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ABSTRACT

Recommender systems aim to predict personalized item rankings by modeling user
preference distributions derived from historical behavior data. While diffusion
models (DMs) have recently gained attention for their ability to model complex dis-
tributions, current DM-based recommenders typically rely on traditional objectives
such as mean squared error (MSE) or standard recommendation objectives. These
approaches are either suboptimal for personalized ranking tasks or fail to exploit the
full generative potential of DMs. To address these limitations, we propose Prefer-
Diff, an optimization objective tailored for DM-based recommenders. PreferDiff
reformulates the traditional Bayesian Personalized Ranking (BPR) objective into a
log-likelihood generative framework, enabling it to effectively capture user pref-
erences by integrating multiple negative samples. To handle the intractability, we
employ variational inference, minimizing the variational upper bound. Furthermore,
we replace MSE with cosine error to improve alignment with recommendation
tasks, and we balance generative learning and preference modeling to enhance the
training stability of DMs. PreferDiff devises three appealing properties. First, it
is the first personalized ranking loss designed specifically for DM-based recom-
menders. Second, it improves ranking performance and accelerates convergence by
effectively addressing hard negatives. Third, we establish its theoretical connection
to Direct Preference Optimization (DPO), demonstrating its potential to align user
preferences within a generative modeling framework. Extensive experiments across
six benchmarks validate PreferDiff’s superior recommendation performance. Our
codes are available at https://github.com/lswhim/PreferDiff.

1 INTRODUCTION

The recommender system endeavors to model the user preference distribution based on their historical
behaviour data (He & McAuley, [2016; Wang et al., 2019; |Rendlel 2022} and predict personalized
item rankings. Recently, diffusion models (DMs) (Sohl-Dickstein et al.l 2015} Ho et al., 2020} [Yang
et al., [2024) have gained considerable attention for their robust capacity to model complex data
distributions and versatility across a wide range of applications, encompassing diverse input styles:
texts (Li et al., 2022; [Lovelace et al.,[2023), images (Dhariwal & Nichol, 2021;|Ho & Salimans}[2022)
and videos (Ho et al.}|2022a3b)). As a result, there has been growing interest in employing DMs as
recommenders in recommender systems.

These DM-based recommenders utilize the diffusion-then-denoising process on the user’s historical
interaction data to uncover the potential target item, typically following one of three approaches:
modeling the distribution of the next item (Yang et al., |2023b; |Wang et al.| 2024bj |Li et al.| [2024]),
capturing the user preference distribution (Wang et al., |2023bj; [Zhao et al.,|2024; Hou et al., |2024aj;
Zhu et al.| [2024), or focusing on the distribution of time intervals for predicting the user’s next
action (Ma et al., 2024a). However, prevalent DM-based recommenders often routinely rely on
standard generative loss functions, such as mean squared error (MSE), or blindly adapt established
recommendation objectives, such as Bayesian personalized ranking (BPR) (Rendle et al.l 2009)
and (binary) cross entropy (Sun et al., |2019) without any modification. Despite their empirical
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Figure 1: Illustration of user preference distributions modeled by DM-based recommenders. (a)
Neglecting the negative item distribution leads to predicted items potentially being closer to negative
items. (b) Incorporating the negative sampling enhances the understanding of user preferences.

success, two key limitations in their training objectives have been identified, which may hinder further
advancements in this field:

e DM-based recommenders inheriting generative objective functions (Yang et al., 2023b) lack
a comprehensive understanding of user preference sequences. They model user behavior by
considering only the items users have interacted with, neglecting the critical role of negative items
in recommendations (Chen et al., [2023a}; |2024; Zhang et al.| [2024). As illustrated in Figure Eka),
although the predicted item centroid is close to the positive item, the sampling process of the DMs
may tend to obtain the final predicted item embedding in high-density regions (red in Figure[T{a)(b)).
This can result in the predicted item embedding being too close to negative items, thereby affecting
the personalized ranking performance. Enabling DMs to understand what users may dislike can help
alleviate this issue, as illustrated in Figure Ekb).

e DM-based recommenders simply employ standard recommendation training objectives,
hindering their generative ability. This type of DM-based recommenders treats DMs primarily as
noise-resistant models that focus on ranking or classification rather than on generation. While this
approach can mitigate the impact of noisy interactions inherent in recommender systems (Wang et al.
2023bj; |Li et al., [2024), it may not fully exploit the generative and generalization capabilities of DMs,
whose primary objective is to maximize the data log-likelihood.

To better understand and redesign a diffusion optimization objective that is specially tailored to model
user preference distributions for personalized ranking, we aim to simultaneously encode user dislikes
and enhance the generative capability of the ranking objective. Our approach involves extending
the classical and widely-adopted BPR objective to incorporate multiple negative samples, while
also clarifying its connection to likelihood-based generative models, exemplified by DMs (Yang
et al.,[2024). BPR only seeks to maximize the rating margin between positive and negative items,
which may result in high score negative ratings. In contrast, our core idea focuses on modeling user
preference distributions, where the distribution of positive items diverges from that of negative items,
conditioned on the user’s personalized interaction history.

To this end, we propose a training objective specifically designed for DM-based recommenders,
called PreferDiff, which effectively integrates negative samples to better capture user preference
distributions. Specifically, by applying softmax normalization, we transform BPR from a rating
ranking into log-likelihood ranking, leading to the formulation of Lgpg pisr. However, since DMs are
latent variable models (Ho et al., 2020), direct optimization through gradient descent is intractable.
To address this intractability, we derive a variational upper bound for Lgpgr piff using variational
inference, which serves as a surrogate optimization target. Furthermore, we replace the original MSE
with cosine error (Hou et al.| [2022b)), allowing generated items to better align with the similarity
calculations in recommendation tasks and controlling the scale of embeddings (Chen et al.,|2023c).
Additionally, we extend Lgpr_pifr to incorporate multiple negative samples, enabling the model to
inject richer preference information during training while implementing an efficient strategy to
prevent redundant denoising steps from excessive negative samples. Finally, we balance generation
learning and preference learning to achieve a trade-off that enhances both training stability and model
performance, culminating in the final objective function, Lpreferpifr-
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Benefiting from a comprehensive understanding of user preference distributions, PreferDiff has three
appealing properties: First, PreferDiff is the first personalized ranking loss specifically designed for
DM-based recommenders, incorporating multiple negatives to model the user preference distributions.
Second, gradient analysis reveals that PreferDiff handles hard negatives by assigning higher gradient
weights to item sequences, where DM incorrectly assigns a higher likelihood to negative items than
positive ones (Chen et al.l [2022; |[Fan et al., 2023} [Zhang et al., |2023))(cf. Section @]) This not
only improves recommendation performance but also accelerates training (cf. Section[4.1). Third,
from a preference learning perspective, we find that PreferDiff is connected to Direct Preference
Optimization (Rafailov et al.l 2023) under certain conditions, indicating its potential to align user
preferences through generative modeling in diffusion-based recommenders (cf. Section [3.2).

We evaluate the effectiveness of PreferDiff through extensive experiments and comparisons with
baseline models using six widely adopted public benchmarks (cf. Section {f.T). Furthermore, by
simply replacing item ID embeddings with item semantic embeddings via advanced text-embedding
modules, PreferDiff shows strong generalization capabilities for sequential recommendations across
untrained domains and platforms, without introducing additional components (cf. Sectiond.2)).

2 PRELIMINARY

In this section, we begin by formally introducing the task of sequential recommendation and then
introduce the foundations of DM-based recommenders who model the next-item distribution.

Sequential Recommendation. Suppose each user has a historical interaction sequence
{41,12,...,in—1}, representing their interactions in chronological order and i,, is the next target
item. For each sequence, we randomly sample negative items from batch or candidate set result in

H = {i,} ljill. Moreover, each item ¢ is associated with a unique item ID or additional descriptive
information (e.g., title, brand and category). Via ID-embedding or text-embedding module, items
can be transformed into its corresponding vectors e € R'*?. Therefore, the historical interaction
sequence and negative items’ set can be transformed to ¢ = {ej,ez,...,e,_ 1} and H = {e,}/_;.
The goal of sequential recommendation is to give the personalized ranking on the whole candidate
set, namely, predict the next item ¢,, user may prefer given the sequence c and negative items’ set H.

Diffusion models for Sequential Recommendation. In this section, we introduce the use of guided
DMs to model the conditional next-item distribution p(i,, | i<y ), following the DreamRec (Yang
et al.,[2023b). For clarity, we denote the vector representation of the next item i,, as ear instead of e,,

and negative items i,, as e, * resultin H = {e; “}Lill. The subscript denotes the timesteps in DM,
where “0” indicates that no noise has been added, and the superscript represents whether the item is
positive or negative, denoted by “+” or “-” respectively in recommendation. Notably, these notations
will be used consistently in the subsequent sections.

e Forward Process. DMs add Gaussian noise to the positive item embedding e with noise scale
{ai,aq, -, ar} over the pre-defined timesteps 7', namely, g(e; | el) = N(vaed, (1 — a;)I).
If T — +o00, e} asymptotically converges to the standard Gaussian distribution. g(e;” | ed) can be
easily derived through applications of the reparameterization trick (Kingma & Welling, [2014).

o Reverse Process. The reverse process aims to recover the target item embedding ear from the
standard Gaussian distribution through the denoising process with the personalized guidance c.
Concretely, following the classical DMs’ paradigm introduced in DDPM (Ho et al.,2020), we choose
the simple objective which minimizes the KL. divergence between the true denoising transition
q(ef ;| e/, ed) and the intractable denoising transition pg(e;” , | e;, c). Leveraging the favorable
properties of the Gaussian distribution, we can derive the following closed-form objective:

Lsinpe = Bt oy ||Folei st M) ~ e [1}] 1)

where e, ¢ come from the training data. t ~ U(1,7) is the sampled timestep. M (-) denotes

the arbitrary sequence encoder utilized in sequential recommendation (e.g., GRU (Hidasi et al.,
2016), Transformer (Kang & McAuley, [2018), Bert (Sun et al.,2019)). Fy(-) serves as denoising
network which is commonly parameterized by a simple MLP and 6 denotes the trainable parameters.
Classifier-free guidance scheme (Ho & Salimans), 2022)) can be utilized here to replace M (c) with
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dummy token ® with probability p,, to achieve the training of unconditional DM. Furthermore, some
works (L1 et al., 2024) utilize the recommendation objective (binary) cross entropy instead of MSE.

o Inference and Recommend. During the inference stage, we first derive the representation of a
given user’s historical sequence, denoted as M (c). Starting from pure Gaussian noise, we then utilize
the denoising network F(+) to iteratively generate latent embeddings, following arbitrary samplers
(e.g., DDIM (Song et al.l [2021a)) in DMs, until the inferred next item embedding & is obtained.
More details can be found in Algorithm [2]and Appendix [B] Finally, we recommend the top-K items
with the highest dot product between &( and the item embeddings in the candidate set.

3 METHODOLOGY: THE PROPOSED PREFERDIFF

In this section, we introduce PreferDiff, a novel loss for DM-based recommenders that can instill
preference information. First, we extend the classical BPR loss to a probabilistic one, defining a new
loss Lppr-pitt. To address the inherent intractability, we derive a variational upper bound Lypper for
Lppr-piff and optimize this bound instead. Furthermore, we explore the incorporation of multiple
negative samples and propose an efficient strategy by lowering the likelihood of the negative samples’
centroid, which avoids multiple denoising steps. Lastly, we make a trade-off between learning
generation and learning preference to ensure training stability, resulting in the final 10ss Lpyeferpist-

3.1 CONNECT DIFFUSION MODELS WITH BAYESIAN PERSONALIZED RANKING

In this subsection, we explore the integration of DMs with the classical BPR loss (Rendle et al., [ 2009),
which has been proven to be highly effective in real-world industrial recommendation scenarios. As
BPR is designed to optimize personalized ranking by modeling user preferences in a pairwise fashion,
it has been extensively applied in contemporary recommendation researches (Kang & McAuley,
2018; He et al.| 2020). It can be formulated as

Lopr = ~Eor o~ o) [logo (foleg [ ) = foleg | €))] , 2

where e] , e, represents the positive item and one negative item in H, we omit v for brevity. c
represents the historical item sequences. o is the Sigmoid function. fy(eg | ¢) is the predicted
rating of item e conditioned on the historical item sequence c. As DMs are part of the family
of likelihood-based generative models (Yang et al.|[2024) and are employed here to maximize the
log-likelihood of the next item distribution log py (e | c), it is clear that equation does not meet
this need. Therefore, we put forward to change the rating to the probability distribution.

From Rating to Probability Distribution. Here, we define the probability distribution of the next-
item e( given historical item sequences c via a softmax over the arbitrarily flexible, parameterizable,

rating function f5(-). It can be formulated as py(eg | ¢) = PUele0l0) where Z, is normalizin
g Zo g

constant (a.k.a, partition function), defined as | exp(fy(e | c)) de. Then, by substituting it into equa-
tion[2] we obtain the following result, which we refer to as Lgpgr_pis, as we utilize the DMs to model
that distribution. The detailed derivation is provided in Appendix [C.1]

Lgprpifi(0) = —E(eg,eg,c) [loga (logpo(eé | c) —logpg(ey | C))} . 3)

Intuitively, Lppr-pist seeks to widen the gap between the log-probability distributions of positive and
negative items given c. However, the challenge is that equation [3]is intractable due to the need to
marginalize over all possible diffusion paths as DMs are latent variable models. Therefore, like
previous work (Sohl-Dickstein et al., 2015 Ho et al., |2020), we propose to minimize the Lgpr.pjf Via
variational inference through minimizing the derived variational upper bound.

Minimize Lgpr.pisr through Variational Upper Bound. Therefore, like previous work (Sohl+
Dickstein et al., 2015} Ho et al.l [2020), we introduce latent variables (eq,...,er), resulting in
po(eo | ¢) = [ po(eo.r | ¢)der.r. Then, we substitute pg(e1.7 | €9) with g(e1.7 | eg) which is
typically modeled as a Gaussian distribution with predefined mean and variance at each timestep, due
to the intractability of directly sampling from the former distribution. The objective can be expressed

as follows:

pe(eﬁT K po(ep.r | ©)
Voter. Tor)  198E e ler) o= T om
qefr | eg) vri®lg(er | eq)

“

Lepropifi(0) = —E(ot o= o) |1080(108E o+ 1o+
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By applying Jensen’s inequality and leveraging the convexity of the logarithmic function, we can
move the expectation operator outside. Consequently, after further mathematical derivations, we can
establish an upper bound for Lgpr_pifr as equation@

‘ _ polegr le) . pelegr | c)
Lpr-pife(0) < E(e;ﬁeo‘,c)]Eq(eiT\eg),q(e;T\eg) {log a(log Q(efT ear) log dom o)

(&)

Following the derivation of classical DMs (Ho et al.,|2020; |Song et al., 2021a}|Luo} 2022}, we can
simplify the above equation through algebra, yielding the following result:

T
Leprpifi(0) < —Eot o= o) [logif ( (Z E, o jot) [Dxe (a(ef_1le) eq) [l po(ef_yle)))]

t=1

)

(6)
where C is a constantthath is independent of the model parameter 6. As introduced in the Preliminary,
by applying Bayes’ theorem and leveraging the additivity property of Gaussian distributions, the final
trainable objective on stochastic samples over timestep is expressed as follows:

T
= Eyerjery [Dxu (alei_1le; eq) | poleile; )] +Cl>>
t=1

Lupper(0) = =E(ot o= o) tov(1,1) [logo(—(S(éy,eq) — S(&y,eq)))] - (7

Here, &l = Fp(ef,t, M(c)), &5 = Fo(e; ,t, M(c)). S(-) denotes the function that quantifies the
distance between the prediction and the true next item embedding, typically MSE in previous works.
As retrieval during the inference stage is conducted via maximal inner product search for ranking and
MSE shows sensitivity to vector norms and dimensionality (Friedman, 1997 [Hou et al.,[2022b), we
propose using cosine error instead. Since Lypper serves as an upper bound for Lppg.pifr, minimizing
Lypper implicitly minimizes Lgpr-pitr- Intuitively, equation |7|is designed such that, given a user’s
historical item sequence, the denoising network F(-) tends to recover the positive item rather than
the negative item. A detailed derivation can be found in Appendix

3.2 ANALYSIS OF LBpR-Dirr

In this subsection, we demonstrate the two properties of Lgpr pir by analyzing the gradient with
respect to 6 and connecting it with recent popular direct preference optimization. We also reveal
the connection between the rating function and the score function in Appendix equation which
bridges the objective of recommendation with generative modeling in DMs.

Gradient Analysis. Here, we analyze the gradients of Lgpr_pir to understand their impact on the
training process of DMs for sequential recommendation.

OLppr-pisr (0 B
oreonl0) _ g oo ( Volowmles |e)  —  Vologpoles [¢) )], ®)
0 b

Increase Likelihood on Positive Item  Decrease Likelihood on Negative Item

where wg = 1 — o (logpg(e] | c) —logpe(ey | c)) represents the gradient weight. Obviously, if
given certain item sequences, the DM incorrectly assigns a higher likelihood to the negative items
than positive items, and the gradient weight wy will be higher. Therefore, optimizing Lgpg_pitr 1S
capable of handling hard negatives, which has become increasingly important in recent research [Chen
et al.| (2022); Fan et al.| (2023); Zhang et al.[ (2023).

Connection with Direct Preference Optimization. After determining how to minimize Lgpr_pjft
using the aforementioned upper bound and analyzing the gradient, we proceed to validate the
rationality of Lgpr_pirr. Here, we establish a connection with the recently prominent Direct Preference
Optimization (DPO) (Rafailov et al.} 2023} [Wallace et al., 2024} Meng et al.,[2024), which has been
shown to effectively align human feedback with large language models. For further details on DPO,
we refer readers to (Rafailov et al.l 2023). The equation of DPO is expressed as follows:
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mat e g w19V

Lopo(0) = —E w4 [loga (6 log
@)= "Fuypao prs@ 1©) 1% gl T )

By comparing equation [3| with equation 9] we observe that Lgpr.pisr can be viewed as a special case
of DPO, where 8 = 1 and p¢ is a constant distribution (e.g., uniform distribution). This validates
that optimizing the proposed Lgpr.pisr has the potential to align user preferences in DMs. Notably,
we give more details about the connection of DPO and PreferDiff in Appendix [F.6]

3.3 EXTEND TO MULTIPLE NEGATIVES

As previous works have demonstrated that incorporating multiple negatives during the training phase
can better capture user preferences, we extend Lppgr piff to support multiple negatives for instilling
more fruitful rank information. Suppose that for each sequence, we have negative items’ set H
introduced in Section 2] according to equation[7] we can directly derive that:

||
A 1 A=V L~V
Lpprpirv = —logo(—[H| - (S(e7,ef) — ] E S(eg’,e0"))- (10)
v=1

For brevity, we omit the expectation term. However, the above equation applies the noising and
denoising process to all negative samples, which significantly reduces the model’s training speed and

increases susceptibility to false negatives. Therefore, we propose to replace the || negative samples
]

with their centroid €, = Wll Y w_y € " as the diffusion target and derive the following:

Lepr-pift-c = —logo(—|H| - [S(é7,ed) — S(Fo(e; ,t, M(c)),&;)]). (11

Assuming that F(-) is a convex function, we can apply Jensen’s inequality and derive that
Leprpift.v < Lppr-pitr.c- Therefore, minimizing Lgpr pifr.c can efficiently increase the likelihood
of the positive items while simultaneously distancing them from the centroid of the negative items.
Intuitively, this aligns with the phenomenon that users may not explicitly indicate dislike for specific
items, but rather for a certain category of items. A detailed derivation can be found in Appendix [C.4]

Training and Inference of PreferDiff. Here, we introduce the training and inference details of
PreferDiff, as demonstrated in Algorithm[TJand Algorithm 2]in the Appendix. Empirically, we find
that solely using the proposed Lgpr_pifr.c leads to instability during training. This may be due to an
overemphasis on ranking information, which can neglect the more accurate generation of the next
item. Therefore, we balance the trade-off between learning generation and learning preference with
hyperparameter A, with the following:

Lperterditt =  AMlsimple 4 (1 — A) LBproDiff-C - (12)
—— ——————
Learning Generation Learning Preference

We conduct experiments about different A to show the instable training issue in Section

4 EXPERIMENTS

In this section, we aim to answer the following research questions:
e RQ1: How does PreferDiff perform compared with other sequential recommenders?

e RQ2: Can PreferDiff leverage pretraining to achieve commendable zero-shot performance on
unseen datasets or datasets from other platforms just like DMs in other fields?

e RQ3: What is the impact of factors (e.g., A\) on PreferDiff’s performance?
4.1 PERFORMANCE OF SEQUENTIAL RECOMMENDATION

Baselines. We comprehensively compare PreferDiff with five categories of sequential recommenders:
traditional sequential recommenders, including GRU4Rec (Hidasi et al.,|2016), SASRec (Kang &
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Table 1: Comparison of the performance with sequential recommenders. The improvement achieved
by PreferDiff is significant (p-value < 0.05). Results of three additional datasets are in Appendix [F1}

Model Sports and Outdoors Beauty Toys and Games

R@5 N@s R@10 N@10 R@5 N@s5 R@10 N@10 R@5 N@s R@10 N@10
GRU4Rec 0.0022 0.0020  0.0030 0.0023  0.0093 0.0078 0.0102 0.0081 0.0097 0.0087 0.0100 0.0090
SASRec 0.0047 0.0036  0.0067 0.0042  0.0138 0.0090 0.0219 0.0116 0.0133 0.0097 0.0170 0.0109
BERT4Rec 0.0101 0.0060  0.0157 0.0078 0.0174 0.0112 0.0286 0.0148 0.0226  0.0139  0.0304 0.0163
CLA4SRec 0.0105  0.0070  0.0159  0.0085 0.0221 0.0123 0.0345 0.0178 0.0224 0.0142  0.0321 0.0169
TIGER 0.0093  0.0073  0.0166  0.0089 0.0236 0.0151 0.0366 0.0193 0.0185 0.0135 0.0252 0.0156
DiffRec 0.0125  0.0068  0.0200  0.0101  0.0195 0.0121 0.0409 0.0188 0.0268 0.0142  0.0426 0.0193
DreamRec 0.0155  0.0130  0.0211  0.0140 0.0406 0.0299 0.0483  0.0326 0.0440 0.0323  0.0490 0.0353
DiffuRec 0.0093  0.0078  0.0121  0.0087 0.0286 0.0215 0.0335 0.0230 0.0330 0.0262  0.0355 0.0271
MoRec 0.0056  0.0045  0.0076  0.0051 0.0259 0.0189 0.0353 0.0219 0.0154 0.0115 0.0191 0.0127
LLM2BERT4Rec  0.0118  0.0076  0.0183  0.0097 0.0379 0.0262 0.0474 0.0265 0.0339  0.0246  0.0443 0.0263
PreferDiff 0.0185  0.0147  0.0247  0.0167 0.0429 0.0323 0.0514 0.0350 0.0473  0.0367 0.0535 0.0387
PreferDiff-T 0.0182 0.0145 0.0222 0.0158  0.0429 0.0327 0.0532 0.0360 0.0460 0.0351 0.0525 0.0380
Improve 19.35% 16.94% 17.06% 19.28% 5.66% 9.36% 1043% 7.36% 7.50% 13.62% 9.18% 9.63%

McAuley| 2018)), and BERT4Rec (Sun et al.| 2019)); contrastive learning-based recommenders, such
as CL4SRec (Xie et al.|, [2022); generative sequential recommenders like TIGER (Rajput et al.| 2023));
DM-based recommenders, including DiffRec (Wang et al.,|2023b)), DreamRec (Yang et al.,2023b)
and DiffuRec (L1 et al.| 2024); and text-based recommenders like MoRec (Yuan et al., [2023)) and
LLM2Bert4Rec (Harte et al., [2023). See Appendix @] for details on the introduction, selection and
hyperparameter of the baselines.

Datasets. We evaluate the proposed PreferDiff on six public real-world benchmarks (i.e., Sports,
Beauty, and Toys from Amazon Reviews 2014 (He & McAuley, [2016), Steam, ML-1M, and Ya-
hoo!R1). Detailed statistics of three benchmarks can be found in Table [5] Here, we utilize the
common five-core datasets, filtering out users and items with fewer than five interactions. More
Details about data prepossessing can be found in Appendix Following prior work (Yang et al.,
2023D), in Table[I]and Table[T4] we employ user-split which first sorts all sequences chronologically
for each dataset, then split the data into training, validation, and test sets with an 8:1:1 ratio, while
preserving the last 10 interactions as the historical sequence. We reproduce all baselines for a fair
comparison. Notably, in Table[§|and Table[9]of Appendix[D.4] we also give comparison under another
setting (i.e., leave-one-out) to provide more insights where the baselines’ results are copied from
TIGIR. Moreover, we conduct experiments on varied user history lengths in Appendix

Implementation Details. For PerferDiff, for each user sequence, we treat the other next-items
(a.k.a., labels) in the same batch as negative samples. We set the default diffusion timestep to
2000, DDIM step as 20, p,, = 0.1, and the 3 linearly increase in the range of [16‘47 0.02] for all
DM-based sequential recommenders (e.g., DreamRec). For all text-based recommenders, we utilize
OpenAl-3-Large (Neelakantan et al.| |2022]) to obtain the text embeddings. We fix the embedding
dimension to 64 for all models except DM-based recommenders, as the latter only demonstrates
strong performance with higher embedding dimensions. The former does not gain much from high
embedding dimensions, which will be discussed in Section[4.3] Refer to Appendix for more
implementation details about baselines. Notably, PreferDiff can be applied to any sequence encoder,
M(-). We provide the results of PreferDiff with other backbones in Appendix

Evaluation Metrics. We evaluate the recommendation performance in a full-ranking manner (Yang
et al.,|2023b)) using Recall (Recall@K) and Normalized Discounted Cumulative Gain (NDCG@K)
with K =5, 10, following the widely adopted top-K protocol as the primary metrics for sequential
recommendation (Kang & McAuley, 2018} [Rajput et al., 2023).

Results. Table [T| presents the performance of PreferDiff compared with five categories sequential
recommenders. For brevity, R stands for Recall, and N stands for NDCG. The top-performing and
runner-up results are shown in bold and underlined, respectively. “Improv” represents the relative
improvement percentage of PreferDiff over the best baseline. “*” indicates that the improvements are
statistically significant at 0.05, according to the t-test. We can have the following observations:

e DM-based recommenders have exhibited substantial performance gains over other sequential
recommenders across most metrics. This is consistent with prior research, which demonstrates
that the powerful generation and generalization capabilities (Yang et al.| [2023b) or noise robust-
ness (Wang et al.l [2023b; |L1 et al.l 2024) of DM can better capture user behavior distributions
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Table 2: Ablation Study of PreferDiff. Details are the same as Table[I]

Model Sports and Outdoors Beauty Toys and Games
R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10
PreferDiff ~ 0.0185 0.0147 0.0247 0.0167 0.0429 0.0323 0.0514 0.0350 0.0473 0.0367 0.0535 0.0387

w/o-N 0.0165 0.0139 0.0214 0.0149 0.0415 0.0304 0.0492 0.0333 0.0445 0.0349 0.0495 0.0367
w/o-C 0.0180 0.0139 0.0230 0.0159 0.0393 0.0282 0.0496 0.0322 0.0458 0.0356 0.0521 0.0374
w/o-C&N 0.0155 0.0130 0.0211 0.0140 0.0406 0.0299 0.0483 0.0326 0.0440 0.0323 0.0490 0.0353

compared to other sequential recommenders and alleviate the false negative or false positive issue in
recommendation (Sato et al.| [2020; /Chen et al., 2023Db).

o PreferDiff significantly outperforms other DM-based recommenders across all metrics on
three public benchmarks. PreferDiff demonstrates an improvement ranging from 6.41% to 19.35%
over the second-best baseline. Our results indicate that modeling the user’s next-item distribution
is more effective than modeling the user’s interaction probability distribution (e.g., DiffRec) in
sequential recommendation. Additionally, directly applying classic recommendation objectives (e.g.,
DiffuRec) or using objectives that deviate significantly from the original (e.g., MSE) may impede
diffusion models from effectively learning user preference distributions and fully harnessing their
generative and generalization capabilities. Moreover, the performance gap between DreamRec and
PreferDiff further validates that our tailored optimization objective for DM-based recommenders
successfully incorporates personalized ranking information into DMs, enabling them to better unleash
their generative potential while more effectively capturing user preference distributions.

o PreferDiff can benefit from advanced text-embeddings. We observe that PreferDiff, when
incorporating the identical text embeddings (referred to as PreferDiff-T), outperforms MoRec and
LLM2Bert4Rec by replacing traditional ID embeddings with semantic text embeddings or using
them as initialization parameters of ID-embeddings. This demonstrates that incorporating text
embeddings, which provide a more semantic and stable feature space, into PreferDiff can obtain
commendable recommendation performance. This finding aligns with current trends in the text-
diffusion field (Lovelace et al.| 2023} [Liu et al.,|2023)). Building on this, due to the unified nature of
the language space, PreferDiff possesses the potential to generalize sequential recommendations to
other unseen domains, which we will elaborate on in the following subsection.

Ablation Study. As shown in Table 2] we scrutinize and evaluate each key individual component
of PreferDiff to comprehend their respective impacts and significance. The ablation analysis is
conducted using the following three versions. (1) PreferDiff-w/o-N employs cosine error as the
measure function and drops the learning preference term in Lppeferpitr- (2) PreferDiff-w/o-C employs
MSE as a measure function. (3) PreferDiff-w/o-C&N employs MSE as the measure function and
drops the learning preference term in Lppeferpitr. We can observe that each component in PreferDiff
contributes positively. Specifically, the performance degradation due to the omission of negative
samples highlights the importance of incorporating preference information into DMs to better capture
the underlying user preference distributions. Furthermore, replacing MSE with cosine error results
in performance improvements, as the recommendation phase is conducted through maximum inner
product search, which better aligns with the objective of capturing similarity in the embedding space.

0.0501 TG e . 0.0397
©0.0385 1, 0:0306
S‘ 0.0268 g 0.0215
****** Convergence
) Z
% 0.0152 —— PreferDiff 0.0124 —— PreferDiff
0.0036 —— DreamRec 0.0033 —— DreamRec
0 20 40 60 80 0 20 40 60 80
Training Epoch Training Epoch

Figure 2: Training Comparison with DreamRec on Amazon Beauty.

Faster Convergence than DreamRec. As analyzed in Section [3.2] PreferDiff handles hard negatives
with higher gradient weight, as shown in Figure .1} Empirically, we find that PreferDiff converges
faster (approximately 35 epochs, 8 minutes) than other DM-based sequential recommenders, such as
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Table 3: Performance comparison of General Sequential Recommendation on Different Target
Datasets. Details are the same as Table[Tl

. . In Domains Out Domains Other Platform
Supervision Models Metrics | Instruments Tools CDs Movies Steam
. R@5 0.1060 0.0673 | 0.0608  0.1392 0.0874
Full-Supervised |  SASRec N@s5 0.0951 0.0642 | 0.0542  0.1210 0.0720
. R@5 0.1067 0.0627 | 0.0253  0.0286 0.0397
UniSRec N@s 0.1009 0.0605 | 0.0239  0.0271 0.0329
Zero-Shot R@5 0.1220 0.0699 | 0.0268  0.0306 0.0585
MoRec N@5 0.1094 0.0655 | 0.0274  0.0293 0.0556
] R@5 0.1213 0.0723 | 0.0295 0.0312 0.0621
PreferDiff-T | N@5 0.1135 0.0691 | 0.0293  0.0299 0.0583

DreamRec (approximately 65 epochs, 15 minutes) with better performance on validation sets. Notably,
we compare the training time and inference time with a 2-D scatter plot and table in Appendix [F4] By
adjusting the denoising steps, we can achieve a trade-off between inference time and recommendation
performance for real-time recommendation scenarios, as detailed in Appendix [F.3]

4.2 GENERAL SEQUENTIAL RECOMMENDATION (RQ?2)

Given that DMs have exhibited exceptional zero-shot inference capabilities after pretraining on large,
high-quality datasets in other fields (Khachatryan et al.|[2023;|Clark & Jainil [2023)), we aim to explore
how PreferDiff can effectively zero-shot recommendation on unseen datasets, either within the same
platform (e.g., Amazon) or across different platforms (e.g., Steam), without any overlap of users or
items (Ding et al} 20215 Hou et al.,|2023} |Li et al.| 2023a} |Sheng et al., [ 2024)), which distinguishes it
from traditional ID-based cross-domain recommendation (Zhu et al., 2021; Ma et al., 2024b)).

Baselines. Here, we compare PreferDiff with two baselines that are towards general sequential recom-
mendations, namely UniSRec (Hou et al.|[2022a)) and MoRec (Yuan et al.|[2023). See Appendix @]
for details on the introduction, selection, and hyperparameter search range of the baselines. For a
fair comparison, we employ the text —embedding-3-large model from OpenAl (Neelakantan
et al., [2022)) as the text encoder to convert identical item descriptions (e.g., title, category, brand) into
representations, as it has been proven to deliver commendable performance in recommendation (Harte
et al.| 2023). More additional experiments about different text encoders can be found in Appendix [E.3|

Datasets and Evaluation Metrics. Following the previous work (Hou et al.,2022a; |L1 et al., 2023a)),
we select five different product reviews from Amazon 2018 (N1 et al.,[2019), namely, “Automotive”,
“Cell Phones and Accessories”, “Grocery and Gourmet Food”, “Musical Instruments” and “Tools and
Home Improvement”, as pretraining datasets. “Office Products” is selected as the validation dataset
for early stopping when Recall@5 (i.e., R@5) shows no improvement for 20 consecutive epochs.
Here, we consider three scenarios for the incoming evaluated target datasets. (1) “In Domains” refers
to target datasets that are part of the pretraining dataset. (2) “Out Domains” refers to target datasets
that are not in the pretraining dataset but belong to the same platform (i.e., Amazon). Here, we select
“CDs and Vinyl” and “Movies and TV”. (3) “Other Platform” refers to target datasets that are neither
in the pretraining dataset nor from the same platform. Here, we select a commonly used game dataset
collected from Steam (Kang & McAuley, 2018)). Detailed dataset statistics can be found in Table E}

Results. Tables 3] present the performance of PreferDiff compared with the chosen two general
sequential recommenders. We can observe that:

e Without any additional components, PreferDiff-T outperforms other general sequential
recommenders. Unlike UniSRec, which employs a mixture of experts technique for whitening,
and MoRec, which uses dimension transformation, PreferDiff-T directly utilizes raw semantic text
embeddings. This results in improvements of 2% to 8% in in-domain scenarios, 2% to 10% in
out-domain scenarios, and 3% to 6% on other platforms, validating PreferDiff’s strong capability in
general sequential recommendation tasks without harming the performance on pretraining datasets.

e The general sequential recommendation capacity of PreferDiff-T increases significantly as the
amount of training data grows. As shown in Figure 4] we empirically find that as we continuously
expand the scale of the training data (by adding more diverse datasets), NDCG@5 and HR@5
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have nearly improved 500% as the scale of the training data increased five times, approaching
the performance of full-supervised SASRec. This suggests that PreferDiff-T can effectively learn
general knowledge to model user preference distributions by pretraining on even diverse datasets and
transferring this knowledge to unseen datasets via advanced textual representations.

4.3 STUDY OF PREFERDIFF (RQ3)

In this subsection, we study the important factors (e.g., A, embedding size, and S(-)) that may
impact the recommendation performance of PreferDiff. Others can be found in Appendix and
Appendix [E.2] We also provide visualization of learned item embeddings via t-SNE in Appendix [E.4]

0.0175 0.0365 0.0390
20.0134 =t 20.0285 =0.0305 -~
5 \:.j 5 PreferDiff
£0.0093 - £0.0206 £0.0220 —— DreamRec
2 s 2 2 =~ SASRec
#0.0051 “0.0126{ £0.0136/ ./ —
0.0010 0.0046 0.0051

256 512 10241536204830724096 256 512 10241536204830724096 256 512 10241536204830724096
Embedding Size Embedding Size Embedding Size

(a) Sports (b) Beauty (c) Toys
Figure 3: Effect of the Embedding Size for PreferDiff.

Dimension of Embedding for PreferDiff. As shown in Figure [3] we empirically observe that
the recommendation performance of both PreferDiff and DreamRec improves significantly as the
embedding size increases. This finding contrasts with previous observations in some non-DM-based
recommenders (Liu et al.,2020; |Qu et al., 2023} |Guo et al., 2024). We attribute this phenomenon to
the dynamic feature space of ID embeddings, in which DMs require higher dimensions to capture
the user preference and ensure the stability of embedding space. Notably, in the Appendix [F.3] we
provide a simple theoretical analysis and experimental validation to explain this phenomenon.

Importance of \ for PreferDiff )\ controls the balance between learning generation and learning
preference in PreferDiff. As shown in Figure [5] of Appendix [E] PreferDiff performs best when
A = 0.4 or A = 0.6, highlighting the importance of enabling DMs to understand negatives in the
recommendation task.

Measure Function for PreferDiff. As the final

recommendation is ranked by maximal inner prod- Table 4: Effect of Measure Function for Prefer-

uct search, we replace MSE with cosine error, as Diff.

introduced in equation[7] The results presented in D@t | Sports Beauty Toys

T bl d trat th . .t f . t Measure ‘ R@5 N@s R@5 N@s R@5 N@s
a e@ emonstrate € Superlorl y o uSlng set co- L1 0.0152 0.0121 0.0362 0.0281  0.0448  0.0345

sine error as the default measurement function over ~ Huber | 00154 00123 0.0364 00279 00371 0.0286
L2 0.0180 0.0139 0.0393 0.0282  0.0458  0.0356

MSE in PreferDiff. Cosine | 0.0185° 0.0147° 0.0429° 0.0323° 0.0473 0.0367"

5 CONCLUSIONS AND LIMITATIONS

We propose PreferDiff, an optimization objective specifically designed for DM-based recommenders
which can integrate multiple negative samples into DMs via generative modeling paradigm. Opti-
mization is achieved through variational inference, deriving a variational upper bound as a surrogate
objective. However, PreferDiff has limitations: (1) Dimension Sensitivity: The recommendation
performance of PreferDiff is highly dependent on the embedding dimension. Empirical results show
a sharp decline in performance when the embedding size is reduced to 64, a common dimension in
existing studies. This dependency may lead to increased computational resources and slower training
times when larger embedding sizes are required. (2) Hyperparameter A Dependence: PreferDiff
heavily relies on the hyperparameter A to balance the generation and preference learning in DMs.

Ethic Statement. This paper aims to develop a specially tailored objective for DM-based recom-
menders through generative modeling. We do not anticipate any negative social impacts or violations
of the ICLR code of ethics.
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Reproducibility Statement. All results in this work are fully reproducible. The hyperparameter
search space is discussed in Table[IT] and further details about the hardware and software environment
are provided in Appendix We provide the code and the best hyperparameters for our method at
https://github.com/lswhim/PreferDiff and Table[I2}
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A RELATED WORK

We highlight key related works to contextualize how PreferDiff fits within and contributes to the
broader literature. Specifically, our work aligns with research on sequential recommendation and
DMs based recommenders.

Sequential Recommendation have gained significant attention in both academia (Rendlel 2022; [Liu
et al.,|2024b)) and industry (Wang et al., 2019; [Fang et al.,|2020) due to their ability to capture user
preferences from historical interactions and recommend the next item. One common research line
has focused on developing more efficient network architectures, such as GRU (Hidasi et al.| [2016)),
convolutional neural networks (Tang & Wang, |2018)), Transformer (Kang & McAuley, 2018 |[Fan
et al., 2021)), Bert4Rec (Devlin et al., 2019), and HSTU (Zhai et al., 2024). Another research line
focuses on leveraging additional unsupervised signals (Xie et al., 2022;|Wang et al.|[2023aj; Ren et al.|
2024a) or reshaping sequential recommendation into other tasks such as retrieval (Rajput et al.| [2023}
‘Wang et al.| 2024a) and language generation (Bao et al.| 2023} |Li et al., [2023b; |[Liao et al., 2024).

DM-based Recommenders have been explored in recent studies due to the powerful generative
and generalization capabilities of DMs (DMs) (Lin et al., [2024). These recommenders either focus
on modeling the distribution of the next item (e.g., (Yang et al., 2023b; Wang et al.l 2024b; Li
et al., 2024]))), capture the probability distribution of user interactions (e.g., (Wang et al., [2023b;
Zhao et al.,|2024]))), or focus on the distribution of time intervals between user behaviors (e.g., (Ma
et al.,|2024a)). However, existing approaches often rely on conventional objectives, such as mean
squared error (MSE), or standard recommendation-specific objectives like Bayesian Personalized
Ranking (BPR) (Rendle et al., 2009) and Cross Entropy (CE) (Klenitskiy & Vasilev, [2023). We
argue that the former may diverge from the core objective of accurately modeling user preference
distributions in recommendation tasks (Rendlel 2022}, as DMs often lack an adequate understanding
of negative items. While the latter leverages DMs’ noise resistance to mitigate noisy interactions
in recommendations which might fall short of fully exploiting the generative and generalization
capabilities of DMs.

B SAMPLING ALGORITHM IN PREFERDIFF

We utilize DDIM (Song et al., 2021a)) as the default sampler in PreferDiff, replacing the DDPM
used in DreamRec, as we empirically find that DDIM is faster and performs better, requiring
only a few denoising steps. Here, we briefly introduce how DDIM is employed in PreferDiff;
Detailed derivations can be found in (Song et al.,|2021a), and the code implementation is available at
https://github.com/lswhim/PreferDiff.

Details. Specifically, in PreferDiff, the training is to predict the original data ey. The sampling
process should be reparameterized to predict ey directly instead of the noise e. Starting from the
original DDIM update equation (Song et al., 2021a):

e —+v1—oarep(es,t
€1 = at—l( ¢ \/OTt ofer )>+m69(6t,t)+atz, (13)
t

where z ~ N(0,I), o, controls the stochasticity of the process, and €y (e, t) is the predicted noise at
time step t.

In PreferDiff, since our model is trained to predict the original data eq directly, we use the relationship
between e;, e, and the noise €:

e; = Jaseg+ V1 — oy €. (14)
Solving for €, we obtain:
€ — /Ot €
=L vV 15
e= S (15)

Since e is predicted by our model as &y = Fy(ey, ¢, t), we can estimate the noise as:
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. e — /¢
= ST VAR 16
“= - (10)

Substituting € back into the DDIM update equation and setting ; = 0 for deterministic sampling,
we get:

e; — 1 — o€ R
e1= /a1 <ta”’> +VT—au1é (17)
V &t
=ai_1€+ /1 — a1 €. (18)

This simplification allows us to update e;_; directly using the predicted &, and €y without introducing
additional randomness, thus making the sampling process deterministic and more efficient.

Summary. Therefore, the deterministic DDIM sampling steps in our inference algorithm are:
1. Predict &y = Fy(ey,c,t).

e — \/Oété()
\/I*Oét ’

3. Updatee; 1 = \/a;_1 €+ /1 — a;_1 €.

2. Compute ég =

By iteratively applying these steps, we can efficiently generate the predicted original data €y. During
inference, by setting o, = 0, we eliminate the noise term o,z and focus solely on the deterministic
components of the update rule. This results in faster convergence with fewer denoising steps while
maintaining high-quality predictions. Detailed derivations and explanations of this reparameterization
and the DDIM sampling process can be found in (Song et al., 2021a)).

C DETAILS ABOUT PREFERDIFF

C.1 FROM RATINGS TO PROBABILITY DISTRIBUTION
Lppr = *E(eg,eg,c) [1ogcr (fg(eg' | c)— foleg | c))] , (19)

The primary objective of equation[I9]is to maximize the rating margin between positive items and
sampled negative items. Here, we employ softmax normalization to transform the rating ranking into
a log-likelihood ranking.

We begin by expressing the rating fy(eq | ¢) in terms of the probability distribution py (e | ¢). This
relationship is established through the following set of equations:

_ exp(fo(eo | ©))

poleo | c) = Z—a’
logps(eo | ¢) = fo(eo | c) —log Zy,
fo(eo | ¢) =logpe(eq | c) +log Zy . (20)

Substituting equation [20] into equation [T9] yields the BPR loss expressed solely in terms of the
probability distributions of positive and negative items.
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Lppr-piff = “Eet er0) log o foleg |¢) —  faleg | )
— ——
L rating of Positive Item  rating of Negative Item
= ~Eet or.c) [l080 log pg(eg | ) +log Zg —logpe(ey | ) — log Zy
L From equation 20] From equation[20] 2D
= —Elet o7 0) logo | logpg(ed | c) —logpe(e, | ) + log Zp — log Zy
o —
L =0
[ po(eg |c)
=-FE _+ - log o <log —_— .
(eg »eq 5€) | poleg | c)

C.2 CONNECTING THE RATING FUNCTION TO THE SCORE FUNCTION

In this subsection, we establish the relationship between the rating function fy(eg | c¢) and the
score function in the context of score-based DMs. Specifically, we demonstrate that the gradient
of the rating function with respect to the item embedding e is equivalent to the score function
Ve, logpo(eo | c).

Starting from Equation equation 20}
fo(eo | c) =logpy(eo | c) +log Zy, (22)

where Zj is the partition function:
Zy = /exp(fg(e | c))de. (23)

DERIVATIVE OF THE RATING FUNCTION WITH RESPECT TO €

Taking the gradient of Equation equation 22| with respect to e(, we have:

veofe(eo | C) = ve() Inge(eO | C) + Veo log Z@ M (24)

Since the partition function Zy is obtained by integrating over all possible item embeddings e, and
does not depend on the specific ey, its gradient with respect to eg is zero:

Veo,log Zyp =0. (25)

Therefore, Equation equation [24] simplifies to:
Veofo(eo | €) = Ve, logpo(eo | €). (26)

Definition of the Score Function In score-based DMs, the score function is defined as the gradient
of the log-probability density with respect to the data point e :

sg(eqg,c) = Ve, logpe(eo | ). (27)

Comparing Equations equation [26|and equation [27] we find that:
Veof9 (eo | C) =S¢ (eo, C) . (28)

This reveals that the gradient of the rating function with respect to the item embedding e is exactly
the score function of the probability distribution py(eq | ¢). Score-based DMs|Song et al.| (202 1b))
utilize the score function sy(ey, c) to define the reverse diffusion process. In these models, the data
generation process involves integrating the score function over time to recover the data distribution
from noise. Intuitively, we can utilize Ve, fg(eo | ¢) to sample item embeddings with high ratings
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through Langevin dynamics (Song & Ermonl |2020) given certain user historical conditions. Therefore,
it bridges the objective of recommendation with generative modeling in DMs.

Connection to Our Loss Function. Our BPR-Diff loss function, as expressed in Equation equa-
tion [21] involves the log-ratio of the probabilities of positive and negative items:

+
Coprpit = ~Egt o o) {logo (log W)] . (29)
0% po(eg | c)

Using the equivalence between the rating function and the log-probability (from Equation equation[22),
the loss function can also be seen as a function of the rating differences:

Lpprpitt = —E [logo (faleg | ¢) — fo(eg | €))] (30)

Gradient of the Loss with Respect to ey. Taking the gradient of the loss function with respect to
the positive item embedding ea“ , we get:

Vet Loprpit = —E {U(—S) Vet foled | C)} ; (31)

where s = fy(ed | ¢) — fo(eg | ).

Similarly, for the negative item embedding e :
V. Loproin = E [0(~s) - Voo foleg | 0)] (32)

These gradients indicate that the loss function encourages:

» Increasing the rating fp(egd | c) of the positive item by moving e in the direction of
Vi for

* Decreasing the rating fg(e, | c) of the negative item by moving e, opposite to V- fy.
0

C.3 DERIVATION THE VARIATIONAL UPPER BOUND

In this section, we provide a comprehensive derivation of the upper bound for the proposed Lgpr pit-
We focus particularly on the steps involving the Kullback-Leibler divergence, leading to the final loss
function used for training.

Assumptions and Definitions:

. ear and e represent the embeddings of the positive and negative items, respectively.

* e, and e; are the noisy embeddings at timestep ¢ for the positive and negative items,
obtained via the forward diffusion process.

* c denotes the historical item sequence for a user.
* g(et—1 | et,ep) is the posterior distribution in the forward diffusion process.
* po(e:—1 | e, c) is the reverse diffusion process modeled by our neural network Fy.

* M(c) is a mapping function that encodes the historical context c into a suitable representa-
tion for conditioning.

* o(-) is the sigmoid function.

* B4, oy, and &y are predefined constants in the diffusion schedule.

Starting from equation d]in the main text, we have:

L:BPR-Diff(e) = _E(eg,eo’,c) [loga (IOgEQ(etﬂeoﬂ |:
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To address the intractability of directly computing the expectations inside the logarithms, we ap-
ply Jensen’s inequality, which states that for a convex function f, we have f(E[X]) < E[f(X)].
Recognizing that — log o(z) is convex in x, we obtain an upper bound:

4 po(eg.r | ©) po(egr | ©)
L:BPR»lef(e) S 7E(eg,ea,c) ]Eq(eltT‘e(T)’ IOgO' log |:q(ei,’_Tea_) — log m

() (b)

(I(e;Tleg)

(34)

The terms (a) and (b) represent the variational lower bounds of the log-likelihoods for the positive
and negative items, respectively. According to the properties of DMs (Ho et al.l 2020)), these terms
can be related to the evidence lower bound (ELBO). Specifically, for any item eg, we have:

ep.T | €
logpg(eg | C) Z ]Eq(el;T‘eo) |:10g <pa(OT|)):| = _EELBO(G;eOaC) . (35)
q(er.r | o)

Substituting equation [35]into equation [34] we get:
Lepr-pitt(0) < —E o) [log o (—LeLpo (6; el,c) + Lrpo(0; e;,c))] - (36)

(eo aeav

The ELBO for each item can be decomposed into a sum over timesteps ¢:

T
Leso(0;eo0,c) = ZEq(et|eg) [Dke (q(et—1 | es,e0) || po(ei—1 | e, )] +C, (37)

t=1
where C' is a constant independent of 6.
Substituting equation [37] back into equation [36] we obtain:

T
Lepropifr(0) < —E(ot o~ o) [loga (— (Z Eq et lei) [DxL (q(e;_lef  ed) || polei_lef))]
t=1

)

(38)

T
D Eyerier) [Dxu (alei_yler veq) [l poler_ile; )] + Ch))

t=1
where C' aggregates constants and is independent of 6.

Now, we focus on the KL divergence terms. In DMs, both g(e;—1 | e, eg) and pg(e;—1 | e, c)
are Gaussian distributions (Ho et al.,[2020). Specifically, for the forward process ¢ and the reverse
process pg, we have:

alei-1 | er,e0) = N (er-1: fu(ers o), AL (39)
Do (etfl | €, C) = N (etfl; Mo (eta ta C)7 BtI) ) (40)

where fi;(es, ep) is the mean of the posterior g(e;—1 | e, ep), Bt is the variance, and 3; is the
variance schedule for the reverse process.

The KL divergence between two Gaussian distributions can be computed as:

Dx1 (gl pe) = % <tr (ﬁt_lBtI) + (g — 1) BT (po — fur) — k+1n (3:%3)) , (41)

where k is the dimensionality of the Gaussian distributions (i.e., the embedding dimension).

Assuming that Bt = B¢ (Ho et al.,[2020), the trace term simplifies to &, and the determinant term
becomes In(1) = 0. Therefore, the KL divergence simplifies to:

1 -
Dxw (|l pe) = 25, o — felf3 - (42)
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Next, we define the network prediction pg and relate it to the mean fi; from the forward process.
Relationship between fi; and e:

The mean fi; is given by:

VTR Vo (l— oy

e ep) = YO gy VOl Z ) 43)
1-— Qi 1-— Qi

where oy = 1 — 3, and &y = szl a,. In practice, it is common to predict eq directly using the

neural network Fy:

éo = fg(et,t,M(C)) . (44)
Given €y, we can compute ftg as:
N Vor (1l — ay_
polentyc) = YO 1Pre VoI 0n) (45)
1-— Qg 1-— Qg

Substituting equations equation [43]and equation [#3]into equation 2] we have:

? (Va—18:)”

1 _ 2 1 Vai-1B8 . N 2
D = e — ] = — || V2P, — = Wb o2
ki (¢ po) 2, o — el 5, H( —a (€0 e0)) L~ 2B (1= )’ €0 — eoll>
(46)

Simplifying the constants, we observe that the coefficient reduces to a constant factor dependent on ¢,
which we can denote as \;:

)\t (\/ﬁﬁt)z _ 01 (47)

2821 —ap)? 2(1—ay)?

Therefore, the KL divergence becomes:

Dic. (a1 po) = A &0 — eoll - (48)
Since \; is independent of ¢ and depends only on ¢, when we sum over all timesteps and average
over t, this term becomes proportional to the mean squared error between €y and eg.
Equivalence of MSE and Cosine Error for Unit Norm Vectors:

Alternatively, to mitigate sensitivity to vector norms and dimensionality (Friedman| [1997;|Hou et al.,
2022b)) (the recommendation performance of PreferDiff is competitive when embedding size is
higher), we can use the cosine error as the distance measure. The cosine similarity between €, and
e is given by:

AT
cos (€p,€9) = Aeoieg . (49)
l€oll2lleoll2
The cosine error is then:
S (é9,e9) =1 — cos (&g, ep) . (50)

Actually, when both €, and e are normalized to have unit norm (i.e., ||€||2 = ||€g||2 = 1), the mean
squared error and the cosine error are directly related. Specifically, the squared Euclidean distance
between two unit vectors is:

. 2 A T 4 o112 2 AT .
€0 — eoll; = (€0 —eo) (€0 —eo) = [[€0]l5 + [leoll; — 2€ €0 = 2(1 — cos (€, 0)). (51
Thus, under the unit norm constraint, minimizing the MSE is equivalent to minimizing the cosine
error up to a constant factor of 2. This shows that both distance measures capture the same notion

of similarity in this case. Substituting the KL divergence approximation back into equation and
considering both positive and negative items, we simplify the expression:

Leprpit(0) < ~E (ot o= o) v [1080 | = | S(&5.e5) — S(€g,eq) , (52

Positive item error ~ Negative item error,
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where & = Fp(e; ,t, M(c)) and &, = Fp(e; ,t, M(c)).
Equation equation [52|represents our final trainable objective:

‘CUpper(e) = _]E(ear’eg,c)JNU(l,T) [IOgG (_ (S (Fe(e?—atyM(c))aea_) -5 (]:a(et_vt’M(C))veE)))] .
(53)

Explanation. This objective encourages the model to minimize the distance between the predicted
embedding and the true embedding for the positive item while maximizing the distance for the
negative item, effectively widening the gap between them in the latent space. By doing so, we
enhance the personalized ranking capability of the model.

Summary. By minimizing Luypper(#), we implicitly minimize the original Lgpgr-pisr(¢) due to the
application of Jensen’s inequality. This aligns the training objective with the goal of improving
personalized ranking by leveraging DMs within the BPR.

C.4 EXTEND INTO MULTIPLE NEGATIVE SAMPLES

In this section, we provide a detailed derivation of the inequality Lgpr pift.v < Lppr-pitr.c, under the
assumption that Fy and .S are convex functions.

Definitions and Assumptions
We define:

» Fo(es,t, M(c)): the denoising function at time step ¢, parameterized by 6, conditioned on
context M(c).

* S(a,b): a measure function quantifying the discrepancy between vectors a and b, such as
Mean Squared Error (MSE).

* o(+): the sigmoid function.
Assume that:

» Fy is convex with respect to its input e;.

» Sis convex with respect to both of its inputs.

Starting with the definition of Lgpg pigt.v:

v

1
EBPR.Diff.V = — loga <—V (S (]:9 (e;r, t7M(C)) ,e0+) - V ZS (fg (e;v,t,M(C» ,eov)>>
v=1
(54)

Similarly, for EBPR.Diff_C .

EBPR.Diff_C = - IOgU (—V (S (.70 (etﬁt,/\/l(c)) ,eg) -5 (.7:9 (é;ﬂf,M(C)) ,éa))) 5 (55)

where we have defined the centroids:

1 & 1 &
& = det, & = v > et (56)
v=1 v=1

Our aim is to show that Lgpr_pift.v < LBPR-Diff-C-

First, consider the term:

1V
Dy =S5 (.7:9 (ej,t/\/l(c)) ,ear) 7 ZS’ (]—'9 (e;v,t,/\/l(c)) ,ea”) ) (57)

v=1
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By the convexity of S, we have:

4 v v
é,vz_lS (Fo (e;",t,M(c)) ,e;") < S ‘1/;}"9 (e;",t, M(c)), % ;ea” . (58)
Convex combination of Fo (e; ") &
Next, using the convexity of Fy, we have:
v
Fo (& ,t,M(c Z (e;¥,t, M(c)). (59)

Convex combination

Combining equation[58]and equation [59] and recognizing that S is non-decreasing with respect to its
first argument, we get:

174
VZ: (Fo (e7%,t, M(c)) ,e5") < S (Fo (67,1, M(c)),&;) - (60)

Therefore, we have:

Dy = S (Fy (ef ,t, M(c)) Zs Fo (e; ", t,M(c)) ,e;") (61)

>S (.7:9 (ej,t,/\/l(c)) 760) - S (]—'9 (et ,t,/\/l(c)) 7é6) = D¢. (62)

Since Dy > D, it follows that:

—VDy < -VDc¢. (63)

Applying the monotonicity of the log o(-) function (since o is an increasing function and log is
monotonic), we have:

Lgpr-pittv = —logo(=V Dy ) < —logo(—V Dc) = Lppr-pifr-c- (64)

Therefore, we have shown that:

Lppropifi-v < LBPR-Dff-C- (65)

Explanation. This inequality implies that minimizing Lgpr.pisr.c effectively minimizes an upper
bound of Lgpr pifr.v, leading to an efficient increase in the likelihood of positive items while distancing
them from the centroid of negative items. Notably, although the assumption of convexity is difficult
to satisfy in practice, the aforementioned method still empirically achieves strong results than one
negative item.

D EXPERIMENTS

D.1 DATASETS PREPOSSESSING IN USER SPLITTING SETTING

Following prior works (Yang et al.| [2023a;b), we adopt the user-splitting setting, which has been
shown to effectively prevent information leakage in test sets (Ji et al., [2023)). Specifically, we first
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Algorithm 1 Training Phase of PreferDiff

1:

—_—

TReY X ;N RN

Input: Trainable parameters 6, training dataset Dyuin = {(eg, c,?—[)},l,?z"f“l, total steps T,

unconditional probability p,,, learning rate 7, variance schedules {cv; }- ;

Output: Updated parameters 6

repeat
(eg , €, H) ~ Dyain > Sample data from training dataset.
With probability p,: ¢ = ® > Set unconditional condition with probability p,,.
t ~ Uniform(1,T), e*, e~ ~ N (0,1) > Sample diffusion step and noise.
el = Vel + 1 — et > Add noise to positive item embedding.
e, = %+ le e, " ++v1—ae~ > Add noise to negative item embeddings’ centroid.
0 « 0 — nVoLpetritt(€; , €, ,t,c, P;0) > Gradient descent update.

until convergence

return ¢

Algorithm 2 Inference Phase of PreferDiff

‘ Deest |

Input: Trained parameters 0, Sequence encoder M (+), test dataset Dyt = {(€0, )}, ", total
steps T', DDIM steps S, guidance weight w, variance schedules {a; }7
Output: Predicted next item €
C ~ Diest > Sample user historical sequence from testing dataaset.
er ~ N(0,I) > Sample standard Gaussian noise.
fors=5,...,1do > Denoise over S DDIM steps.
t=1[sx(T/9)] > Map DDIM step s to original step ¢.
With probability p,: M(c) = & > Set unconditional condition with probability p,,.
z~N(0,I)if s> lelsez =0 > Sample noise if not final step.
&p = (1 4+ w)Fp(ér, M(c),t) — wFp(é, D, t) > Apply classifier-free guidance.
gg = S22t I_E&tte“ > Compute predicted noise.
€1 =160+ 1 —0u_1ég > DDIM update step when o; = 0.
: end for
: return &,
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Table 5: Detailed Statistics of Datasets after Preprocessing.

General Sequential Recommendation
Pretraining  Validation CDs Movies Steam

746,688 101,501 112,379 297,529 39,795

68,668 8,623 15,520 25,925 9,265
3,258,523 452,415 457,589 2,053,497 437,733

Fully Trained Recommendation
Datasets Sports  Beauty Toys Steam ML-IM Yahoo!R1

35,598 22,363 19,412 39,795 6,040 50,000
18,357 12,101 11,924 9,265 3,706 23,589
256,598 162,150 138,444 437,733 60,400 500,000

#Sequences
#Items
#Interactions

sort all sequences chronologically for each dataset, then split the data into training, validation, and
test sets with an 8:1:1 ratio, while preserving the last 10 interactions as the historical sequence.

Amazon 2014 B Here, we choose three public real-world benchmarks (i.e., Sports, Beauty and Toys)
which has been widely utilized in recent studies (Rajput et al.,[2023)). Here, we utilize the common
five-core datasets (Hou et al., [2022a), filtering out users and items with fewer than five interactions
across all datasets. Following previous work (Yang et al.2023b), we set the maximized length user
interaction sequence as 10.

Amazon 2018 Following prior works (Hou et al.,2022a; |Li et al., [2023a), we select five distinct
product review categories—namely, “Automotive,” “Electronics,” “Grocery and Gourmet Food,”
“Musical Instruments,” and “Tools and Home Improvement”—as pretraining datasets. “Cell Phones
and Accessories” is used as the validation set for early stopping. In line with previous research (Yang
et al.| [2023b), we filter out items with fewer than 20 interactions and user interaction sequences
shorter than 5, capping the maximum length of each user’s interaction sequence at 10.

Steam is a game review dataset collected from Steam Due to the large number of game reviews,
we filter out users and items with fewer than 20 interactions.

ML-1M is a movie rating dataset collected by GroupLens El We filter out users and items with fewer
than 20 interactions.

Yahoo!R1 is a music rating dataset collected by Yahoo E} We filter out users and items with fewer
than 20 interactions.

D.2 IMPLEMENTATION DETAILS

For a fair comparison, all experiments are conducted in PyTorch using a single Tesla V100-SXM3-
32GB GPU and an Intel(R) Xeon(R) Gold 6248R CPU. We optimize all methods using the AdamW
optimizer and all models’ parameters are initialized with Standard Normal initialization. We fix
the embedding dimension to 64 for all models except DM-based recommenders, as the latter only
demonstrate strong performance with higher embedding dimensions, as discussed in Section [4.3]
Since our focus is not on network architecture and for fair comparison, we adopt a lightweight
configuration for baseline models that employ a Transformer backbone ﬂ using a single layer with
two attention heads. Notably, all baselines, unless otherwise specified, use cross-entropy as the
loss function, as recent studies (Zhang et al.| 2024; Klenitskiy & Vasilev, 2023 Zhai et al., [2023)
have demonstrated its effectiveness.

For PerferDiff, for each user sequence, we treat the other next-items (a.k.a., labels) in the same batch
as negative samples. We set the default diffusion timestep to 2000, DDIM step as 20, p,, = 0.1, and
the f3 linearly increase in the range of [le~*,0.02] for all DM-basd sequential recommenders (e.g.,
DreamRec). We empirically find that tuning these parameters may lead to better recommendation
performance. However, as this is not the focus of the paper, we do not elaborate on it.

The other hyperparameter (e.g., learning rate) search space for PreferDiff and the baseline models is
provided in Table[TT} while the best hyperparameters for PreferDiff are listed in Table[I2]

"nttps://cseweb.ucsd.edu/-jmcauley/datasets/amazon/links.html
https://cseweb.ucsd.edu/~ jmcauley/datasets/amazon_v2/
*https://github.com/kang205/SASRec
*nttps://grouplens.org/datasets/movielens/1lm/
Shttps://webscope.sandbox.yahoo.com/
®https://github.com/YangZhengyi98/DreamRec/
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D.3 BASELINES OF SEQUENTIAL RECOMMENDATION

Traditional sequential recommenders:

o GRU4Rec (Hidasi et al.,|2016) adopts RNNs to model user behavior sequences for session-based
recommendations. Here, following the previopus work (Kang & McAuleyl, 2018 [Yang et al., [ 2023b),
we treat each user’s interaction sequence as a session.

o SASRec (Kang & McAuley, |2018)) adopts a directional self-attention network to model the user
user behavior sequences.

o Bert4Rec (Sun et al.| |2019) adapts the original text-based BERT model with the cloze objective for
modeling user behavior sequences. We adopt the implementation of mask from (Ren et al.| [2024b))

Contrastive learning based sequential recommenders:

o CL4SRec (Xie et al. [2022) incorporates the contrastive learning with the transformer-based
sequential recommendation model to obtain more robust results. We adopt the implementation
from (Ren et al., [2024b).

Generative sequential recommenders:

e TIGER(Rajput et al.l [2023) introduces codebook-based identifiers through RQ-VAE, which
quantizes semantic information into code sequences for generative recommendation. Since the source
code is unavailable, we implement it using the HuggingFace and Transformers APIs, following
the original paper by utilizing T5 (N1 et al., [2022)) as the backbone. For quantization, we employ
FAISS (Johnson et al.;2019), which is widely used ﬁ in recent studies of recommendation (Hou et al.,
2023).

DM-based sequential recommenders:

¢ DiffRec (Wang et al.| 2023b)) introduces the application of diffusion on user interaction vectors
(i.e., multi-hot vectors) for collaborative recommendation, where “1” denotes a positive interaction
and “0” indicates a potential negative interaction. We adopt the author’s public implementationﬂ

e DreamRec (Yang et al., 2023b)) uses the historical interaction sequence as conditional guiding
information for the diffusion model to enable personalized recommendations and utilize MSE as the
training objective. We adopt the author’s public implementation

o DiffuRec (Li et al., 2024) introduces the DM to reconstruct target item embedding from a Trans-
former backbone with the user’s historical interaction behaviors and utilize CE as the training
objective. We adopt the author’s public implementation

Text-based sequential recommenders:

e MoRec (Yuan et al.,[2023) utilizes item features from text descriptions or images, encoded using
a text encoder or vision encoder, and applies dimensional transformation to match the appropriate
dimension for recommendation. Here, we utilize the OpenAl-3-large embeddings, SASRec as
backbone and transform the dimension to 64.

o LLLM2Bert4Rec (Harte et al.,[2023) proposes initializing item embeddings with textual embeddings.
In our implementation, we use OpenAl-3-large embeddings, Bert4Rec as backbone and apply PCA
to reduce the dimensionality to 64, as mentioned in the original paper.

Noablely, the inconsistent performance of Tiger and LLM2BERT4Rec with their origin paper is
actually caused by the differences in evaluation settings. Both of these papers use the Leave-one-out
evaluation setting, which differs from the User-split used in our work.

Results of Other Backbone. Here, we present a comparison of PreferDiff with other recommenders
using a different backbone, namely GRU. As shown in Table[6] PreferDiff still outperforms DreamRec
across all datasets, further validating its versatility. Empirically, we find that, unlike SASRec, which

"https://github.com/HKUDS/SSLRec/
$https://github.com/facebookresearch/faiss
‘nttps://github.com/YiyanXu/DiffRec/
Uhttps://github.com/YangZhengyi98/DreamRec/
"https://github.com/WHUIR/DiffuRec/
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performs better with a Transformer than with GRU4Rec, PreferDiff performs better with GRU as the
backbone on the Sports and Toys datasets compared to using a Transformer. This could be due to the
relatively shallow Transformer used, making GRU easier to fit. More suitable network architectures
for DM-based recommenders will be explored in future work.

Table 6: Comparison of the performance with sequential recommenders with GRU as backbone. The
improvement achieved by PreferDiff is significant (p-value < 0.05).
Model Sports and Outdoors Beauty Toys and Games
R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@I0 R@5 N@5 R@10 Nelo

GRU4Rec  0.0022 0.0020 0.0030 0.0023 0.0093 0.0078 0.0102 0.0081 0.0097 0.0087 0.0100 0.0090
SASRec 0.0047 0.0036 0.0067 0.0042 0.0138 0.0090 0.0219 0.0116 0.0133 0.0097 0.0170 0.0109
DreamRec 0.0201 0.0147 0.0230 0.0165 0.0431 0.0290 0.0543 0.0321 0.0484 0.0343 0.0591 0.0382

PreferDiff  0.0216 0.0165 0.0250 0.0176 0.0451 0.0313 0.0590 0.0358 0.0530 0.0385 0.0623 0.0415

D.4 LEAVE ONE OUT

Evaluation. The “leave-one-out” strategy is another widely adopted evaluation protocol in sequential
recommendation. For each user’s interaction sequence, the final item serves as the test instance, the
penultimate item is reserved for validation, and the remaining preceding interactions are utilized for
training. During testing, the ground-truth item of each sequence is ranked against a set of candidate
items, allowing for a comprehensive assessment of the model’s ranking capabilities. Performance is
evaluated by computing ranking-based metrics over the test set, and the final reported result is the
average metric across all users in the test set.

Table 7: Detailed Statistics of Datasets after Preprocessing in Leave-One-Out Setting.

Datasets \ Sports  Beauty Toys Automotive Music  Office
#Sequences 35,598 22,363 19,412 2,929 1,430 4,906
#Items 18,357 12,101 11,924 1,863 901 2,421
#Interactions | 296,337 198,502 167,597 20,473 10,261 53,258
Avg. Length 8.32 8.87 8.63 6.99 7.17 10.86

Datasets. Except for the original three datasets (Sports, Toys and Beauty) in TIGER, we select
three additional product review categories—namely, “Automotive”, “Music Instrument” and “Office
Product” from Amazon 2014 for a more comprehensive comparison. Here, we utilize the common
five-core datasets, filtering out users and items with fewer than five interactions across all datasets.

Baselines. Here, we directly report baseline results (e.g., S3-Rec (Zhou et al.; 2020), P5 (Geng et al.,
2022), FDSA (Hao et al.}[2023))) from TIGER (Rajput et al.,|2023) and evaluate DreamRec (Yang
et al.,[2023b) and the proposed PreferDiff.

Results. Tables[§]and Tables[9]present the performance of PreferDiff compared with six categories
sequential recommenders. For breivty, R stands for Recall, and N stands for NDCG. The top-
performing and runner-up results are shown in bold and underlined, respectively. “Improv” represents
the relative improvement percentage of PreferDiff over the best baseline. We observe that in the
leave-one-out setting, PreferDiff demonstrates competitive recommendation performance compared
to the baselines. Specifically, on larger datasets (i.e., Sports and Beauty), PreferDiff performs on
par with TIGER. However, on the Toys dataset and the three smaller datasets, PreferDiff achieves
a significant lead.This may be due to PreferDiff adopting the same manner as DreamRec, where
recommendation is not included in the training process. With a smaller number of items, this approach
can result in more precise recommendation performance.

D.5 GENERAL SEQUENTIAL RECOMMENDATION

Pretraining Datasets. Here, we introduce more details about Pretraining datasets. Following the
previous work (Hou et al.| [2022a; |L1 et al., 2023a)), we select five different product reviews from
Amazon 2018 (N1 et al.} 2019), namely, “Automotive”, “Cell Phones and Accessories”, “Grocery and
Gourmet Food”, “Musical Instruments” and “Tools and Home Improvement”, as pretraining datasets.
“Cell Phones and Accessories” is selected as the validation dataset for early stopping when Recall@5
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Table 8: Performance comparison on sequential recommendation under leave one out. The last row
depicts % improvement with PreferDiff relative to the best baseline.

Methods Sports and Outdoors Beauty Toys and Games

R@5 N@5 R@I0 N@I0 R@5 N@5 R@10 N@I0 R@5 N@5 R@10 N@I0
P5 0.0061 0.0041 0.0095 0.0052 0.0163 0.0107 0.0254 0.0136 0.0070 0.0050 0.0121  0.0066
Caser 0.0116 0.0072 0.0194 0.0097 0.0205 0.0131 0.0347 0.0176  0.0176  0.0166 ~ 0.0270  0.0141
HGN 0.0189 0.0120 0.0313 0.0159 0.0325 0.0206 0.0540 0.0257 0.0266 0.0321 0.0497  0.0277

GRU4Rec  0.0129 0.0086 0.0204 0.0111 0.0164 0.0113 0.0283 0.0137  0.0137 0.0097 0.0176  0.0084
BERT4Rec 0.0115 0.0075 0.0191 0.0099 0.0263 0.0184 0.0407 0.0214 0.0170 0.0161 0.0310  0.0183

FDSA 0.0182 0.0128 0.0288 0.0156 0.0261 0.0201 0.0407 0.0228  0.0228  0.0150  0.0381 0.0199
SASRec 0.0233 0.0162 0.0412 0.0209 0.0462 0.0387 0.0605 0.0318 0.0463 0.0463 0.0675  0.0374
S3-Rec 0.0251 0.0161 0.0385 0.0204 0.0380 0.0244 0.0647 0.0327 0.0327 0.0294 0.0700  0.0376
DreamRec  0.0087 0.0071 0.0096 0.0075 0.0318 0.0257 0.0624 0.0273  0.0422  0.0347 0.0689  0.0362
TIGER 0.0264 0.0181 0.0400 0.0225 0.0454 0.0321 0.0648 0.0384 0.0521 0.0371 0.0712  0.0432

PreferDiff  0.0275 0.0190 0.0405 0.0218 0.0455 0.0317 0.0660 0.0388 0.0603 0.0403 0.0851  0.0483
Improve 416% 497% 125% -31% 022% -125% 185% 1.04% 15.73% 8.63% 19.52% 11.81%

Table 9: Performance comparison on sequential recommendation under leave one out. The last row

depicts % improvement with PreferDiff relative to the best baseline.
Methods Automotive Music Office

R@5 N@5 Re@I0 N@l0 R@5 N@5 R@I) N@I0 R@5 N@5 R@0 Ne@Iio
DreamRec  0.0543  0.0400  0.0683  0.0445 0.0622 0.0414 00783 0.0467 0.0523 0.0378 0.0699  0.0434
TIGER 00454 00290 0.0745 0.0383 0.0532 0.0358 0.0840 0.0456 0.0462 0.0299 0.0746  0.0390
PreferDiff  0.0649 _ 0.0463 _ 0.0864 _ 00532 0.0650 0.0453 0.0874 0.0526_ 0.0538 0.0379 _0.0850 _ 0.0480
Improve  1952% 15.75% 1597% 1955% 4.50% 9.42% 4.04% 12.63% 2.87% 0.26% 13.90% 10.60%

(i.e., R@5) shows no improvement for 20 consecutive epochs. The detailed statistics of each dataset
used for pretraining are shown in Table Clearly, the pretraining datasets have no domain overlap
with the unseen datasets used in Section 4.2

Table 10: Detailed Statistics of Pretraining Datasets.

Datasets \ Automotive Phones Tools Instruments Food
#Sequences 193,651 157,212 240,799 27,530 127,496
#Items 18,703 12,839 22,854 2,494 11,778
#Interactions 806,939 544,339 1,173,154 110,151 623,940
Avg. Length 7.26 6.51 7.19 7.06 7.24

Baselines. Here, we introduce more details for baselines in General Sequential Recommendation
tasks. Notably, for a fair comparison, we employ the text —embedding-3-large model (Liu
et al.| [2025a) from OpenAl (Neelakantan et al.,[2022) as the text encoder instead of Bert (Devlin
et al., |2019) in UniSRec and MoRec to convert identical item descriptions (e.g., title, category,
brand) into vector representations, as it has been proven to deliver commendable performance in
recommendation (Harte et al.| 2023). Different of the Mixed-of-Experts (MoE) Whitening utilized
in UniSRec, we employ identical ZCA-Whitening (Bell & Sejnowskil [1997) for the textual item
embeddings for MoRec and Our proposed PreferDiff.

e UniSRec (Hou et al., [2022a)) uses textual item embeddings from frozened text encoder and adapts
to a new domain using an MoE-enhance adaptor. We adopt the author’s public implementation [ﬁ

e MoRec (Yuan et al.,|2023)) uses textual item embeddings from frozened text encoder and utilize
dimension transformation technique. The architecture is the same as previously mentioned.

Positive Correlation Between Training Data Scale and General Sequential Recommendation
Performance. Here, we explore how the scale of training data impacts the general sequential
recommendation performance of PreferDiff-T. For brevity, we use the initials to represent each
dataset. For example, “A” stands for Automotive, and “P” stands for Phones. “AP” indicates that the
training data for pretraining includes both Automotive and Phones datasets’ training set.

We observe that both NDCG and HR increase as the training data grows, indicating that PreferDiff-T
can effectively learn general knowledge to model user preference distributions through pre-training on

Zhttps://github.com/RUCAIBox/UniSRec
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diverse datasets and transfer this knowledge to unseen datasets via advanced textual representations.
Further studies can explore whether homogeneous datasets lead to greater performance improvements
(e.g., whether Amazon Book data provides a larger boost for Goodreads compared to other datasets)
and investigate the limits of data scalability for PreferDiff-T.
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Figure 4: Positive Correlation Between Training Data Scale and General Sequential Recommendation
Performance.

D.6 HYPERPARAMETER SEARCH SPACE

Here, we introduce the hyperparamter search space for baselines and PreferDiff.

Table 11: Hyperparameters Search Space for Baselines.
| Hyperparameter Seach Space

GRU4Rec \ Ir ~ {le-2, le-3, le-4, le-5}, weight decay=0

SASRec | Ir ~ {1e-2, le-3, le-4, le-5}, weight decay=0

BertdRec \ Ir ~ {le-2, le-3, le-4, le-5}, weight decay=0, mask probability~ {0.2,0.4,0.6,0.8}

CL4SRec \ Ir ~ {le-2, le-3, le-4, le-5}, weight decay=0, A\~ {0.1, 0.3, 0.5, 1.0, 3.0}

DiffRec ‘ Ir ~ {le-2, le-3, le-4, le-5}, weight decay=0, noise scale ~ {le-1, le-2, le-3, le-4, le-5}, T ~ {2, 5, 20, 50, 100}
DreamRec | Ir ~ {le-2, le-3, le-4, le-5}, weight decay=0, embedding size ~ {64, 128, 256, 1024, 1536, 3072} , w ~ {0, 2, 4, 6, 8, 10}
DiffuRec | Ir ~ {1e-2, le-3, le-4, le-5}, weight decay=0, embedding size ~ {64, 128, 256, 1024, 1536, 3072}

UniSRec \ Ir ~ {le-2, le-3, le-4, le-5}, weight decay=0, A\~ {0.05, 0.1, 0.3, 0.5, 1.0, 3.0}

TIGER \ Ir ~ {le-2, le-3, le-4, le-5}, weight decay ~ {0, le-1, le-2, le-3}

MoRec \ Ir ~ {le-2, le-3, le-4, le-5}, weight decay=0, text-encoder=text-embedding-3-large

LLM2Bert4Rec \ Ir ~ {le-2, le-3, le-4, le-5}, weight decay=0, text-encoder=text-embedding-3-large
PreferDiff | Ir ~ {le-2, le-3, le-4, le-5}, A ~ {0.2, 0.4, 0.6, 0.8}, embedding size ~ {64, 128, 256, 1024, 1536, 3072} , w ~ {0, 2,4, 6, 8, 10}

Table 12: Best Hyperparameters for PreferDiff on Sports, Beauty, and Toys.

Dataset | learning rate | weightdecay | A | w | embedding size

Sports | le-4 | 0 [04] 2| 3072
Beauty | le-4 | 0 [08]6 | 3072
Toys | led | 0 J05]4| 3072

E HYPERPARAMETER ANALYSIS FOR PREFERDIFF

E.1 THE NUMBER OF NEGATIVE SAMPLES FOR PREFERDIFF.

Here, we discuss the impact of the number of negative samples on PreferDiff. As shown in Figure [6}
we observe that in cases where the number of items is relatively small (e.g., Beauty and Toys), 8
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Figure 7: Effect of the w for PreferDiff.

negative samples are sufficient. However, as the number of items increases, the required number of
negative samples also grows (e.g., in Sports).

E.2 IMPORTANCE OF GUIDANCE STRENGTH FOR PREFERDIFF

w controls the weight of personalized guidance during the inference stage of PreferDiff. As shown
in Figure [/] increasing w can enhance recommendation performance. However, an excessively
large w may reduce the generalization capability of DMs, negatively impacting the recommender’s
performance. Therefore, we think setting w € [2,4].

E.3 DIFFERENT TEXT ENCODERS

Obtaining Item Embedding from Advanced Text Encoder Here, we introduce the process for
obtaining item embeddings from current advanced text-encoders (Liu et al.,|2025b). For encoder-
based large language models, such as Bert (Devlin et al., 2019) and Robert (Liu et al.| 2019), we
leverage the final hidden state representation associated with the [CLS] token (Hou et al.,[2024b). For
convenient, we directly utilize the Sentence Transformers APIs|"°| As for other large language models,
including TS (N1 et al.} 2022)), Llama-7B (Touvron et al., [2023)), Mistral-7B (Jiang et al.} 2023), we
utilize the output from the last transformer block corresponding to the final input token (Vaswani
et al., 2017). Closed-source large language models like text-embedding-ada-v2 and text-embeddings-
3-large, we obtain the item embeddings directly via OpenAl APIs|“|(Neelakantan et al., [2022).

Bhttps://huggingface.co/sentence-transformers
“https://platform.openai.com/docs/qguides/embeddings
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Table 13: Comparison of the PreferDiff-T performance with different text-encoder.

PreferDiff-T Sports and Outdoors Beauty Toys and Games

Text-Encoders R@5 N@5 R@10 N@10 R@5 N@s R@10 N@10 R@5 Nes R@10 N@10
Bert 0.0022  0.0020  0.0030  0.0023  0.0104 0.0128  0.0154  0.0148  0.0051  0.0022  0.0068  0.0044
T5 0.0011  0.0009 0.0014 0.0011  0.0241 0.0198 0.0282  0.0212  0.0283  0.0240  0.0309  0.0248
Robert 0.0115 0.0098 0.0135 0.0102 0.0331 0.0256  0.0393  0.0276  0.0391  0.0303  0.0438  0.0319
Mistral-7B 0.0166  0.0130  0.0213  0.0146  0.0375  0.0287  0.0456  0.0312  0.0427  0.0328  0.0505  0.0353
LLaMA-7B 0.0171  0.0126  0.0205  0.0137  0.0402  0.0297 0.0483  0.0323  0.0397  0.0298  0.0494  0.0330

OpenAl-Ada-V2  0.0160 0.0126  0.0183  0.0134  0.0407 0.0318  0.0469  0.0338  0.0396  0.0315  0.0467  0.0339
OpenAl-3-large  0.0182" 0.0145"  0.0222" 0.0158™ 0.0429" 0.0327° 0.0532" 0.0360" 0.0460" 0.0351" 0.0525" 0.0387"

Results. Table [13] shows the PreferDiff-T employing different item embeddings encoded from
text-encoders with varying parameter sizes and architectures. We can observe that

Positive Correlation Between LLM Size and Recommendation Performance. The results show
that OpenAlI-3-large outperforms all other models, indicating that larger language models (LLMs)
yield better results in recommendation tasks. This is because larger models generate richer and more
semantically stable embeddings, which improve PreferDiff’s ability to capture user preferences. Thus,
the larger the LLM, the better the embeddings perform within PreferDiff.

High-Quality Embeddings Improve Generalization. Models like Mistral-7B and LLaMA-7B,
although smaller than OpenAl-3-large, still perform relatively well across metrics. This suggests that
while model size is important, the quality of embeddings plays a crucial role. Especially in the Beauty,
these models provide embeddings with sufficient semantic power to enhance recommendation quality.

E.4 ANALYSIS OF LEARNED ITEM EMBEDDINGS

(a) SASRec (b) DreamRec (c) PreferDiff

Figure 8: t-SNE Visualization and Gaussian Kernel Density Estimation of Learned Item Embeddings
on Amazon Beauty.

To further analysis the item space learned by PreferDiff, we reduce the dimensionality of the learned
item embeddings using T-SNE (Van der Maaten & Hintonl, 2008}, [Liu et al} [20244d}; [Qian et all
Elto visualize the underlying distribution of the item space learned by PreferDiff. Due to the
large number of items in Amazon Beauty, we randomly select 2000 items as example. Then, we apply
Gaussian kernel density estimation to analyze the density distribution of reduced
item embeddings and visualize the results using contour plots. The red regions indicate areas where a

15https://scikit—learn.org/dev/modules/generated/sklearn.manifold.TSNE.
html

®https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.
gaussian_kde.html
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high concentration of items is clustered. From figure[8] we can observe that comparing with SASRec,
PreferDiff not only explores the item space more thoroughly (covering most regions). Comparing with
DreamRec, PreferDiff exhibits a stronger clustering effect (with high-density regions concentrated
in specific areas), better reflecting the similarities between items, result in better recommendation
performance.

F DISCUSSION

F.1 COMPARISON ON OTHER BACKGROUND DATASETS.

To further validate the effectiveness of PreferDiff, we include Yahoo! R1 (Music) as an additional
dataset, along with two other commonly used datasets in sequential recommendation—Steam (Game)
and ML-1M (Movie). These datasets provide a diverse set of user-item interaction patterns, allowing
us to comprehensively evaluate the performance of our proposed PreferDiff.

We utilize the same data preprocessing technique and same evaluation setting as introduced in our
paper for all three datasets, except Yahoo! R1. Due to its large size (over one million users), we
are unable to provide results for the entire dataset during the rebuttal period. Instead, we randomly
sampled 50,000 users for our experiments. We will include the full-scale results on Yahoo! R1 in the
final revised version of the paper. The experimental results are shown in Table[T4]

Table 14: Performance Comparison Across Background Datasets (Recall@5/NDCG@5)

Datasets (Background) Yahoo (Music) Steam (Game) ML-1M (Movie)
GRU4Rec 0.0548 /0.0491 0.0379/0.0325  0.0099 /0.0089
SASRec 0.0996/0.0743 0.0695/0.0635 0.0132/0.0102
BertdRec 0.1028 /0.0840 0.0702/0.0643  0.0215/0.0152
TIGIR 0.1128 /0.0928 0.0603/0.0401  0.0430/0.0272
DreamRec 0.1302/0.1025 0.0778/0.0572  0.0464 /0.0314
PreferDiff 0.1408 /0.1106 0.0814/0.0680  0.0629 / 0.0439

We observe that the effectiveness of our proposed PreferDiff across datasets with different back-
grounds are validated.

F.2 COMPARISON ON VARIABLE USER HISTORY

we conduct additional experiments to evaluate the performance of PreferDiff under different maximum
history lengths {10, 20, 30, 40, 50}. Notably, since the historical interaction sequences in the original
three datasets (Sports, Beauty, Toys) are relatively short, with an average length of around 10, we
select two additional commonly used datasets |[Kang & McAuley| (2018)); [Sun et al.| (2019)), Steam
and ML-1M, for further experiments. These datasets were processed and evaluated following the
same evaluation settings and data preprocessing protocols in our paper, which is different from the
leave-one-out split in|Kang & McAuley| (2018)); Sun et al.[(2019).

‘We choose another two datasets (Steam and ML-1M). The results are as follows:

Table 15: Performance Comparison on Steam Dataset (Recall@5/NDCG @5)

Model 10 20 30 40 50

SASRec 0.0698 /0.0634  0.0676/0.0610 0.0663/0.0579 0.0668 / 0.0610  0.0704 / 0.0587
Bert4Rec  0.0702/0.0643 0.0689/0.0621 0.0679/0.0609 0.0684 /0.0618 0.0839 /0.0574
TIGIR 0.0603/0.0401 0.0704/0.0483 0.0676/0.0488 0.0671/0.0460 0.0683/0.0481
DreamRec 0.0778/0.0572 0.0746/0.0512 0.0741/0.0548 0.0749/0.0571 0.0846 / 0.0661
PreferDiff  0.0814/0.0680 0.0804 /0.0664 0.0806/0.0612 0.0852/0.0643 0.0889 /0.0688

From Table[I5]and Table[T6] we can observe that PreferDiff consistently outperforms other baselines

across different lengths of user historical interactions.
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Table 16: Performance Comparison on ML-1M Dataset (Recall@5/NDCG @5)

Model 10 20 30 40 50

SASRec 0.0201/0.0137  0.0242/0.0131  0.0306/0.0179 0.0217/0.0138  0.0205/0.0134
Bert4Rec  0.0215/0.0152 0.0265/0.0146  0.0331/0.0200 0.0248 /0.0154 0.0198/0.0119
TIGIR 0.0451/0.0298 0.0430/0.0270  0.0430/0.0289  0.0364 /0.0238  0.0430/0.0276
DreamRec 0.0464/0.0314 0.0480/0.0349 0.0514/0.0394 0.0497/0.0350 0.0447/0.0377
PreferDiff  0.0629 /0.0439  0.0513/0.0365 0.0546/0.0408 0.0596 / 0.0420 0.0546 / 0.0399

F.3 WHY DREAMREC AND PREFERDIFF ARE SENSITIVE TO THE EMBEDDING DIMENSION?

Here, we will try to explain the reason. Since there is no robust theoretical proof at this stage, we
propose a hypothesis supported by simple theoretical reasoning and experimental validation.

We guess the challenge is inherent to the DDPM |Ho et al.| (2020) itself, as it is designed to be
variance-preserving as introduced in the following diffusion models Song et al.|(2021b)). For one
target item, the forward process formula with vector form is as follows:

Forward Process: eé = Jazeo + /1 — aze Here, eg € R1%4 represents the target item embedding,
el, represents the noised target item embedding, «; denotes the degree of noise added, and € is the
noise sampled from a standard Gaussian distribution.

Considering the whole item embeddings E € RY %4, where NN represents the total number of items,
we can rewrite the previous formula in matrix form as follows:

E6 = ,/OétEo + \/1 — Qi€
Then, we calculate the variance on both sides of the equation:
Var(Ef) = oy Var(Eg) 4+ (1 — a)I

We can observe that the Var(Ey) is almost an identity matrix. This is relatively easy to achieve for
data like images or text, as these data are fixed during the training process and can be normalized
beforehand. However, in recommendation, the item embeddings are randomly initialized and updated
dynamically during training. We empirically find that initializing item embeddings with a standard
normal distribution is also a key factor for the success of DreamRec and PreferDiff. The results are
shown as follows:

Table 17: Performance of Different Initialization methods on Various Datasets (Recall@5/NDCG@)5).

Embedding Initialization Sports Beauty Toys

Uniform 0.0039/0.0026  0.0013/0.0037  0.0015/0.0011
Kaiming_Uniform 0.0025/0.0019  0.0040/0.0027  0.0051/0.0028
Kaiming_Normal 0.0023/0.0021  0.0049/0.0028  0.0041/0.0029
Xavier_Uniform 0.0011/0.0007  0.0036/0.0021  0.0051/0.0029
Xavier_Normal 0.0014/0.0007  0.0067/0.0037  0.0042/0.0023
Standard Normal 0.0185/0.0147  0.0429/0.0323  0.0473/0.0367

We can observe that the initializing item embeddings with a standard normal distribution is the
key of success for Diffusion-based recommenders. This experiment validates the aforementioned
hypothesis.

Furthermore, we also calculate the final inferred item embeddings of DreamRec, PreferDiff, and
SASRec. As shown in Figure[9] interestingly, we observe that the covariance matrices of the final
item embeddings for DreamRec and PreferDiff are almost identity matrices, while SASRec does
not exhibit this property. This indicates that DreamRec and PreferDiff rely on high-dimensional
embeddings to adequately represent a larger number of items. The identity-like covariance structure
suggests that diffusion-based recommenders distribute variance evenly across embedding dimensions,
requiring more dimensions to capture the complexity and diversity of the item space effectively.
This further validates our the hypothesis that maintaining a proper variance distribution of the item
embeddings is crucial for the effectiveness of current diffusion-based recommenders.
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Figure 9: Covariance Matrix Visualization of Learned Item Embeddings on Amazon Beauty.

We have tried several dimensionality reduction techniques (e.g., Projection Layers) and regularization
techniques (e.g., enforcing the item embedding covariance matrix to be an identity matrix). However,
these approaches empirically led to a significant drop in model performance.

We guess one possible solution to this issue is to explore the use of Variance Exploding (VE) diffusion
models [Song et al.|(2021b). Unlike Variance Preserving diffusion models, which maintain a constant
variance throughout the diffusion process, VE diffusion models increase the variance over time.

F.4 TRAINING AND INFERENCE TIME COMPARISON

Table 18: Training and Inference Time Comparison for PreferDiff and Baselines.

Dataset Model Training Time (s/epoch)/(s/total) Inference Time (s/epoch)
SASRec 2.67/35 0.47
Bert4Rec 7.87179 0.65
Sports  TIGIR 11.42 /1069 24.14
DreamRec 24.32 /822 356.43
PreferDiff 29.78 /558 6.11
SASRec 1.05/36 0.37
Bert4Rec 3.66/ 80 0.40
Beauty TIGIR 5.41/1058 10.19
DreamRec 14.78 /1 525 297.06
PreferDiff 18.05 /430 3.80
SASRec 0.80/56 0.22
Bert4Rec 3.11/93 0.23
Toys TIGIR 3.76 /765 4.21
DreamRec 15.43 /552 309.45
PreferDiff 16.07 /417 3.29

In this subsection, we endeavor to illustrate the training and inference time comparison between
PreferDiff and baseline methods, as efficiency is critically important for the practical application
of recommenders in real-world scenarios. As shown in Table[I8] Figure[10]and Figure[T1] we can
observe that

o In PreferDiff, thanks to our adoption of DDIM for skip-step sampling, requires less training time and
significantly shorter inference time compared to DreamRec, another diffusion-based recommender.

e Compared to traditional deep learning methods like SASRec and Bert4Rec, PreferDiff has longer
training and inference times but achieves much better recommendation performance.

o Furthermore, compared to recent generative recommendation methods, such as TIGIR, which rely
on autoregressive models and use beam search during inference, PreferDiff also demonstrates shorter
training and inference times, highlighting its efficiency and practicality in real-world scenarios.
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Figure 11: Recall@5 and Inference Time for PreferDiff and Baselines.

F.5 TRADE-OFF BETWEEN RECOMMENDATION PERFORMANCE AND INFERENCE TIME

As introduced in Subsection[F4] PreferDiff demonstrates significantly lower inference time compared
to DreamRec, averaging around 3 seconds per batch. However, this may still be unacceptable for
real-time recommendation scenarios with strict latency constraints. In this subsection, we aim to
show how adjusting the number of denoising steps can effectively balance recommendation
performance and inference time.

As shown in Figure [I2] and Table [I9] we observe that by adjusting the number of denoising steps,
PreferDiff can ensure practicality for real-time recommendation tasks. This flexibility allows for a
trade-off between inference speed and recommendation performance, making PreferDiff adaptable to
various latency constraints while maintaining competitive effectiveness.

F.6 CONNECTION OF PREFERDIFF AND DPO

In Preferdiff, we aim to redesign a diffusion optimization objective that is specially tailored to model
user preference distributions for personalized ranking. Therefore, we reformulate the classic recom-
mendation objective Bayesian personalized ranking Rendle et al.|(2009) to log-likelihood rankings
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Figure 12: Relationship of Denoising Steps and Recommendation Performance.
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Table 19: Adjusting Denoising Steps for Trade-Off Between Recommendation Performance and
Inference Time.

Datasets Sports Beauty Toys

SASRec (0.33s) 0.0047 /0.0036  0.0138/0.0090 0.0133/0.0097
BERT4Rec (0.42s) 0.0101/0.0060 0.0174/0.0112 0.0226/0.0139
TIGER (12.85s) 0.0093/0.0073 0.0236/0.0151 0.0185/0.0135
DreamRec (320.98s) 0.015570.0130  0.0406/0.0299  0.0440/0.0323
PreferDiff (Denoising Step=1, 0.35s) 0.0162/0.0131 0.0384/0.0289 0.0437/0.0340
PreferDiff (Denoising Step=2, 0.43s) 0.0165/0.0133  0.0398/0.0309 0.0438/0.0341
PreferDiff (Denoising Step=4, 0.65s) 0.0177/0.0137 0.0402/0.0296 0.0433/0.0342
PreferDiff (Denoising Step=20, 3s) 0.0185/0.0147 0.0429/0.0323 0.0473/0.0367

Table 20: Comparison with DPO and Diffusion-DPO (Recall@5/NCDG@5)
Models Sports Beauty Toys

DreamRec + DPO (8 = 1) 0.0031/0.0015 0.0067 /0.0053  0.0030/0.0022
DreamRec + DPO (8 = 5) 0.0036/0.0026  0.0053/0.0034 0.0036/0.0023
DreamRec + DPO (5 = 10) 0.0019/0.0011  0.0075/0.0056 0.0046 /0.0034
DreamRec + Diffusion-DPO (5 =1)  0.0129/0.0101 0.0308/0.0244  0.0324/0.0261
DreamRec + Diffusion-DPO (5 =5)  0.0132/0.0113 0.0321/0.0251  0.0340/0.0272
DreamRec + Diffusion-DPO (5 = 10) 0.0133/0.0115 0.0281/0.0223  0.0345/0.0281
PreferDiff 0.0185/0.0147  0.0429/0.0323 0.0473/0.0367

which meet the requirement of generative modeling in diffusion models. We are also surprisingly and
delightedly discovering that the one-negative-sample version of PreferDiff’s formulation, Lgpr_pjt, 1S
indeed related to the recent well-known DPO Rafailov et al.| (2023) which stems from Reinforcement
Learning with Human Feedback, as you have mentioned. To further validate the rationality of our
proposed Lppr.pitt, We intentionally aligned some aspects of our final formulation with DPO in terms
of mathematical expression.

However, there are significant distinctions between PreferDiff and DPO.

oFirst, PreferDiff is an optimization objective specifically tailored to model user preferences in
diffusion-based recommenders. It is designed to align with the unique characteristics of the diffusion
process, ensuring its effectiveness in recommendation tasks. We also replace the MSE loss with
Cosine loss

e Second, unlike DPO and Diffusion-DPO |Wallace et al.|(2024), PreferDiff incorporates multiple
negative samples and proposes a theoretically guaranteed, efficient strategy to reduce the computa-
tional overhead of denoising caused by the increased number of negative samples in diffusion models.
This innovation allows PreferDiff to scale effectively while maintaining high performance, making it
well-suited for large-negative-sample scenarios in recommendation tasks.

e Third, unlike DPO and Diffusion-DPO, PreferDiff is utilized in an end-to-end manner without
relying on a reference model. In contrast, DPO and Diffusion-DPO require a two-stage process,
where the first step involves training a reference model. This significantly increases training overhead,
which is often unacceptable in practical recommendation scenarios.

To further validate the aforementioned distinctions, we conduct experiments on three datasets using
DPO and Diffusion-DPO. Specifically, we select 3, a crucial hyperparameter in DPO, with values of
1, 5, and 10, and integrate it with DreamRec for a fair comparison. The results are shown in Table

We can observe that PreferDiff outperforms DPO and Diffusion-DPO by a large margin on all three
datasets. This further validates the effectiveness of our proposed PreferDiff, demonstrating that it is
specifically tailored to model user preferences in diffusion-based recommenders.
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