position, and
LR the learning rate hyperparameter, ranging from O to 1.

) If (Probyana < Probpy:): Vi = V; - (1.0 = MS) +r - MS, r being a random
number € {0, 1} and M S the mutation shift hyperparameter, ranged from O to 1.

Algorithm 2 MONRP-PBIL pseudocode

procedure MONRP-PBIL(maxGenerations, LR, Prob,,,;, M S)
nds «— 0 > empty set of non-dominated solutions
probModel « initProbModel() > set all vector initial values to 0.5
for i = 0 to maxGenerations do
P < sampleNewPopulation(probM odel)
evaluate(P)
bestInd « selectBestIndividual(P)
probModel «— updateProbModel(probModel, bestind, LR, Prob,,,;, MS)
nds < updateNDS(P, nds)
end for
return nds
end procedure

4 Experimental evaluation

In this section, we present the experimental method used in the evaluation. Then,
we describe other algorithm approaches used to be compared against our proposal,
along with the datasets used to evaluate the algorithms. The source code for the
algorithms, implemented in Python 3.8.8, along with the experimentation setup
and datasets used is available at the following repository: https://github.com/uclm-
simd/monrp/tree/soco22.

4.1 Algorithms

Our experimentation framework includes the following algorithms to compare per-
formance and effectiveness of the two multi-objective univariate EDA versions:

e Random search. This is a baseline algorithm, expected to be outperformed by
all algorithms. The procedure generates as many random solutions as the maximum
number of evaluation functions specified. Then, it returns the NDS set.

¢ Single-Objective GA. It combines the two objective functions of the MONRP
into a single objective. Then, updates the NDS set with new individuals after each
generation.

© NSGA-II. The Non-dominated Sorting Genetic Algorithm-II [5] is a state-of-the-
art multi-objective GA. It uses elitism and ranks each individual based on the level
of non-dominance.
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The ranges of parameters used in the experimentation for each algorithm are
described in Section 4.3, for further detail.

4.2 Datasets

Algorithms performance has been tested using two widely used public datasets
(P1 and P2), taken from previous NRP works. Due to the lack of datasets with
high number of clients, we decided to create another one (S3) synthetically, to test
algorithms in a significantly larger instance. Dataset P1 [8] includes 20 requirements
and 5 clients. Dataset P2 [14] includes 100 requirements and 5 clients. Dataset S3
includes 140 requirements and 100 clients. Each dataset contains a set of proposed
requirements, defined by a vector of efforts, one effort value for each requirement.
Clients are also included, defined by a vector of importances. The priority that each
client gives to each requirement is also contained in the dataset, by means of a matrix
of values in which each value represents the importance of a requirement for a client.

4.3 Methodology

We tested a set of hyperparameter configurations for each algorithm and dataset.
Each configuration was executed 10 times.

For the Single-Objective GA and NSGA-II, populations were given values in the
range 20 to 200 and number of generations took values among 100 to 2000. Crossover
probabilities were assigned values among 0.6 to 0.9 and mutation probabilites in the
range from O to 1. Both algorithms used a binary tournament selection, a one-point
crossover scheme and an elitist replacement scheme. Both EDA approaches used
population sizes and number of generations among 50 to 200. UMDA used two
replacement schemes: a default one and an elitist replacement. PBIL used learning
rates, mutation probabilities and mutation shifts with values between 0.1 to 0.9.

The stop criterion used by other works [15, 14, 3] is the number of function
evaluations, commonly set to 10000. To adapt our experiments to this stop criterion,
we restricted the execution of our algorithms to: Pop. size * #Gens. < 10000.

We normalized datasets satisfaction and effort values, scaling them between 0 and
1. To evaluate the results, we compared the obtained Pareto fronts and a set of metrics.
These metrics are quality indicators of the results generated by the algorithms and
their efficiency: Hypervolume (HV), A-Spread, Spacing and execution time.

Mean values of these metrics have been calculated and compared pairwise
between algorithms using a non-parametric statistical test, more specifically, the
Mann-Whitney U test with Holm correction for multiple comparison. This is a
non-parametric statistical hypothesis test that allows to assess whether one of two
samples of independent observations tends to have larger values than the other. All
the experiments were run in the same runtime environment. The machines used had
32Gb RAM, of which only 8Gb were used, and two 3.00 GHz 4-core Intel Xeon
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E5450 processors. The operating system used was a CentOS Linux 7 with a 64-bit
architecture.

5 Results and analysis
5.1 Best configurations

The Single-Objective GA’s best hyperparameter configuration includes a population
size of 100 individuals, a number of generations of 100 (maximum number to stay
under the 10,000 limit) and a P, = 0.8. The mutation operator that showed a better
performance was the flip1bit. This operator gives a chance of flipping only one bit of
the booleans vector. The best-performing probability is P,, = 1, which means that
we always mutates one random bit of each individual. That probability is equivalent
to using P, = % at gene level, n being the number of genes (scheme used in [14]).
The best hyperparameter configuration for the NSGA-II used a population size of
100 individuals and 100 generations. The best crossover probability (P.) was the
lowest, 0.6, and the best mutation operator was the flipIbit, using a P,,, = 1.

Regarding UMDA, best hyperparameter configuration included a population size
of 200, 50 generations and an elitist replacement scheme. With the upper limit of
individual evaluations set and the datases used, it seemed to generate better results
when setting a higher population size than increasing the number of generations.
Regarding the replacement scheme, elitism tends to produce wider Pareto fronts.

With respect to PBIL, a population size and number of generations of 100 was
used, with learning and mutation rates of 0.5 and a mutation shift of 0.1. In this
case, population size and number of generations did not show a significant differ-
ence in performance. However, learning rate and mutation configurations did affect
the results. A higher learning rate than 0.5 caused the algorithm to underperform.
Mutation worked similarly, enhancing results when increasing the probability up
to a limit, and generating worse results with probability values above 0.5. For the
mutation shift, high values showed bad performance, indicating that high variations
in PBIL probability vector are not suiting this problem.

5.2 Pareto front results

To analyze Pareto front results, a random execution of the best algorithm configu-
rations is plotted for each dataset (see Figure 1). Single-Objective GA shows bad
performance, being similar to that of the random procedure. This occurs due to the
low number of generations set to keep the maximum number of function evalua-
tions. Configuring a number of generations of one or two magnitude orders higher
increases the quality of its Pareto front. Regarding the Pareto front distribution, the
GA’s aggregation of objectives biases the search, leaving unexplored areas. NSGA-
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Fig. 1 Results from best configuration of each algorithm for datasets P2 (left) and S3 (right).

II generates Pareto fronts of better quality: better solutions and more distributed
along the search space. As expected, the crowding operator of the algorithm helps
exploring the search space. However, as the dataset size increases, its performance
decreases significantly. The reason is the limited number of generations, as this al-
gorithm is expected to perform better in larger datasets when compared against other
search methods. Regarding EDAs, for datasets P2 and S3 both algorithms struggled
to generate a wide Pareto front. In the case of UMDA, it tends to group the best solu-
tions in a certain area of the space, presumably where the probability vector drifted.
In the remaining areas of the Pareto, only the random initial solutions are found,
which were never updated by the algorithm. Regarding PBIL, as it does not generate
an initial set of random solutions, but an initial vector, it did not create solutions
in other areas of the space appart from the region were the probability vector was
focused. It is interesting to highlight that both EDAs are unable to generate wide,
high-quality Pareto fronts. Instead, both algorithms focused on a small region of the
search space, progressively restricting the area with more consecutive generations,
caused by the probability vector values stabilizing at extreme probabilities for O or 1
values. Despite this effect, it is worth mentioning that both EDAs have been able to
overcome the Pareto front solutions returned by NSGA-II in the most balanced area
of the heap.

5.3 Metrics results

The mean values of the metrics obtained for each algorithm and dataset after 10
independent executions have been statistically compared, as explained in Section
4.3. Each metric mean value has been compared pair-wise between algorithms,
denoting the best value in bold and indicating the values that are statistically worse
(P < 0.05) with a | symbol, as depicted in Table 1.

For the HV metric, NSGA-II obtained the best possible value for dataset P1,
but UMDA generated best results for the other two datasets. This is caused by the
initial random solutions generated. PBIL did not obtain a high HV metric for large
datasets. For the A-Spread metric, best values were achieved by the Single-Objective
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Table 1 Average metrics of the best hyperparameter configurations for each algorithm and dataset

Dataset Algorithm HV  A-Spread Spacing Execution time (s)
Single-Objective GA 0.594] 0.615 0.323] 17.967]
P1 NSGA-II 1.000 0.963] 0.382 180.991]
UMDA 0.878] 0.744] 0.330] 5.494|
PBIL 0.554] 0.692] 0.316] 3.036
Single-Objective GA 0.157] 0.637 0.128] 82.713]
P2 NSGA-II 0.407] 0.969] 0.245 616.415]
UMDA 0975 1.008] 0.111] 21.489|
PBIL 0.138] 0.670  0.114] 4.099
Single-Objective GA 0.102] 0.720  0.105] 125.702]
S3 NSGA-II 0.286] 0.970, 0.206 859.928|
UMDA 0981 1.025] 0.103] 23.079|
PBIL 0.089] 0.678 0.105] 3.802

GA for P1 and P2 datasets, but PBIL reached the lowest (best) A-Spread in dataset
S3. Regarding Spacing, no EDA approach could surpass NSGA-II values, both
algorithms obtaining similar results for each dataset. Finally, regarding execution
time, EDA approaches resulted to run very fast, being PBIL the fastest algorithm for
all datasets. These results show that EDA can lead to a very efficient and specific
search through the Pareto front, being quicker than GAs to generate and evolve
solutions, thanks to the simplified methods they use, most of them applied only to
the probability vector, instead of to the population.

6 Conclusions and future works

In this work, we have presented new algorithm proposals to the MONRP field,
introducing the application of EDA techniques. Formerly, this problem has been
commonly tackled by means of evolutionary algorithms, mainly GAs. This has been
the first time that the EDA family of algorithms has been used to solve MONRP. For
this purpose, we have considered the use of univariate EDAs as a first approach. In
this paper we have adapted UMDA and PBIL algorithms and compared them against
two GAs (Single-Objective GA and NSGA-II) by means of Pareto front results and
quality metrics. Our proposals were able to overcome GAs in the most crowded
regions of the Pareto front, despite generating low-quality or no solutions in other
areas of the search space. Regarding quality metrics, our EDA proposals have been
able to get rather good results compared to those of the GAs, showing the best
performance in the execution time. Future research will focus on the applicability
of multivariate EDA algorithms, aiming to manage the MONRP with modeled
dependencies between requirements.
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