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A Causality

A.1 Definitions and example

As in previous causal works on DG [9, 41, 53-55], our causality results assume all domains share
the same underlying structural causal model (SCM) [56], with different domains corresponding to
different interventions. For example, the different camera-trap deployments depicted in Fig. 1a may
induce changes in (or interventions on) equipment, lighting, and animal-species prevalence rates.

Definition A.1. An SCM> M = (S,Py) consists of a collection of d structural assignments
S = {X; « g;(Pa(X;), Nj) Yy, (A1)

where Pa(X;) C {Xy,..., Xy} \ {X;} are the parents or direct causes of X;, and Py = ]—I}i:1 Py,
a joint distribution over the (jointly) independent noise variables Ny, ..., Nj. An SCM M induces
a (“causal”) graph G which is obtained by creating a node for each X; and then drawing a directed
edge from each parent in Pa(X]-) to X;. We assume this graph to be acyclic.

We can draw samples from the observational distribution P 54 (X) by first sampling a noise vector
n ~ Py, and then using the structural assignments to generate a data point x ~ IP 5 (X), recursively
computing the value of every node X; whose parents’ values are known. We can also manipulate or

intervene upon the structural assignments of M to obtain a related SCM ME.

Definition A.2. An intervention e is a modification to one or more of the structural assignments of M,
resulting in a new SCM M* = (S¢,IPY;) and (potentially) new graph G°, with structural assignments

8¢ = {X{ « g(Pa’(XS), NP )}, (A.2)

We can draw samples from the intervention distribution P p4e (X°) in a similar manner to before, now
using the modified structural assignments. We can connect these ideas to DG by noting that each
intervention e creates a new domain or environment e with interventional distribution IP(X¢, Y*).

Example A.3. Consider the following linear SCM, with N; ~ N(0, (T]-Z):
X1 < Ny, Y < X1+ Ny, Xo <~ Y+ N

Here, interventions could replace the structural assignment of X; with X{ <— 10 and change the noise
variance of Xy, resulting in a set of training environments &, = {fix X; to 10, replace 0» with 10}.

A.2 EQRM recovers the causal predictor

Overview. We now prove that EQRM recovers the causal predictor in two stages. First, we prove the
formal versions of Prop. 4.3, i.e. that EQRM learns a minimal invariant-risk predictor as « — 1 when
using the following estimators of T ¢: (i) a Gaussian estimator (Prop. A.4 of Appendix A.2.1); and (ii)
kernel-density estimators with certain bandwidth-selection methods (Prop. A.5 of Appendix A.2.2).
Second, we prove Thm. 4.4, i.e. that learning a minimal invariant-risk predictor is sufficient to recover
the causal predictor under weaker assumptions than those of Peters et al. [54, Thm 2] and Krueger
etal. [41, Thm 1] (Appendix A.2.3). Throughout this section, we consider the “population” setting
within each domain (i.e., # — ©0); in general, with only finitely-many observations from each
domain, only approximate versions of these results are possible.

Notation. Given m training risks {RR°1(f),..., R (f)} corresponding to the risks of a fixed
predictor f on m training domains, let

denote the sample mean and

the sample variance of the risks of f.

3 A Non-parametric Structural Equation Model with Independent Errors (NP-SEM-IE) to be precise.

21



A.2.1 Gaussian estimator

When using a Gaussian estimator for T £» we can rewrite the EQRM objective of (4.1) in terms of the
standard-Normal inverse CDF &~ as

fu = ar%rjr;in iy + @ a) - 0F. (A.3)
€

Informally, we see thata —1 = &~ 1(a) 0 = 0¢ — 0. More formally, we now show that,
as « — 1, minimizing (A.3) leads to a predictor with minimal invariant-risk:

Proposition A.4 (Gaussian QRM learns a minimal invariant-risk predictor as &« — 1). Assume

1. F contains an invariant-risk predictor fo € F with finite mean risk (i.e., 0f, = 0and fig < c0),
and
2. there are no arbitrarily negative mean risks (i.e., px 1= infre  py > —00).

Then, for the Gaussian QRM predictor f,x given in Eq. (A.3),

iﬁ‘}ﬁfa =0 and lirilj;lpﬁﬂ < gy

Prop. A.4 essentially states that, if an invariant-risk predictor exists, then Gaussian EQRM equalizes
risks across the m domains, to a value at most the risk of the invariant-risk predictor. As we
discuss in Appendix A.2.3, an invariant-risk predictor fo (Assumption 1. of Prop. A.4 above)
exists under the assumption that the mechanism generating the labels Y does not change between
domains and is contained in the hypothesis class JF, together with a homoscedasticity assumption (see
Appendix G.1.2). Meanwhile, Assumption 2. of Prop. A.4 above is quite mild and holds automatically
for most loss functions used in supervised learning (e.g., squared loss, cross-entropy, hinge loss, etc.).
‘We now prove Prop. A.4.

Proof. By definitions of f, and fo,
Py, + (@) 0y < iy + @7 (@) -0y, = gy (A4)

Since for & > 0.5 we have that ! () 7 > 0, it follows that fi i < fo- Moreover, rearranging
and using the definition of ., we obtain

. gy = Pg gy — s
< <
U= () < o 1)

7 —0 as a— 1.

O

Connection to VREx. For the special case of using a Gaussian estimator for T £, We can equate the

EQRM objective of (A.3) with the Rygrgx objective of [41, Eq. 8]. To do so, we rewrite Rygrgx in
terms of the sample mean and variance:

argmin Ryrex(f) = argmin m - fif + - ﬁ'%. (A.5)
feF feF

Note that as § — 00, RyRrgx learns a minimal invariant-risk predictor under the same assumptions,
and by the same argument, as Prop. A.4. Dividing this objective by the positive constant m > 0, we
can rewrite it in a form that allows a direct comparison of our & parameter and this 8 parameter:

argmin fiy + (M) 0. (A.6)
feF m

Comparing (A.6) and (A.3), we note the relation f = m - ®~! () /0 for a fixed f. For different fs,

a particular setting of our parameter « corresponds to different settings of Krueger et al.’s B parameter,
depending on the sample standard deviation over training risks 0.
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A.2.2 Kernel density estimator

We now consider the case of using a kernel density estimate, in particular,

1 m —Rel
FKDEf a ; (xf(f)) (A.7)

to estimate the cumulative risk distribution.

Proposition A.5 (Kernel EQRM learns a minimal risk-invariant predictor as &« — 1). Let

fu = argminFKDEf( ),
FeF

be the kernel EQRM predictor, where FKDE f denotes the quantile function computed from the kernel

density estimate over (empirical) risks of f with a standard Gaussian kernel. Suppose we use a
data-dependent bandwidth h £ such that h  — 0implies &f — 0 (e.g., the “Gaussian-optimal” rule

hy = (4/3m)%2 . 0 [65]). As in Proposition A.4, suppose also that

1. F contains an invariant-risk predictor fy € F with finite training risks (i.e., &fo = 0 and each
R%(fy) < o0), and
2. there are no arbitrarily negative training risks (i.e., R« := infrc z jc () R (f) > —o0).

Forany f € F, let R} := min;¢[,, R% (f) denote the smallest of the (empirical) risks of f across

domains. Then,

}}_}n} 0f, = 0 and 111111 j;lp R% =

S R;o'

As in Prop. A.4, Assumption 1 depends on invariance of the label-generating mechanism across
domains (as discussed further in Appendix A.2.3 below), while Assumption 2 automatically holds for
most loss functions used in supervised learning. We now prove Prop. A.5.

Proof. By our assumption on the choice of bandwidth, it suffices to show that, asa« — 1, h 7 — 0.
Let @ denote the standard Gaussian CDF. Since & is non-decreasing, for all x € IR,

m e; x — R%
FKDEfa ;Z¢<XR (fa)><q>< hAfDC)'

i=1 fa

In particular, for x = F~1 (&), we have

KDE, f,
Bl (a) —R%
A KDE, f, f
&= FKDE,fk(FK];Efa( ) <@ —hf,

Inverting ® and rearranging gives

Ry +hy @) <EL . (a)

Hence, by definitions of fa and fp,
R} +hy, O N a) < E o (a) < Bl (@) = R (A.8)

Since, for & > 0.5 we have that h = @~ 1(a) > 0, it follows that Rjg < R;}O. Moreover, rearranging
Inequality (A.8) and using the definition of R,, we obtain

— R* R* —R
fO fa fo *
<
" o) S o w
asa — 1. O
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A.2.3 Causal recovery

We now discuss and prove our main result, Thm. 4.4, regarding the conditions under which the causal
predictor is the only minimal invariant-risk predictor. Together with Props. A.4 and A.5, this provides
the conditions under which EQRM successfully performs “causal recovery”, i.e., correctly recovers
the true causal coefficients in a linear causal model of the data. As discussed in Appendix G.1.2,
EQRM recovers the causal predictor by seeking invariant risks across domains, which differs from
seeking invariant functions or coefficients (as in IRM [9]). As we discuss below, Thm. 4.4 generalizes
related results in the literature regarding causal recovery based on invariant risks [41, 54].

Assumption (v). In contrast to both Peters et al. [54] and Krueger et al. [41], we do not require specific
types of interventions on the covariates. In particular, our main assumption on the distributions of
the covariates across domains, namely that the system of d-variate quadratic equations in (4.3) has a
unique solution, is more general than these comparable results. For example, whereas both Peters
et al. [54] and Krueger et al. [41] require one or more separate interventions for every covariate X]-,
Example 4 below shows that we only require interventions on the subset of covariates that are effects
of Y, while weaker conditions suffice for other covariates. Although this generality comes at the
cost of abstraction, we now provide some concrete examples with different types of interventions
to aid understanding. Note that, to simplify calculations and provide a more intuitive form, (4.3) of
Thm. 4.4 assumes, without loss of generality, that all covariates are standardized to have mean 0 and
variance 1, except where interventions change these. We can, however, rewrite (4.3) of Thm. 4.4 in a
slightly more general form which does not require this assumption of standardized covariates:

0 sz]EXNel [XXT]X + sz]EN,Xwel [NX]

=XTExne, [XXT]x + 2XTEN x-e,, [NX]. (A.9)

We now present a number of concrete examples or special cases in which Assumption (v) of Thm. 4.4
would be satisfied, using this slightly more general form. In each example, we assume that variables
are generated according to an SCM with an acyclic causal graph, as described in Appendix A.1.

1. No effects of Y. In the case that there are no effects of Y (i.e., no X is a causal descendant of Y,
and hence each Xj is uncorrelated with N), it suffices for there to exists at least one environment e;
in which the covariance Covy..[X] has full rank. These are standard conditions for identifiability
in linear regression. More generally, it suffices for /" ; Covi.,, [X] to have full rank; this is the
same condition one would require if simply performing linear regression on the pooled data from
all m environments. Intuitively, this full-rank condition guarantees that the observed covariate
values are sufficiently uncorrelated to distinguish the effect of each covariate on the response Y.
However, it does not necessitate interventions on the covariates, which are necessary to identify
the direction of causation in a linear model; hence, this full-rank condition fails to imply causal
recovery in the presence of effects of Y. See Appendix G.1.2 for a concrete example of this failure.

2. Hard interventions. For each covariate X;, compared to some baseline environment ¢, there is
some environment e X; arising from a hard single-node intervention do(Xj = z), withz # 0. If
X is any leaf node in the causal DAG, then in e X;» Xj is uncorrelated with N and with each X
(k # j), so the inequality in (A.9) gives

0> leEXNgX]_ [XXT]x = x}z2 + xT_].]EXNEO [XXT]x_j.

Since the matrix Ex..[XXT] is positive semidefinite (and z # 0 implies z2 > 0), it follows that
xj = 0. The terms in (A.9) containing x; thus vanish, and iterating this argument for parents
of leaf nodes in the causal DAG, and so on, gives x = 0. This condition is equivalent to that
in Theorem 2(a) of Peters et al. [54] and is a strict improvement over Corollary 2 of Yin et al.
[66] and Theorem 1 of Krueger et al. [41], which respectively require two and three distinct hard
interventions on each variable.

3. Shift interventions. For each covariate Xj, compared to some baseline environment ey, there is
some environment ex; consisting of the shift intervention X; < g;(Pa(X;), N;) 4 z, for some

z # 0. Recalling that we assumed each covariate was centered (i.e., Ex¢,[Xix] = 0) in ¢, if
Xj is any leaf node in the causal DAG, then every other covariate remains centered in ex; (.e.,
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Ex-cy [Xi] = 0 for each k # j). Hence, the excess risk is
]
X B ey, [XXT)x 4+ 20TEN Xnex, [NX] = 272° + XTEx g [XXT]x + 2XTEN xey [NX] .
j j
Since, by (A.9),
xT]EXNBO [XXT]X + sz]EN,Xweo [NX] = XTIEXNEX‘ [XXT]X + ZXT]EN,XNQX‘ [NX} ,
j j

it follows that x2z2 = 0, and so, since z # 0, Xj = 0. As above, the terms in (A.9) containing X;

thus vanish, and iterating this argument for parents of leaf nodes in the causal DAG, and so on, gives
x = 0. This condition is equivalent to the additive setting of Theorem 2(b) of Peters et al. [54].

. Noise interventions. Suppose that each covariate is related to its causal parents through an additive
noise model; i.e.,

where E[N;] = 0 and 0 < E[N?] < co. Theorem 2(b) of Peters et al. [54] considers “noise”
interventions, of the form

where 0> # 1. Suppose that, for each covariate X, compared to some baseline environment ey,
there exists an environment ex; consisting of the above noise intervention. If X; is any leaf node

in the causal DAG, then, since we assumed Ex ., [Xf] =1,
XT]EXNEX. [XXT}X + sz]EN,XweX. [NX]
j j
= (0% = 1)A7E[N?] + XTExeey [ XXT]x + 2xTEN xe, [NX].

Hence, the system (A.9) implies 0 = (02 — 1)x]2]E[N]2] Since 0% # 1 and ]E[N]z] > 0, it follows
that Xj = 0.

. Scale interventions. For each covariate X]-, compared to some baseline environment ey, there exist
two environments ex ; (i € {1,2}) consisting of scale interventions X; < 0;¢;(Pa(X;), N;), for
some 0; # +1, with oy # 0p. If X]' is any leaf node in the causal DAG, then, since we assumed
]EXNE() [XJZ] =1,

XTIEXNeX‘ [XXT]X + ZXTIEN,XNeX‘ [NX}
j j
= (07 = 1)xF +2(03 — 1)xExg, [X;XT J2T; + 2T Ex g [XXT]x
+2(0; — 1)x]‘IEN’XN60 [X]N] + ZxT]EN,XNEO [NX].
Hence, the system (A.9) implies
0= (07 = 1) +2(0; = 1)} (Bxtmgy [X;XT 3T + B xeey [XN] ) .
Since (71.2 # 1,if x; # 0, then solving for x; gives

Bt XGXT T + B e [XN]
0 +1 .

xj:—

Since 0y # 0, this is possible only if xj = 0. This provides an example where a single
intervention per covariate would be insufficient to guarantee causal recovery, but two distinct
interventions per covariate suffice.

. Sufficiently uncorrelated causes and intervened-upon effects. Suppose that, within the true causal

DAG, De(Y) C [d] indexes the descendants, or effects of Y (e.g., in Figure 5, De(Y) = {5,6,7}).
Suppose that for every j € De(Y), compared to a single baseline environment ¢y, there is
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Figure 5: Example causal DAG with various types of covariates. X7 and X3 are the parents of Y,
and so the true causal coefficient § has only two non-zero coordinates 1 and 3. X1, X, and X3
are ancestors of Y. X5, Xg, and Xy are effects, or descendants, of Y and are the only covariates for
which [E [X]-N ] can be nonzero; hence, X5, Xg, and X7 are the only covariates on which interventions
are generally necessary.

a environment ex; consisting of either a do(X]- = z) intervention or a shift intervention
Xj — & (Pa(XJ-), Nj) + z, with z # 0 and that the matrix

Y Covxee, [X[d}\De(Y)} (A.10)
i=1

has full rank. Then, as argued in the previous two cases, for each j € De(Y), Xj = 0. Moreover,
for any j € [d]\De(Y), E[X;N] = 0, and so the system of equations (A.9) reduces to

02 2Ty ey Exes | Xia\0er) Xfyyecr) ) Fapecn

= xT\pe(r) Exven | Xia\Der Xl pe(n) | i pecr-

Since each Ex .., | X[4)\De(Y) X[Td]\De(Y)} is positive semidefinite, the solution x = 0O to this

reduced system of equations is unique if (and only if) the matrix (A.10) has full rank. This
example demonstrates that interventions are only needed for effect covariates, while a weaker
full-rank condition suffices for the remaining ones. In many practical settings, it may be possible
to determine a priori that a particular covariate X; is not a descendant of Y; in this case, the
practitioner need not intervene on Xj, as long as sufficiently diverse observational data on X;
is available. To the best of our knowledge, this does not follow from any existing results in the
literature, such as Theorem 2 of Peters et al. [54] or Corollary 2 of [66].

We conclude this section with the proof of Thm. 4.4:

Proof. Under the linear SEM setting with squared-error loss, for any estimator B,
R R 2
R(B) = Enxe | (B—B)TX+N)’]

— Ex., [(([3 _ ﬁ)TX)Z] +2EN xe [(B— B)TNX] + Ey [NZ] .

Since the second moment of the noise term IEx[N?] is equal to the risk E(xy)~e [(Y—BTX)?] of

the causal predictor B, by the definition of Y = BT X + N, we have that [Ex[N?] is invariant across

environments. Thus, minimizing the squared error risk R¢() is equivalent to minimizing the excess
risk

Ex-. [((13 - ﬁ)TX)Z] +2En,x~c [(B— B)TNX]
= (B— B)TEx~[XXT)(B— B) +2(B — B)TEN,x~e [NX]
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over estimators 3. Since the true coefficient f is an invariant-risk predictor with O excess risk, if § is
a minimal invariant-risk predictor, it has at most 0 invariant excess risk; i.e.,

0 >(B — B)TExwe, [XXT](B — B) +2(B — B)TEN,x~e, [INX]

=(B — B) Ex~e, [XXT)(B— B) +2(B — P)TEN x~e,, [NX] . (A.11)

By Assumption (v), the unique solution to this is § — 8 = 0; i.e., B = B. O

B On the equivalence of different DG formulations

In Section 3, we claimed that under mild conditions, the minimax domain generalization problem
in (2.2) is equivalent to the essential supremum problem in (3.1). In this subsection, we formally
describe the conditions under which these two problems are equivalent. We also highlight several
examples in which the assumptions needed to prove this equivalence hold.

Specifically, this appendix is organized as follows. First, in § B.1 we offer a more formal analysis of
the equivalence between the probable domain general problems in (3.2) and (QRM). Next, in § B.2,
we connect the domain generalization problem in (2.2) to the essential supremum problem in (3.1).

B.1 Connecting formulations for QRM via a push-forward measure

To begin, we consider the abstract measure space (&,1,.A, Q), where A is a o-algebra defined on
the subsets of £,;. Recall that in our setting, the domains e € &) are assumed to be drawn from the
distribution Q. Given this setting, in § 3 we introduced the probable domain generalization problem
in (3.2), which we rewrite below for convenience:

ferjrfl,i{énzt subject to eI:E‘g {R(f) <t} >a (B.1)

Our objective is to formally show that this problem is equivalent to (QRM). To do so, for each f € F,
let consider a second measurable space (R4, 3), where R denotes the set of non-negative real
numbers and B denotes the Borel o-algebra over this space. For each f € F, we can now define the

(R, B)-valued random variable® G £ & — Ry via
Gf e Re(f) = ]EIP(XE,YE) [f(f(Xe),Yg)] (B.2)

Concretely, Gy maps an domain e to the corresponding risk RE(f) of f in that domain. In this
way, Gy effectively summarizes e by its effect on our predictor’s risk, thus projecting from the
often-unknown and potentially high-dimensional space of possible distribution shifts or interventions
to the one-dimensional space of observed, real-valued risks. However, note that G f is not necessarily
injective, meaning that two domains e and e; may be mapped to the same risk value under Gy.

The utility of defining G ¥ is that it allows us to formally connect (3.2) with (QRM) via a push-forward

measure through Gf. That is, given any f € F, we can define the measure’

T, =4 Gr#Q (B.3)

where # denotes the push-forward operation and =7 denotes equality in distribution. Observe
that the relationship in (B.3) allows us to explicitly connect Q—the often unknown distribution
over (potentially high-dimensional and/or non-Euclidean) domain shifts in Fig. 1b—to T f—the
distribution over real-valued risks in Fig. 1c, from which we can directly observe samples. In this
way, we find that for each f € F,

Pr{R°(f) <t} = Pr {R<t} B.4

PrRYf) <) = Pr (R<1) (B.4)
This relationship lays bare the connection between (3.2) and (QRM), in that the domain or environ-
ment distribution Q can be replaced by a distribution over risks Ty

SFor brevity, we will assume that G f is always measurable with respect to the underlying o-algebra A.
"Here T r s defined over the induced measurable space (R4, B).
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B.2 Connecting (2.2) to the essential supremum problem (3.1)

We now study the relationship between (2.2) and (3.1). In particular, in § B.2.1 and § B.2.2, we
consider the distinct settings wherein &,;) comprises continuous and discrete spaces respectively.

B.2.1 Continuous domain sets &y

When &,y is a continuous space, it can be shown that (2.2) and (3.1) are equivalent whenever: (a) the
map Gy defined in Section B.1 is continuous; and (b) the measure Q satisfies very mild regularity
conditions.

The case when Q is the Lebesgue measure. Our first result concerns the setting in which &, is a
subset of Euclidean space and where Q is chosen to be the Lebesgue measure on E,;;. We summarize
this result in the following proposition.

Proposition B.1. Let us assume that the map G £ Is continuous for each f € F. Further, let Q denote

the Lebesgue measure over Eyy; that is, we assume that domains are drawn uniformly at random
Sfrom E,y. Then (2.2) and (3.1) are equivalent.

Proof. To prove this claim, it suffices to show that under the assumptions in the statement of the
proposition, it holds for any f € F that

sup R°(f) = esssup R°(f). (B.5)

865311 e~Q
To do so, let us fix an arbitrary f € F and write

A:=sup R°(f) and B :=esssupR°(f). (B.6)
ec&a e~Q

At a high-level, our approach is to show that B < A, and then that A < B, which together will imply
the result in (B.5). To prove the first inequality, observe that by the definition of the supremum, it
holds that R°(f) < A Ve € Ey. Therefore, Q{e € &y : R°(f) > A} = 0, which directly implies
that B < A. Now for the second inequality, let € > 0 be arbitrarily chosen. Consider that due to the
continuity of G £ there exists an ey € &, such that

RO(f) 4+ € > A. (B.7)

Now again due to the continuity of Gf, we can choose a ball B, C &, centered at ¢y such that
|R¢(f) — R(f)| < € Ve € Be. Given such a ball, observe that Ve € Be, it holds that

RE(f) > RO(f) —e > A—2¢ (B.8)

where the first inequality follows from the reverse triangle inequality and the second inequality follows
from (B.7). Because Q{e € B : R°(f) > A —2¢e} > 0, it directly follows that A — 2e < B. As
€ > 0 was chosen arbitrarily, this inequality holds for any € > 0, and thus we can conclude that
A < B, completing the proof. O

Generalizing Prop. B.1 to other measure Q. We note that this proof can be generalized to
measures QQ other than the Lebesgue measure. Indeed, the result holds for any measure Q taking
support on &,y for which it holds that Q places non-zero probability mass on any closed subset of Eqj.
This would be the case, for instance, if Q was a truncated Gaussian distribution with support on &y;.
Furthermore, if we let IL. denote the Lebesgue measure on &, then another more general instance of
this property occurs whenever L is absolutely continuous with respect to Q, i.e., whenever . < Q.

Corollary B.2. Let us assume that Q places nonzero mass on every open ball with radius strictly
larger than zero. Then under the continuity assumptions of Prop. B.1, it holds that (2.2) and (3.1) are
equivalent.

Proof. The proof of this fact follows along the same lines as that of Prop. B.1. In particular, the same
argument shows that B < A. Similarly, to show that A < B, we can use the same argument, noting
that Q{e € B¢ : R°(f) > A — 2¢} continues to hold, due to our assumption that Q places nonzero
mass on . O
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Examples. We close this subsection by considering several real-world examples in which the
conditions of Prop. B.1 hold. In particular, we focus on examples in the spirit of “Model-Based
Domain Generalization” [22]. In this setting, it is assumed that the variation from domain to domain

is parameterized by a domain transformation model x° — D(x%¢') =: x¢, which maps the
covariates x° from a given domain ¢ € &y to another domain ¢/ € &,);. As discussed in [22], domain
transformation models cover settings in which inter-domain variation is due to domain shift [122,
§1.8]. Indeed, under this model (formally captured by Assumptions 4.1 and 4.2 in [22]), the domain
generalization problem in (2.2) can be equivalently rewritten as

min maxExy) [L(f(D(X,e)),Y)]. (B.9)

For details, see Prop. 4.3 in [22]. In this problem, (X,Y) denote an underlying pair of random
variables such that

P(X°) = D#(IP(X),é(e)) and P(Y) = P(Y) (B.10)

for each e € &, where (e) is a Dirac measure placed at e € E,. Now, turning our attention back to
Prop. B.1, we can show the following result for (B.9).

Remark B.3. Let us assume that the map e — D(-,e) is continuous with respect to a metric
dg,, (e,e’) on &y and that x — £(x,-) is continuous with respect to the absolute value. Further,

assume that each predictor f € J is continuous in the standard Euclidean metric on RY. Then (2.2)
and (3.1) are equivalent.

Proof. By Prop. B.1, it suffices to show that the map
Gf e — ]E(X,Y) [g(f(D(X,€>), Y)] (Bll)

is a continuous function. To do so, recall that the composition of continuous functions is con-
tinuous, and therefore we have, by the assumptions listed in the above remark, that the map
e — ((f(D(x,e)),y) is continuous for each (x,y) ~ (X,Y). To this end, let us define the
function hi¢(x,y,e) := £(f(D(x,e)),y) and let € > 0. By the continuity of /i in e, there exists a

0 = 6(e) > Osuch that [h¢(x,y,e) — he(x,y,¢')| < € whenever dg, (e,e’) < J. Now observe that

’]E(X/Y) he(X,Y,e)] = By [hs(X,Y, e/)]‘ (B.12)
- /g hf(X,Y,e)d]P(X,Y)—/E hf(X,Y,e’)d]P(X,Y)‘ (B.13)
all all
= /S (hf(X,Y,e)hf(X,Y,e’))d]P(X,Y)‘ (B.14)
all

<
Ean

Therefore, whenever dg,, (e,e’) < & it holds that

he(X,Y,e) —hf(X,Y,e’)‘d]P(X,Y). (B.15)

’]E(x,y) (X, Y, 0)] = Bix ) [ (X, Y, )] ‘ < /g edP(X,Y) =€ (B.16)
all
by the monotonicity of expectation. This completes the proof that G £ 1s continuous. O

In this way, provided that the risks in each domain vary in a continuous way through e, (2.2)
and (3.1) are equivalent. As a concrete example, consider an image classification setting in which
the variation from domain to domain corresponds to different rotations of the images. This is the
case, for instance, in the RotatedMNIST dataset [38, 127], wherein the training domains correspond
to different rotations of the MNIST digits. Here, a domain transformation model D can be defined by

D(x,e) = R(e)x where e € &y C [0,27), (B.17)
and where R(e) is a rotation matrix. In this case, it is clear that D is a continuous function of e (in

fact, the map is linear), and therefore the result in (B.3) holds.
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B.2.2 Discrete domain sets &y

When &, is a discrete set, the conditions we require for (2.2) and (3.1) to be equivalent are even
milder. In particular, the only restriction we place on the problems is that Q must place non-zero
mass on each element of Eyy; that is, Q(e) > 0 Ve € &. We state this more formally below.

Proposition B.4. Let us assume that £, is discrete, and that Q is such that Ve € &y, it holds that
Q(e) > 0. Then it holds that (2.2) and (3.1) are equivalent.

C Notes on KDE bandwidth selection

In our setting, we are interested in bandwidth-selection methods which: (i) work well for 1D
distributions and small sample sizes m; and (ii) guarantee recovery of the causal predictor as & — 1
by satisfying hy — 0 —> 0y — 0, where h 7 is the data-dependent bandwidth and 0y is the sample
standard deviation (see Appendices A.2.2 and A.2.3). We thus investigated three popular bandwidth-
selection methods: (1) the Gaussian-optimal rule [65], F = (4/ Sm)o'z . &f; (2) Silverman’s

rule-of-thumb [65], & = m=02. min(&f, %ﬁ), with IQR the interquartile range; and (3) the
median-heuristic [128—130], which sets the bandwidth to be the median pairwise-distance between
data points. Note that many sensible methods exist, as do more complete studies on bandwidth

selection—see e.g. [65].

For (1), we found Silverman’s rule-of-thumb [65] to perform very well, the Gaussian-optimal rule [65]
to perform well, and the median-heuristic [128—130] to perform poorly. For (ii), only the Gaussian-
optimal rule satisfies & F 0 = frf — 0. Thus, in practice, we use either the Gaussian-optimal
rule (particularly when causal predictor’s are sought as « — 1), or Silverman’s rule-of-thumb.

D Generalization bounds

This appendix states and proves our main generalization bound, Theorem D.1. Theorem D.1 applies
for many possible estimates T - and we further show how to apply Theorem D.1 to the specific case
of using a kernel density estimate.

D.1 Main generalization bound and proof
Suppose that, from each of N 1ID environments ey, ..., ey ~ IP(e), we observe n 1D labeled samples

(Xi1,Yi1), - (X1, Yn1) ~ P(X?,Y®). Fix a hypothesis class F and confidence level « € [0, 1].
For any hypothesis f : X — ), define the empirical risk on environment e; by

RA(f) 1=

S|

n
Z J4 (Yi,j,f(Xi,j)) , foreach i€ [N]
j=1

Throughout this section, we will abbreviate the distribution Fr, (t) = Pr.[R?(f) < t] of f’s risk by
Ff(t) and its estimate FTf’ computed from the observed empirical risks R°1(f), ..., RN (f), by l?f.

We propose to select a hypothesis by minimizing this over our hypothesis class:

fi= argminFT;l(zx). (D.1)
fer f

In this section, we prove a uniform generalization bound, which in particular, provides conditions
under which the estimator (D.1) generalizes uniformly over . Because the novel aspect of the present
paper is the notion of generalizing across environments, we will take for granted that the hypothesis

class JF generalizes uniformly within each environments (i.e., that each sup ¢ » R (f) — R (f)
can be bounded with high probability); myriad generalization bounds from learning theory can be
used to show this.

Theorem D.1. Let G := {F(R(f), R2(f),. RN(f)) : f € F,e1,...,en € Eay} denote the

class of possible estimated risk distributions over N environments, and, for any € > 0, let Ne(G)
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denote the €-covering number of G under L (R). Suppose the class F generalizes uniformly within
environments; i.e., for any & > 0, there exists t, 5 7 such that

esssu Pr sup R°(f) — RE(f) > t, <.
sup (X (e e feg (f) (f) > tusr

Let

Bias(F, f) = sup Fp(t) —Ee,. ey [ff(t)]
feF teR

denote the worst-case bias of the estimator T over the class f. Noting that I?f is a function of the
empirical risk CDF

~

1 N
O =y LR < 1),

suppose that the function Q e ff is L-Lipschitz under Lo (IR). Then, for any €,6 > 0,

Ne?2

< 5+8./\/‘€/16(g)€_m.

-1 = =1
61}.).?61\; ) Egng (oc—B(}",F)—e) —Ff (a) >tn’%,f
{(X,Y;) Yy ~IP(XC5 i)

(D.2)

The key technical observation of Theorem D.1 is that we can pull the supremum over F outside
the probability by incurring a N 14(G) factor increase in the probability of failure. To ensure
Nej16(G) < oo, we need to limit the space of possible empirical risk profiles G (e.g., by kernel

smoothing), incurring an additional bias term B(]—" ,F ) As we demonstrate later, for common
distribution estimators, such as kernel density estimators, one can bound the covering number
Ne/16(G) in Inequality (D.2) by standard methods, and the Lipschitz constant L is typically 1. Under
mild (e.g., smoothness) assumptions on the family of possible true risk profiles, one can additionally
bound the Bias Term, again by standard arguments.

Before proving Theorem D.1, we state two standard lemmas used in the proof:

Lemma D.2 (Symmetrization; Lemma 2 of [131]). Let X and X' be independent realizations of a
random variable with respect to which F is a family of integrable functions. Then, for any € > 0,

<2Pr |jupf(X) — f(X") > ;] .

eF

Pr |jupf(X) —Ef(X)>e

eF

Lemma D.3 (Dvoretzky—Kiefer—Wolfowitz (DKW) Inequality; Corollary 1 of [132]). Let X1, ..., X,
be IID R-valued random variables with CDF P. Then, for any € > 0,

n

1
Fr(t) -~ Y X <t} >e| < 2e 2",
i=1

Pr |sup
teR

We now prove our main result, Theorem D.1.

Proof of Theorem D.1. For convenience, let F¢(t) := P, p(,)[R°(f) < t|. In preparation for
Symmetrization, for any f € F, let 1?} denote ff computed on an independent “ghost” sample
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<2 Pr | sup F(t)—Fs(t) >e/2

€1,eee) e
PN | feF teR

<2 Pr sule?}—l?fH >e/21

6},...,6[\] _fej:

<2 Pr |supe/8+ HDI?} — foHoo > 6/2]

€1,---,€
1N | fer

< 2N, /16 sup Pr
feF ;N
176N

< 2~/\/’e/16 sup | PI‘E
feFSlN
€]ty

= 2N5/16 supe PI'E
feF N
17N

< 4N, 1gsup Pr

e/8+ |DF; ~ DF;|| > e/2]
</4+]

1/:\} _?fHoo > €/2:|

ﬁ} _ﬁfHoo > 6/4}

o 1] 51> e

fGJ:L’l,---,eN
< 4N, jgsup Pr -sup Fe(t) — € il{ﬂe(f) <t} > =
>~ fe]__el,...,EN _te]R N i - 8L
Ne?
< —— .
~ 8/\/6/16€Xp ( 64L>

(D.3)

D.4)

(D.5)

(D.6)

D.7)

(D.8)

D.9)

(D.10)

(D.11)

(D.12)

Here, line (D.4) follows from the Symmetrization Lemma (Lemma D.2), lines (D.6) and (D.8) follow

from the definition of D, line (D.7) is a union bound over ﬁg /16 line (D.10) follows from the triangle
inequality, line (D.11) follows from the Lipschitz assumption, and line (D.12) follows from the DKW
Inequality (Lemma D.3).

Since sup, (x) — sup, g(x) < sup, f(x) - g(x),

Pr

€1,eee

<

<

#N L‘ef,tenz

Pr | sup Fs(t) —Fp(t) > e+ sup Fs(t) — Beppoen [ﬁf(t)
€N | fFeFreR

€1,.8N

Ne?
8Ne/16 €Xp <_64L)

eF teR

sup Fr(t) — ff(t) > € + Bias(F, 1?)]

feF teR

Pr L sup E . ey {ﬁf(t)} - ff(t) > e]

7

(D.13)

by (D.12). Meanwhile, applying the presumed uniform bound on within-environment generalization
error together with a union bound over the N environments, gives us a high-probability bound on the
maximum generalization error of f within any of the N environments:

Pr
{ei}N ~P(e)
{(XG,,Yi ) oy ~P (X, Y1)

RE(f) —RY(f) <t
i (f) =RE(f) <t, o

1,557 F
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It follows that, with probability at least 1 — /2, forall f € Fandt € R,

Br (1 t,4.7) = Bragp), ) (1)

where l?ﬁe] (F)r R (f) (t) is the actually empirical estimate I?f(t) of computed using the N empirical
risks R¢1 ( ) ReN (f). Plugging this into the left-hand side of Inequality (D.13),

~ . ~ Ne
Pr L:ﬁe () = B (1) > €+ Bias(F F >] < 8N/t exp (‘ 64L ) '
Setting t = 1?7%51] ()R (F) (a) and applying the non-decreasing function Ff_1 gives the desired

result:

_ . = A Ne
Pr L sup Ff 1 (uc —€— Bms(]—",F)) - Fﬁel1 (), R (f)(oc)Jr > tn,%,f < 8N, 16 €Xp (64L> .

eF teR

O

D.2 Kernel density estimator

In this section, we apply our generalization bound Theorem (D.1) to the kernel density estimator

(KDE)
PN O L _Xi
Fh(t):/ nhZK(Th )dr
- i=1

of the cumulative risk distribution under the assumptions that:

1. the loss ¢ takes values in a bounded interval [, b] C R, and
2. forall f € F, the true risk profile Fy is f-Hélder continuous with constant L, for any > 0.

We also make standard integrability and symmetry assumptions on the kernel K : R — R (see
Section 1.2.2 [133] for discussion of these assumptions):

K(u)|du < oo, /Kuduzl, /uﬁKudu<oo,
/. 1K) RO [ JulPIK ()
and, for each positive integer j < S,

/]R wWK(u)du = 0. (D.14)

We will use Theorem D.1 to show that, for an appropriately chosen bandwidth £,

B
=~ B
sup Fy(5) = Fy(e) € 0n | (25"
feF teR

We start by bounding the bias term B(F, F). Since

1 & T_Xi 1 e T—Xl'
il < =
2 () | o s [ e (5 ]

< [IK][ < oo,
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applying Fubini’s theorem, linearity of expectation, the change of variables x — T + xh, Fubini’s
theorem again, and the fact that f]R K(u)dx =1,

0B [50] <505 [ R (5)

—Ff(t)—/too/]R}llK(T;x p(x)dxdt
:Ff(t)—/joo/]RK(x)p(T—kxh)dxdT
:Pf(t)f/]RK(x) /joop(Terh)dex

- /}R K(x) (F() = F(t+xh) ) dx.
By Taylor’s theorem for some 7v € [0, 1],

BI=T ()i
E(t+xh) = ﬁzl (xh) &

far j!od

(xh)LB) LB
i ml—"(t—i—ﬂxh).

Fe(t) +
Hence, by the assumption (D.14),

R BI=1 ()i g )8 qlB
Fr(h) — Ex,, x, [Bi(t)] = /]R K(x) <Ff(t)_ ];J (ﬁ)] % F(t) + Lhﬁ)J! thwl-“(t—knxh)) dx

= /]R K(x) <(xh)L5J ﬁF(t+ mch)) dx

(] dtlP]
::A;Kxx)(ﬁi%fj (;?;ZF(t+ﬂxh);?éﬁffﬁ)> dx
Thus, by the Holder continuity assumption,
’Ff(t)—]Exl ,,,,, x B0 | < /R K(x) ("L’QJL!M %F(H—nxh}—%lff(t) dx
< /]R K(x) (xfzﬁj L(rexh)P~ 1B dx < ChP, (D.15)

where C := ﬁ Jg [x[P|K(x)|dx is a constant.

Next, since, by the Fundamental Theorem of Calculus,

dlp1l dlpl o1 N T X 1 Y dlbl -
dttﬁﬂjpf(t)*dttﬁﬂj oonhl;K( h )dTnhi; tlﬁJK< h >’

IFllcsrr < [[Knlles = | agy) |K||s- Hence, by standard bounds on the covering number of

Holder continuous functions [134], there exists a constant ¢ > 0 depending only on f3 such that

Kllgs\ 7T b—a) [ |Kllgs\ 7T
NepsW) < exp (c(b—@('hﬁﬂfﬁ) )=exp (c< = (' e””) ) (D.16)

Finally, since I?h = Q * Kj, (where * denotes convolution), by linearity of the convolution and
Young’s convolution inequality [135, p.34],

[f-5], < [lo-@

[1Kl|1-
(0]
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Since, by a change of variables, ||Kj||; = ||K||; = 1, the KDE is a 1-Lipschitz function of the
empirical CDF, under L (R).

Thus, plugging Inequality (D.15), Inequality (D.16), and L = 1 into Theorem D.1 and taking n — oo
gives, for any € > 0,

1
_ ~ b—a [(|[Klles\FT) _ne
1 —_ :B— — 1 < - 7(?
PrN Eupr (oc Ch e) Ff () > 0] 8exp | ¢ p ( e~ e,

€1, e cF €

log %+cb%”

Plugging in € = gives

log 1 b—a R
Pr [supF;! a—Cnf - BT ~E ) >0] <4,
€1,.-eN feF N

1
This bound is optimized by h = <(b —a) lole) e giving an overall bound of

- B
Pr sup Fr(t) — Fp(t) > ch?+T| <4
1EN | fe F teR

Pr |supF;! a—chzﬁ%nt % —F'a)>0] <4
€1,..-,N feff N f -

for some ¢ > 0. In particular, as N, n — oo, the EQRM estimate fsatisﬁes

FJ;l(oc) — figjfTFf*l(uc).
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E Further implementation details

E.1 Algorithm

Below we detail the EQRM algorithm. Note that: (i) any distribution estimator may be used in place
of DIST so long as the functions DIST.ESTIMATE_PARAMS and DIST.ICDF are differentiable; (ii)
other bandwidth-selection methods may be used on line 14, with the Gaussian-optimal rule serving
as the default; and (iii) the bisection method BISECT on line 20 requires an additional parameter, the
maximum number of steps, which we always set to 32.

Algorithm 1: Empirical Quantile Risk Minimization (EQRM).

Input: Predictor fy, loss function ¢, desired probability of generalization &, learning rate #,

distribution estimator DIST, M datasets with D™ = {(x,y")}!" .

1 Initialize fy;
2 while not converged do

/* Get per-domain risks (i.e. average losses) */
30| L= T (f(x"), yi) form =1,..., M;

/* Estimate the parameters of ji[ */
4 DIST.ESTIMATE_PARAMS(L) ; '

/* Compute the a-quantile of ﬁw- */
5 | g < DIST.ICDF(«); '

/* Update fy */
6 0 0—1n-Voq;

Output: fy

7 Procedure GAUSS.ESTIMATE_PARAMS(L)
/* Compute the sample mean and variance */

s | e XML

o | 0% ¢ wip e (L7 — )
10 Procedure GAUSS.ICDF(«)

n | return i 40D (a);

12 Procedure KDE.ESTIMATE_PARAMS(L)

/* Set bandwidth /i (Gaussian-optimal rule used as default) */
52 1 M m 1 M i\2.
B3| 0% g B (L7 — g 5y L)%
4 102 4
14 L h%(m) -0

15 Procedure KDE.ICDF(«)
/* Define the CDF when using M Gaussian kernels */

16 | Eu(x')« L"+h-®(x);

17 F(x') + ﬁ 2%:1 Fn(X');

/* Invert the CDF via bisection */
18 | mn < min, F, ' (a) ;

19 | mx ¢« max, F, ' (a) ;

20 return BISECT(F, &, mn, mx) ;

E.2 ColoredMNIST

For the CMNIST results of § 6.1, we used full batches (size 25000), 400 steps for ERM pretraining,
600 total steps for IRM, VREx, EQRM, and 1000 total steps for GroupDRO, SD, and IGA. We
used the original MNIST training set to create training and validation sets for each domain, and the
original MNIST test set for the test sets of each domain. We also decayed the learning rate using
cosine annealing/scheduling. We swept over penalty weights in {50, 100,500, 1000, 5000} for IRM,
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VREX and IGA, penalty weights in {0.001,0.01,0.1,1} for SD, #’s in {0.001,0.01,0.1,0.5,1.0} for

GroupDRO, and &’s in 1 — {¢7100, 7250 =500 =750 ,—1000} for EQRM. To allow these values of
«, which are very close to 1, we used an asymptotic expression for the Normal inverse CDF, namely
& (a) ~ /—2In(1 —a) as @ — 1[136]. This allowed us to parameterize « = 1 — ¢~ 109
as In(1 — &) = In(e~1%%) = —1000, avoiding issues with floating-point precision. As is the
standard for CMNIST, we used a test-domain validation set to select the best settings (after the
total number of steps), then reported the mean and standard deviation over 10 random seeds on
a test-domain test set. As in previous works, the hyperparameter ranges of all methods were
selected by peeking at test-domain performance. While not ideal, this is quite difficult to avoid with
CMNIST and highlights the problem of model selection more generally in DG—as discussed by many
previous works [9, 38, 41, 115]. Finally, we note several observations from our CMNIST, WILDS
and DomainBed experiments which, despite not being thoroughly investigated with their own set
of experiments (yet), may prove useful for future work: (i) ERM pretraining seems an effective
strategy for DG methods, and can likely replace the more delicate penalty-annealing strategies (as
also observed in [115]); (ii) lowering the learning rate after ERM pretraining seems to stabilize DG
methods; and (iii)) EQRM often requires a lower learning rate than other DG methods after ERM
pretraining, with its loss and gradients tending to be significantly larger.

E.3 DomainBed

For EQRM, we used the default algorithm setup: a kernel-density estimator of the risk distribution
with the “Gaussian-optimal” rule [65] for bandwidth selection. We used the standard hyperparameter-
sampling procedure of Domainbed, running over 3 trials for 20 randomly-sampled hyperparameters
per trial. For EQRM, this involved:

Hparam Default Sampling
o 0.75 Uu(0.5,0.99)
Burn-in/anneal iters 2500 10X, with k ~ U(2.5,3.5)

EQRM learning rate (post burn-in) ~ 107° 10k, with k ~ u(-7,->5)

All other all hyperparameters remained as their DomainBed-defaults, while the baseline results were
taken directly from the most up-to-date DomainBed tables®. See our code for further details.

E4 WILDS

We considered two WILDS datasets: iWildCam and 0GB-Mol1PCBA (henceforth 0GB). For both of
these datasets, we used the architectures use in the original WILDS paper [12]; that is, for iWildCam
we used a ResNet-50 architecture [137] pretrained on ImageNet [138], and for 0GB, we used a Graph
Isomorphism Network [139] combined with virtual nodes [140]. To perform model-selection, we
followed the guidelines provided in the original WILDS paper [12]. In particular, for each of the
baselines we consider, we performed grid searches over the hyperparameter ranges listed in [12]
with respect to the given validation sets; see [12, Appendices E.1.2 and E.4.2] for a full list of these
hyperparameter ranges.

EQRM. For both datasets, we ran EQRM with KDE using the Gaussian-optimal bandwidth-
selection method. All EQRM models were initialized with the same ERM checkpoint, which is
obtained by training ERM using the code provided by [12]. Following [12], for iWildCam, we trained
ERM for 12 epochs, and for OGB, we trained ERM for 100 epochs. We again followed [12] by using
a batch size of 32 for iWildCam and 8 groups per batch. For 0GB, we performed grid searches over the
batch size in the range B € {32, 64,128, 256,512,1024,2048}, and we used 0.25B groups per batch.

We selected the learning rate for EQRM from # € {10*2, 1073,10%,1075,107%,107, 1078}.

Computational resources. All experiments on the WILDS datasets were run across two four-GPU
workstations, comprising a total of eight Quadro RTX 5000 GPUs.

8https://github.com/facebookresearch/DomainBed/tree/main/domainbed/results/2020_
10_06_7df6£06
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F Connections between QRM and DRO

In this appendix we draw connections between quantile risk minimization (QRM) and distribution-
ally robust optimization (DRO) by considering an alternative optimization problem which we call
superquantile risk minimization °:

min SQu(RiTy)  whete  SQu(R;Ty) i= Egem, [R | R> Fffl(a)} . ED

Here, SQ, represents the superquantile—also known as the conditional value-at-risk (CVaR) or
expected tail loss—at level a, which can be seen as the conditional expectation of a random variable
R subject to R being larger than the a-quantile F~'(«). In our case, where R represents the
statistical risk on a randomly-sampled environment, SQ, can be seen as the expected risk in the worst
100 - (1 — &) % of cases/domains. Below, we exploit the well-known duality properties of CVaR to
formally connect (QRM) and GroupDRO [45]; see Prop. F.1 for details.

F.1 Notation for this appendix

Throughout this appendix, for each f € F, we will let the risk random variable R be a defined on
the probability space (R, B, T f), where R denotes the nonnegative real numbers and B denotes

the Borel c-algebra on R. We will also consider the Lebesgue spaces LV := LV (R, B, Ty) of
functions h for which IE,., [|l(r)|P] is finite. For conciseness, we will use the notation

(5(), () = [ s(r)n(ryar (F2)

to denote the standard inner product on IR ;. Furthermore, we will use the notation U < V to signify
that U is absolutely continuous with respect to V, meaning that if U(A) = 0 for every set A for
which V(A) = 0. We also use the abbreviation “a.e.” to mean “almost everywhere.” Finally, the
notation I1j, ;(c) denotes the projection of a number c into the real interval [a, b].

F.2 (Strong) Duality of the superquantile
We begin by proving that strong duality holds for the superquantile function SQ,. We note that this
duality result is well-known in the literature (see, e.g., [90]), and has been exploited in the context of

adaptive sampling [94] and offline reinforcement learning [141]. We state this result and proof for
the sake of exposition.

Proposition F.1 (Dual representation of SQ,). If R € LY for some p € (1,00), then

SQu(R;Ty) = oS Ey/(R] (E3)

where the uncertainty set Uy (a) is defined as

Us () = {IU €EL:U KTy, Ue0,1-dae ||| = 1}. (F4)

Proof. Note that the primal objective can be equivalently written as
. 1
SQu(R;Ty) = min {t+H<(R—t)+,Tf>} (E5)

where (z)4+ = max{0,z} [97], which in turn has the following epigraph form:

min t+ s, T (F.6)
t€R, seL’ 1- “< f>
subject to  R(r) —t <s(r) ae.r € Ry. (F.7)

9This definition assumes that T f is continuous; for a more general treatment, see [97].
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When written in Lagrangian form, we can express this problem as

min  max {t(l —(LA) + <s,

teR, seLk AeLfl.

T¢ —A> + (R,A}}. (F.8)

1—u

Note that this objective is linear in t, s, and A, and therefore due to the strong duality of linear
programs, we can optimize over s, f, and A in any order [142]. Minimizing over f reveals that the
problem is unbounded unless f >0 A(r)dr = 1, meaning that A is a probability distribution since

A(r) > 0 almost everywhere. Thus, the problem can be written as

. 1
min max {<5, mTf — /\> + <R,)\>} (F.9)

seLh A€P(R+)

where P7(IR4 ) denotes the subspace of L7 of probability distributions on R .

Now consider the maximization over s. Note that if there is a set A C &, of nonzero Lebesgue
measure on which A(A) > (1/1-«)T(A), then the problem is unbounded below because s(A) can
be made arbitrarily large. Therefore, it must be the case that A < (1/1-«)T £ almost everywhere. On
the other hand, if A(A) < (1/1-4)T;(A), then s(A) = 0 minimizes the first term in the objective.
Therefore, s can be eliminated provided that A < (1/ 1—a)T f almost everywhere. Thus, we can write
the problem as

R,\) = E,[R E10
pomax o (RA)=EAR] (F.10)
subject to  A(r) < I 1 an(r) ae.r>0. (F.11)

Now observe that the constraint in the above problem is equivalent to A < Q. Thus, by defining
U = dA/dTy to be the Radon-Nikodym derivative of A with respect to Q, we can write the problem
in the form of (F.3), completing the proof. O

Succinctly, this proposition shows that provided that R is sufficiently smooth (i.e., an element of L”),
it holds that minimizing the superquantile function is equivalent to solving

i Ey|R F.12
PR ity P "

which is a distributionally robust optimization (DRO) problem with uncertainty set f((X) as defined

in (F.4). In plain terms, for any « € (0, 1), this uncertainty set contains probability distributions on
IR+ which can place no larger than 1/1—« on any risk value.

At an intuitive level, this shows that by varying « in Eq. (F.1), one can interpolate between a range
DRO problems. In particular, at level « = 1, we recover the problem in (3.1), which can be viewed
as a DRO problem which selects a Dirac distribution which places solely on the essential supremum
of R~ T Iz On the other hand, at level « = 0, we recover a problem which selects a distribution that
equally weights each of the risks in different domains equally. A special case of this is the GroupDRO
formulation in [45], wherein under the assumption that the data is partitioned into m groups, the
inner maximum in (F.12) is taken over the (m — 1)-dimensional simplex A, (see, e.g., equation (7)
in [45]).

G Additional analyses and experiments

G.1 Linear regression

In this section we extend § 6.1 to provide further analyses and discussion of EQRM using linear
regression datasets based on Ex. A.3. In particular, we: (i) extend Fig. 3 to include plots of the
predictors’ risk CDFs (G.1.1); and (ii) discuss the ability of EQRM to recover the causal predictor
when (712, 022 and/or 012, change over environments, compared to IRM [9] and VREx [41] (G.1.2).
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Table 5: Recovering the causal predictor for linear regression tasks based on Ex. A.3. A tick means that it is

possible to recover the causal predictor, under further assumptions.

Changing Domain Invariant IRM VREx EQRM
Scedasticity Risk  Function (Bcause)
logt Homoscedastic v v v v v
oy Homoscedastic v v v v v
oy Heteroscedastic X v v X X

G.1.1 Risk CDFs as risk-robustness curves

As an extension of Fig. 3, in particular the PDFs in Fig. 3 B, Fig. 6 depicts the risk CDFs for different
predictors. Here we see that a predictor’s risk CDF depicts its risk-robustness curve, and also that
each « results in a predictor f, with minimial a-quantile risk. That is, for each desired level of
robustness (i.e. probability of the upper-bound on risk holding, y-axis), the corresponding « has
minimal risk (x-axis).

=3
!

o
%
\

=3
=N
L
N

Probability

: 7
0.4 4 /

1

0.2 4 1
I
/

0.0 -

x 3
T T
0.00 0.25 0.50 0.75

Risk
= =0.25 a=0.75 a=0.99 =-ERM
a=05 a=09 =——a=xl1 == = Causal

Figure 6: Extension of Fig. 3 showing the risk CDFs (i.e. risk-robustness curves) for different predictors.
For each risk upper-bound (x), we see the corresponding probability of it holding under the training domains (y).
Note that, for each level of robustness (v, i.e. probability that the risk upper-bound holds), the corresponding &
has the lowest upper-bound on risk (x). Also note that these CDFs correspond to the PDFs of Fig. 3 (B).

G.1.2 Invariant risks vs. invariant functions

We now compare seeking invariant risks to seeking invariant functions by analyzing linear regression
datasets, based on Ex. A.3, in which 012, (7% and/or (712, change over domains. This is turn allows us to
compare EQRM (invariant risks), VREx [41] (invariant risks), and IRM [9] (invariant functions).

Domain-skedasticity. For recovering the causal predictor, the key difference between using in-
variant risks and invariant functions lies in the assumption about domain-skedasticity, i.e. the “pred-
icatability” of Y across domains. In particular, the causal predictor only has invariant risks in
domain-homoskedastic cases and not in domain-heteroskedastic cases, the latter describing scenarios
in which the predictability of Y (i.e. the amount of irreducible error or intrinsic noise) varies across
domains, meaning that the risk of the causal predictor will be smaller on some domains than others.
Thus, methods seeking the causal predictor through invariant risks must assume domain homoskedas-
ticity [41, 54]. In contrast, methods seeking the causal predictor through invariant functions need not
make such a domain-homoskedasticity assumption, but instead the slightly weaker assumption of the
conditional mean E[Y|Pa(Y)] being invariant across domains. As explained in the next paragraph
and summarized in Table 5, this translates into the coefficient Bcause being invariant across domains
for the linear SEM of Ex. A.3.
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Mathematical analysis. We now analyze the risk-invariant solutions of Ex. A.3. We start by
expanding the structural equations of Ex. A.3 as:

X1:N]/
Y:N1+NY/
Xy = N1 + Ny + Na.

We then note that the goal is to learn a model Y = B1 - X1 + B2 - X2, which has residual error

?—Y:ﬁl'Nl-f—‘Bz'(N]-I-NY'f-Nz)—Nl—NY
=(B1+P2—1) N1+ (p2—1)- Ny + B2 Na.

Then, since all variables have zero mean and the noise terms are independent, the risk (i.e. the MSE
loss) is simply the variance of the residuals, which can be written as

E[(Y ~Y)*] = (1 +p2—1)* 0 + (B2 —1)*- 0% + B3 - 03
Here, we have that, when:

* Only 07 changes: the only way to keep the risk invariant across domains is to set 81 + 2 = 1.
The minimal invariant-risk solution then depends on ¢y, and 07:

- if 0y < 0, the minimal invariant-risk solution sets B1 = 1 and B, = 0 (causal predictor);
- if 0y > 07, the minimal invariant-risk solution sets B1 = 0 and B, = 1 (anti-causal predictor);

- if 0 = 0y, then any solution (B, B2) = (c,1—c) with ¢ € [0,1] is a minimal invariant-risk
solution, including the causal predictor ¢ = 1, anti-causal predictor ¢ = 0, and everything
in-between.

* Only 0, changes: the invariant-risk solutions set 8, = 0, with the minimal invariant-risk solution
also setting 81 = 1 (causal predictor).

* 01 and 0, change: the invariant-risk solution sets 81 = 1, 8> = 0 (causal predictor).

* Only oy changes: the invariant-risk solutions set 8, = 1, with the minimal invariant-risk solution
also setting 81 = 0 (anti-causal predictor).

* 01 and oy change: the invariant-risk solution sets 81 =0, B =1 (anti-causal predictor).
* 0y and oy change: there is no invariant-risk solution.
* 01, 07 and oy change: there is no invariant-risk solution.

Empirical analysis. To see this empirically, we refer the reader to Table 5 of Krueger et al. [41,
App. G.2], which compares the invariant-risk solution of VREX to the invariant-function solution
of IRM on the synthetic linear-SEM tasks of Arjovsky et al. [9, Sec. 5.1], which calculate the MSE

between the estimated coefficients (31, B2) and those of the causal predictor (1,0).

Different goals, solutions, and advantages. We end by emphasizing the fact that the invariant-risk
and invariant-function solutions have different pros and cons depending both on the goal and the
assumptions made. If the goal is the recover the causal predictor or causes of Y, then the invariant-
function solution has the advantage due to weaker assumptions on domain skedasticity. However, if
the goal is learn predictors with stable or invariant performance, such that they perform well on new
domains with high probability, then the invariant-risk solution has the advantage. For example, in the
domain-heteroskedastic cases above where oy changes or oy and o7 change, the invariant-function
solution recovers the causal predictor 1 = 1, B> = 0 and thus has arbitrarily-large risk as oy — co
(i.e. in the worst-case). In contrast, the invariant-risk solution recovers the anti-causal predictor
B1 =0, B2 = 1 and thus has fixed risk 07 in all domains.

G.2 DomainBed

In this section, we include the full per-dataset DomainBed results. We consider the two most common
model-selection methods of the DomainBed package—training-domain validation set and test-domain
validation set (oracle)—and compare EQRM to a range of baselines. Implementation details for these
experiments are provided in § E.3 and our open-source code.
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G.2.1 Model selection: training-domain validation set

VLCS
Algorithm C L S A\ Avg
ERM 97.74+04 643+09 734+£05 746+13 7715
IRM 986+01 649+09 734+£06 773+£09 785
GroupDRO 973 +03 6344+09 695+08 767+0.7 76.7
Mixup 983+06 648+10 721+£05 743+08 774
MLDG 9744+02 652+£07 71.0t£14 75310 772
CORAL 9834+01 661412 734+£03 775+12 788
MMD 97.74+01 640+11 728+£02 753+33 775
DANN 9.04+03 651414 73103 772+0.6 78.6
CDANN 97.14+03 651412 70708 77115 775
MTL 97.84+04 643+£03 715£07 75317 772
SagNet 9794+04 645+05 714+£13 775+£05 778
ARM 98.74+02 63607 713£12 767+£06 77.6
VREx 9844+03 644+14 741£04 762+13 783
RSC 9794+01 625+07 723+£12 756+£08 77.1
EQRM 9834+00 63708 72610 767+1.1 778

PACS
Algorithm A C P S Avg
ERM 847+04 808+06 97.2+03 793+10 855
IRM 848 +13 764+t1.1 96.7+06 76.1+10 835
GroupDRO 83.54+09 79.14+0.6 96.74+03 783+2.0 844
Mixup 86.1£05 789+£08 97.6+0.1 758+1.8 84.6
MLDG 855+14 80.1+£17 974+03 76.6+1.1 849
CORAL 88.3+£02 800+£05 975+03 788+13 862
MMD 86.1£14 794+£09 96.6+02 765+05 84.6
DANN 864 +£08 774+£08 973+04 735+23 836
CDANN 846+£18 755+£09 968+03 735+06 82.6
MTL 87508 77.1+£05 964+08 773+1.8 84.6
SagNet 874+£10 80706 97.1+0.1 80.0+04 86.3
ARM 86.8 0.6 768+0.5 974+03 793+12 851
VREx 86.0+1.6 79.1+06 9694+05 77.7+17 84.9
RSC 854+08 79.7+18 976+03 782+12 852
EQRM 865+ 04 821+£07 966+02 808+0.2 86.5

OfficeHome
Algorithm A C P R Avg
ERM 6134+07 5244+£03 758+£01 766+£03 66.5
IRM 5894+23 522416 721+£29 740+£25 643
GroupDRO 60.4 +£0.7 527410 750407 76.0+0.7 66.0
Mixup 6244+08 548+06 769+03 783+£02 68.1
MLDG 615409 5324+06 75012 775+04 668
CORAL 6534+04 5444+05 765+£01 784+05 68.7
MMD 6044+02 533403 743+£01 774+£0.6 66.3
DANN 5994+13 530£03 73.6E£07 769+05 659
CDANN 615+14 504+24 744+£09 766+08 658
MTL 6154+07 524+£06 749+04 768+04 664
SagNet 634+02 548+04 758+04 783+03 68.1
ARM 589+08 51.0+05 741+01 752+03 648
VREx 60.7+£09 53.04+09 753+01 76.6£05 664
RSC 607+14 5144+03 748+11 751+13 655
EQRM 605+01 560+02 761+04 774+03 67.5

42



Terralncognita

Algorithm L100 L38 L43 L46 Avg

ERM 498 +44 4214+14 569+18 357+£39 46.1

IRM 546+13 398+19 562+18 396+08 47.6

GroupDRO 4124+0.7 38.6+2.1 5674+09 364421 432

Mixup 596 +20 422+14 559+£08 339+14 479

MLDG 542+30 443+1.1 556403 369+22 477

CORAL 516 +24 4224+10 570+£10 398+29 476

MMD 419 +30 348+1.0 57019 352+18 422

DANN 51.1+35 406+06 574+05 37.7+18 46.7

CDANN 47019 413+48 549417 39.8+£23 458

MTL 493+12 396+63 556+1.1 37.8+08 456

SagNet 53.0+£29 430425 5794+06 404+13 486

ARM 493407 383+24 558+08 387+13 455

VREX 482+43 417+13 568+08 387+31 464

RSC 502+22 392+14 563+14 408+06 46.6

EQRM 479+19 452403 591403 388+06 478

DomainNet
Algorithm clip info paint quick real sketch Avg
ERM 58.1+03 18.8+03 46.7+03 122+04 59.6£0.1 498 £04 409
IRM 485+28 150+15 383+£43 109+05 482452 423 4+3.1 339
GroupDRO 472 4+05 17.54+04 33.8+0.5 93+03 51.6 04 40.1 £0.6 333
Mixup 55.7+0.3 185+0.5 443+0.5 125+04 558+0.3 482 +£05 392
MLDG 59.1+02 19.1+03 458+0.7 134+03 59.6+02 502 +04 412
CORAL 59.2 + 0.1 1974+ 02 46.6+03 134+04 59.8+0.2 50.1 £0.6 41.5
MMD 321 4+133 11.0+46 268+113 87+21 327+138 289+119 234
DANN 531402 183+0.1 442+07 11.8+0.1 555+04 468+06 383
CDANN 546+04 1731+0.1 437+09 121+0.7 562+04 4594+0.5 383
MTL 579405 185404 46.0+0.1 125+0.1 595+0.3 4924+ 0.1 40.6
SagNet 577+03 19.0+02 453+£03 127+£05 581+£05 488 £0.2 403
ARM 497 £0.3 16.3+0.5 409+1.1 94 +0.1 534+04 435+04 355
VREX 473+35 160+£15 358+46 109+03 496449 42.04+3.0 33.6
RSC 550+12 183+05 444+06 122+02 557+0.7 478 +£09 389
EQRM 56.1+13 19.6+0.1 463+15 129+03 61.1+£0.0 503+0.1 41.0
Averages

Algorithm VLCS PACS OfficeHome Terralncognita DomainNet Avg
ERM 77.5+04 855+02 665403 46.1 1.8 4094+0.1 633
IRM 785+0.5 835+08 643+22 47.6 £0.8 339+28 61.6
GroupDRO 76.7 0.6 844408 66.0+0.7 432 + 1.1 333+£02 609
Mixup 774 +0.6 84.6+06 68.1+0.3 479 4+ 0.8 3924+0.1 634
MLDG 772+04 849+10 66.8+0.6 47.7+0.9 412 +£0.1 63.6
CORAL 788 £0.6 862+03 68.74+0.3 476 1.0 41.54+0.1 646
MMD 775+09 846+£05 663+0.1 422+ 1.6 2344+95 633
DANN 78.6 04 83.6+£04 65906 46.7 £ 0.5 383+0.1 626
CDANN 77.5+0.1 82.6+£09 658+1.3 458 £ 1.6 383+£03 62.0
MTL 772 +04 84605 664405 456 +1.2 40.6 £0.1 629
SagNet 778 0.5 863 +£02 68.1£0.1 48.6 = 1.0 403 £0.1 642
ARM 776 03 851+04 648403 4554+0.3 355+02 61.7
VREXx 783+02 849+06 664+0.6 46.4 + 0.6 33629 619
EQRM 778 0.6 865+02 67.5+0.1 47.8 £ 0.6 41.0 £03 64.1
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G.2.2 Model selection: test-domain validation set (oracle)

VLCS
Algorithm C L S \Y% Avg
ERM 97.6£03 679+07 709£02 740x+06 77.6
IRM 973£02 66.7+01 71.0£23 728+04 769
GroupDRO 97.7+02 6594+02 728+08 734+13 774
Mixup 97.8+04 672+04 715£02 757+£06 78.1
MLDG 97.1£05 66.6+05 71.5£0.1 75009 775
CORAL 973£02 675+06 71.6£06 74500 77.7
MMD 98.8£00 664+04 708=£05 75604 779
DANN 99.0+02 663+12 734£14 80.1+£05 79.7
CDANN 982+0.1 688+05 743£06 781+£05 799
MTL 979+07 661+07 720£04 749+1.1 77.7
SagNet 974+03 664+04 71.6£01 750+£0.8 77.6
ARM 976 £06 665+03 727+£06 744+£0.7 778
VREx 984+02 664+07 728=£01 750£14 78.1
RSC 980+04 672+£03 703=£13 756+£04 778
EQRM 982+02 668+08 71.7£1.0 746+£03 778

PACS
Algorithm A C P S Avg
ERM 86.5+10 813£06 962+03 827+1.1 86.7
IRM 8424+09 797+£15 959+04 783+£21 845
GroupDRO 87.5+05 829+06 971+£03 81.1+£12 87.1
Mixup 87.5+04 81607 974+£02 80.8+09 86.8
MLDG 870+ 12 825£09 967+03 812+06 868
CORAL 86.6 08 81.8+£09 97.1+£05 827+0.6 87.1
MMD 88.1+£08 826=£07 97.1+£05 812+12 872
DANN 87004 803=£06 968+03 769+1.1 852
CDANN 87706 807£12 973+04 77615 858
MTL 87002 827=+£08 965+0.7 805+08 86.7
SagNet 87405 812=+£12 963+0.8 80.7+1.1 864
ARM 8.0+12 814£02 959+03 809+05 858
VREx 87812 81.8£0.7 974+£02 821107 872
RSC 86.0 0.7 81.8£09 968+£0.7 80405 862
EQRM 88306 821£05 972+04 81.6£05 873

OfficeHome
Algorithm A C P R Avg
ERM 61.7+0.7 5344+03 741£04 762+£06 664
IRM 564 +32 5124+23 71.7£27 727+£27 63.0
GroupDRO 605+ 1.6 53.1£03 755+03 759+0.7 66.2
Mixup 635+£02 546+04 760£03 780x+07 68.0
MLDG 60.5£0.7 542+05 750£02 76705 66.6
CORAL 64.8+08 541+09 765+04 782+04 684
MMD 604+10 534+05 749£01 761+£0.7 662
DANN 606 +14 518=+07 734=£05 755+£09 653
CDANN 579+02 521+12 749£07 762+£02 653
MTL 60.7+0.8 535+13 752£06 76.6£0.6 66.5
SagNet 627£05 53.6+05 760£03 77.8+0.1 675
ARM 588 £0.5 51.8+07 740£0.1 744+£02 648
VREx 59610 533+£03 732£05 76604 657
RSC 61.7+08 530+£09 748£08 763+£05 665
EQRM 600£0.8 544+07 765+£04 77.2+£05 670
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Terralncognita

Algorithm L100 L38 L43 L46 Avg

ERM 594+09 493+06 60.1+1.1 432405 53.0

IRM 565+25 498+15 571+£22 386+£1.0 505

GroupDRO 604+ 15 483+04 58.6+08 422408 524

Mixup 676+ 18 51.0+13 59.0+00 400+1.1 544

MLDG 592+01 490+09 5844+09 4144+1.0 520

CORAL 604+09 4724+05 593+04 444404 528

MMD 606 +1.1 4594+03 578+05 438+12 520

DANN 552+19 470+£07 5724+£09 4294+09 50.6

CDANN 563+20 4714+09 572411 424408 5038

MTL 584+21 4844+08 589+06 43.0+13 522

SagNet 5644+19 505423 59.1+£05 441+£0.6 525

ARM 60.1 =15 483+16 553+06 409+1.1 512

VREx 568+ 17 4654+05 584+03 438+03 514

RSC 599+ 14 467+04 578+05 4434+06 52.1

EQRM 57015 495+12 590+£03 434+06 522

DomainNet
Algorithm clip info paint quick real sketch Avg
ERM 58.6+03 1924+02 47.0+£03 1324+02 599403 498+ 04 413
IRM 404+6.6 121 +27 314457 98+12 37.7+9.0 36.7+53 28.0
GroupDRO 472 4+05 17.54+04 342403 92+£04 519+05 401+06 334
Mixup 5564+0.1 187404 451405 1284+03 576405 482+£04 39.6
MLDG 5934+0.1 1964+02 4684+02 1344+02 60.14+04 504£03 41.6
CORAL 592401 199402 474402 1404+04 598402 504+04 418
MMD 322+133 11.2+45 268=+£113 88£22 327£138 290+11.8 235
DANN 5314+£02 1834+0.1 442407 11.94+01 5554+04 468=+£06 383
CDANN 5464+04 1734+0.1 442407 1284+02 5624+04 459+£05 385
MTL 5804+04 192402 462401 127402 599 4+0.1 49.0+ 0.0 40.8
SagNet 577403 191 £0.1 463+05 1354+04 5894+04 495+£02 408
ARM 496+04 165+03 4154+08 108+0.1 5354+03 439+04 36.0
VREx 433+45 141+18 325+50 98+1.1 435+56 37.74+45 301
RSC 550+12 1834+05 444406 1254+0.1 557407 478+09 389
EQRM 555+1.8 196401 459419 129403 61.1+£00 503+0.1 409
Averages

Algorithm VLCS PACS OfficeHome Terralncognita DomainNet Avg
ERM 776 +£03 86.7+£03 664+05 53.0+0.3 41.3+0.1 65.0
IRM 769 +06 845=£1.1 63.0+£27 50.5 £ 0.7 28.00+5.1 60.6
GroupDRO 774 4+0.5 87.1£0.1 662+0.6 524 4+0.1 334403 633
Mixup 78.1 £03 86.8+£03 68.0£0.2 544 +£0.3 396 £0.1 654
MLDG 77.5+0.1 86804 66603 52.0+0.1 416 £ 0.1 649
CORAL 77.74+02 87.1£05 684+£02 52.8 £0.2 418+ 0.1 65.6
MMD 779 £0.1 872+£0.1 662403 520+£04 23.5+£94 614
DANN 79.7+05 852+£02 653+£08 50.6 £ 04 3834+0.1 638
CDANN 7994+02 858+0.8 653+£05 50.8 + 0.6 3854+02 64.1
MTL 77705 867+£02 665+04 522 +04 40.8 0.1 64.8
SagNet 776 £0.1 864+04 67.5+£02 5254+04 40.8+02 65.0
ARM 77.8+03 858+02 648+04 51.2+£0.5 36.0+ 0.2 63.1
VREXx 78.14+02 872+£06 657+£03 514 £0.5 30.1 £3.7 625
RSC 778+ 0.6 862+0.5 665+£06 52.14+02 3894+0.6 643
EQRM 77.8+0.2 873+£02 67.0£04 522 4+0.7 409+03 65.1
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G.3 WILDS

In Figure 7, we visualize the test-time risk distributions of IRM and GroupDRO relative to ERM, as
well as EQRM,, for select values'” of a. In each of these figures, we see that IRM and GroupDRO
tend to have heavier tails than any of the other algorithms.
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Figure 7: Baseline test risk distributions on iWildCam and OGB-MolPCBA. We supplement Figure 4 by
providing comparisons to two baseline algorithms: IRM and GroupDRO. In each case, EQRM,, tends to display
superior tail performance relative to ERM, IRM, and GroupDRO.

Other performance metrics. In the main text, we studied the tails of the risk distributions of
predictors trained on iWildCam and 0GB. However, in the broader DG literature, there are a number of
other metrics that are used to assess performance or OOD-generalization. In particular, for iWwildCam,
past work has used the macro F; score as well as the average accuracy across domains to assess OOD
generalization; for 0GB, the standard metric is a predictor’s average precision over test domains [12].
In Tables 6 and 7, we report these metrics and compare the performance of our algorithms to ERM,
IRM, and GroupDRO. Below, we discuss the results in each of these tables.

To begin, consider Table 6. Observe that ERM achieves the best in-distribution (ID) scores relative
to any of the other algorithms. However, when we consider the out-of-distribution columns, we
see that EQRM offers better performance with respect to both the macro F; score and the mean
accuracy. Thus, although our algorithms are not explicitly trained to optimize these metrics, their
strong performance on the tails of the risk distribution appears to be correlated with strong OOD
performance with these alternative metrics. We also observe that relative to ERM, EQRM suffers
smaller accuracy drops between ID and OOD mean accuracy. Specifically, ERM dropped 5.50 points,
whereas EQRM dropped by an average of 2.38 points.

Next, consider Table 7. Observe again that ERM is the strongest-performing baseline (first band of
the table). Also observe that EQRM performs similarly to ERM, with validation and test precision
tending to cluster around 28 and 27 respectively. However, we stress that these metrics are averaged
over their respective domains, whereas in Tables 2 and 3, we showed that EQRM performed well on
the more difficult domains, i.e. when using tail metrics.

Table 6: WILDS metrics on iWildCam. Table 7: WILDS metrics on 0GB-Mo1PCBA.
Algorithm  Macro Fi (1) - Mean accuracy (1) Algorithm  Mean precision (1)

ID OOD ID OOD Validation Test
ERM 49.8 306 77.0 71.5 ERM 28.1 27.3
IRM 23.4 15.2 59.6 64.1 IRM 15.4 15.5
GroupDRO  34.3 22.1 66.7 67.7 GroupDRO 23.5 22.3
ORMp,s 183 114 543 58.3 QRM)»5 28.1 273
QRMj 50 48.1 33.8 76.2 73.5 QRMy 50 28.3 27.4
QRMy5 495 318 76.1 72.0 QRM) 75 28.1 27.1
QRMyqy 486 329 771 733 QRM 9 279 27.2
QRMyge 459 308 766 713 QRMy 9 28.1 274

10We display results for fewer values of a in Figure 7 to keep the plots uncluttered.
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H Limitations of our work

As discussed in the first paragraph of § 7, the main limitation of our work is that, for a to precisely
approximate the probability of generalizing with risk below the associated a-quantile value, we
must have a large number of i.i.d.-sampled domains. Currently, this is rarely satisfied in practice,
although § 7 describes how new data-collection procedures could help to better-satisfy this assumption.
We believe that our work, and its promise of machine learning systems that generalize with high
probability, provides sufficient motivation for collecting real-world datasets with a large number
of i.i.d.-sampled domains. In addition, we hope that future work can explore ways to relax this
assumption, e.g., by leveraging knowledge of domain dependencies like time.
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