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A RELATED WORK

We highlight key related works to contextualize how PreferDiff fits within and contributes to the
broader literature. Specifically, our work aligns with research on sequential recommendation and
DMs based recommenders.

Sequential Recommendation have gained significant attention in both academia (Rendle, 2022; Liu
et al., 2024) and industry (Wang et al., 2019; Fang et al., 2020) due to their ability to capture user
preferences from historical interactions and recommend the next item. One common research line
has focused on developing more efficient network architectures, such as GRU (Hidasi et al., 2016),
convolutional neural networks (Tang & Wang, 2018), Transformer (Kang & McAuley, 2018; Fan
et al., 2021), Bertd4Rec (Devlin et al., 2019), and HSTU (Zhai et al., 2024). Another research line
focuses on leveraging additional unsupervised signals (Xie et al., 2022; Wang et al., 2023a; Ren et al.,
2024a) or reshaping sequential recommendation into other tasks such as retrieval (Rajput et al., 2023;
Wang et al., 2024a) and language generation (Bao et al., 2023; Li et al., 2023b; Liao et al., 2024).

DM-based Recommenders have been explored in recent studies due to the powerful generative
and generalization capabilities of DMs (DMs) (Lin et al., 2024). These recommenders either focus
on modeling the distribution of the next item (e.g., (Yang et al., 2023b; Wang et al., 2024b; Li
et al., 2024)), capture the probability distribution of user interactions (e.g., (Wang et al., 2023b;
Zhao et al., 2024)), or focus on the distribution of time intervals between user behaviors (e.g., (Ma
et al., 2024a)). However, existing approaches often rely on conventional objectives, such as mean
squared error (MSE), or standard recommendation-specific objectives like Bayesian Personalized
Ranking (BPR) (Rendle et al., 2009) and Cross Entropy (CE) (Klenitskiy & Vasilev, 2023). We
argue that the former may diverge from the core objective of accurately modeling user preference
distributions in recommendation tasks (Rendle, 2022), as DMs often lack an adequate understanding
of negative items. While the latter leverages DMs’ noise resistance to mitigate noisy interactions
in recommendations which might fall short of fully exploiting the generative and generalization
capabilities of DMs.

B SAMPLING ALGORITHM IN PREFERDIFF

We utilize DDIM (Song et al., 2021a) as the default sampler in PreferDiff, replacing the DDPM
used in DreamRec, as we empirically find that DDIM is faster and performs better, requiring
only a few denoising steps. Here, we briefly introduce how DDIM is employed in PreferDiff;
Detailed derivations can be found in (Song et al., 2021a), and the code implementation is available at
https://anonymous.4open.science/r/PreferDiffl

Details. Specifically, in PreferDiff, the training is to predict the original data ey. The sampling
process should be reparameterized to predict ey directly instead of the noise e. Starting from the
original DDIM update equation (Song et al., 2021a):

e —+v1—oarep(es,t
€1 = at—l( ¢ \/OTt ofer )>+m69(6t,t)+atz, (13)
t

where z ~ N(0,I), o, controls the stochasticity of the process, and €y (e, t) is the predicted noise at
time step t.

In PreferDiff, since our model is trained to predict the original data eq directly, we use the relationship
between e;, e, and the noise €:

e; = Jaseg+ V1 — oy €. (14)
Solving for €, we obtain:
€ — /Ot €
=L vV 15
e= S (15)

Since e is predicted by our model as &y = Fy(ey, ¢, t), we can estimate the noise as:
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. e — /¢
= ST VAR 16
“= - (10)

Substituting € back into the DDIM update equation and setting ; = 0 for deterministic sampling,
we get:

e; — 1 — o€ R
e1= /a1 <ta”’> +VT—au1é (17)
V &t
=ai_1€+ /1 — a1 €. (18)

This simplification allows us to update e;_; directly using the predicted &, and €y without introducing
additional randomness, thus making the sampling process deterministic and more efficient.

Summary. Therefore, the deterministic DDIM sampling steps in our inference algorithm are:
1. Predict &y = Fy(ey,c,t).

e — \/Oété()
\/I*Oét ’

3. Updatee; 1 = \/a;_1 €+ /1 — a;_1 €.

2. Compute ég =

By iteratively applying these steps, we can efficiently generate the predicted original data €y. During
inference, by setting o, = 0, we eliminate the noise term o,z and focus solely on the deterministic
components of the update rule. This results in faster convergence with fewer denoising steps while
maintaining high-quality predictions. Detailed derivations and explanations of this reparameterization
and the DDIM sampling process can be found in (Song et al., 2021a).

C DETAILS ABOUT PREFERDIFF

C.1 FROM RATINGS TO PROBABILITY DISTRIBUTION
Lppr = *E(eg,eg,c) [1ogcr (fg(eg' | c)— foleg | c))] , (19)

The primary objective of equation[I9]is to maximize the rating margin between positive items and
sampled negative items. Here, we employ softmax normalization to transform the rating ranking into
a log-likelihood ranking.

We begin by expressing the rating fy(eq | ¢) in terms of the probability distribution py (e | ¢). This
relationship is established through the following set of equations:

_ exp(fo(eo | ©))

poleo | c) = Z—a’
logps(eo | ¢) = fo(eo | c) —log Zy,
fo(eo | ¢) =logpe(eq | c) +log Zy . (20)

Substituting equation [20] into equation [T9] yields the BPR loss expressed solely in terms of the
probability distributions of positive and negative items.
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Lppr-piff = “Eet er0) log o foleg |¢) —  faleg | )
— ——
L rating of Positive Item  rating of Negative Item
= ~Eet or.c) [l080 log pg(eg | ) +log Zg —logpe(ey | ) — log Zy
L From equation 20] From equation[20] 2D
= —Elet o7 0) logo | logpg(ed | c) —logpe(e, | ) + log Zp — log Zy
o —
L =0
[ po(eg |c)
=-FE _+ - log o <log —_— .
(eg »eq 5€) | poleg | c)

C.2 CONNECTING THE RATING FUNCTION TO THE SCORE FUNCTION

In this subsection, we establish the relationship between the rating function fy(eg | c¢) and the
score function in the context of score-based DMs. Specifically, we demonstrate that the gradient
of the rating function with respect to the item embedding e is equivalent to the score function
Ve, logpo(eo | c).

Starting from Equation equation 20}
fo(eo | c) =logpy(eo | c) +log Zy, (22)

where Zj is the partition function:
Zy = /exp(fg(e | c))de. (23)

DERIVATIVE OF THE RATING FUNCTION WITH RESPECT TO €

Taking the gradient of Equation equation 22| with respect to e(, we have:

veofe(eo | C) = ve() Inge(eO | C) + Veo log Z@ M (24)

Since the partition function Zy is obtained by integrating over all possible item embeddings e, and
does not depend on the specific ey, its gradient with respect to eg is zero:

Veo,log Zyp =0. (25)

Therefore, Equation equation [24] simplifies to:
Veofo(eo | €) = Ve, logpo(eo | €). (26)

Definition of the Score Function In score-based DMs, the score function is defined as the gradient
of the log-probability density with respect to the data point e :

sg(eqg,c) = Ve, logpe(eo | ). (27)

Comparing Equations equation [26|and equation [27] we find that:
Veof9 (eo | C) =S¢ (eo, C) . (28)

This reveals that the gradient of the rating function with respect to the item embedding e is exactly
the score function of the probability distribution py(eq | ¢). Score-based DMs Song et al. (2021b)
utilize the score function sy(ey, c) to define the reverse diffusion process. In these models, the data
generation process involves integrating the score function over time to recover the data distribution
from noise. Intuitively, we can utilize Ve, fg(eo | ¢) to sample item embeddings with high ratings
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through Langevin dynamics (Song & Ermon, 2020) given certain user historical conditions. Therefore,
it bridges the objective of recommendation with generative modeling in DMs.

Connection to Our Loss Function. Our BPR-Diff loss function, as expressed in Equation equa-
tion [21] involves the log-ratio of the probabilities of positive and negative items:

+
Coprpit = ~Egt o o) {logo (log “(ei'c))] . (29)
0% po(eg | c)

Using the equivalence between the rating function and the log-probability (from Equation equation[22),
the loss function can also be seen as a function of the rating differences:

Lpprpitt = —E [logo (faleg | ¢) — fo(eg | €))] (30)

Gradient of the Loss with Respect to ey. Taking the gradient of the loss function with respect to
the positive item embedding ear , we get:

Vet Loprpit = —E {U(—S) Vet foled | C)} ; (31)

where s = fy(ed | ¢) — fo(eg | ).

Similarly, for the negative item embedding e :
Vea Lepr-pitf = E [0(75) . Veg fg(ea | C)} . (32)

These gradients indicate that the loss function encourages:
» Increasing the rating fp(egd | c) of the positive item by moving e in the direction of
Vs fo.

* Decreasing the rating fg(e, | c) of the negative item by moving e, opposite to V- fy.
0

C.3 DERIVATION THE VARIATIONAL UPPER BOUND

In this section, we provide a comprehensive derivation of the upper bound for the proposed Lgpr pit-
We focus particularly on the steps involving the Kullback-Leibler divergence, leading to the final loss
function used for training.

Assumptions and Definitions:

. ear and e represent the embeddings of the positive and negative items, respectively.

* e, and e; are the noisy embeddings at timestep ¢ for the positive and negative items,
obtained via the forward diffusion process.

* c denotes the historical item sequence for a user.
* g(et—1 | et,ep) is the posterior distribution in the forward diffusion process.
* po(e:—1 | e, c) is the reverse diffusion process modeled by our neural network Fy.

* M(c) is a mapping function that encodes the historical context c into a suitable representa-
tion for conditioning.

* o(-) is the sigmoid function.

* B4, oy, and &y are predefined constants in the diffusion schedule.

Starting from equation 4 in the main text, we have:

Lppr-pift(0) = _E(eg,eg,c) [loga (1OgEq(etT|e0+) |:
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To address the intractability of directly computing the expectations inside the logarithms, we ap-
ply Jensen’s inequality, which states that for a convex function f, we have f(E[X]) < E[f(X)].
Recognizing that — log o(z) is convex in x, we obtain an upper bound:

4 po(eg.r | ©) po(egr | ©)
L:BPR»lef(e) S 7E(eg,ea,c) ]Eq(eltT‘e(T)’ IOgO' log |:q(ei,’_Tea_) — log m

() (b)

(I(e;Tleg)

(34)

The terms (a) and (b) represent the variational lower bounds of the log-likelihoods for the positive
and negative items, respectively. According to the properties of DMs (Ho et al., 2020), these terms
can be related to the evidence lower bound (ELBO). Specifically, for any item eg, we have:

ep.T | €
logpg(eg | C) Z ]Eq(el;T‘eo) |:10g <pa(OT|)):| = _EELBO(G;eOaC) . (35)
q(er.r | o)

Substituting equation [35]into equation [34] we get:
Lepr-pitt(0) < —E o) [log o (—LeLpo (6; el,c) + Lrpo(0; e;,c))] - (36)

(eo aeav

The ELBO for each item can be decomposed into a sum over timesteps ¢:

T
Leso(0;eo0,c) = ZEq(et|eg) [Dke (q(et—1 | es,e0) || po(ei—1 | e, )] +C, (37)

t=1
where C' is a constant independent of 6.
Substituting equation [37] back into equation [36] we obtain:

T
Lepropifr(0) < —E(ot o~ o) [loga (— (Z Eq et lei) [DxL (q(e;_lef  ed) || polei_lef))]
t=1

)

(38)

T
D Eyerier) [Dxu (alei_yler veq) [l poler_ile; )] + Ch))

t=1
where C' aggregates constants and is independent of 6.

Now, we focus on the KL divergence terms. In DMs, both g(e;—1 | e, eg) and pg(e;—1 | e, c)
are Gaussian distributions (Ho et al., 2020). Specifically, for the forward process ¢ and the reverse
process pg, we have:

alei-1 | er,e0) = N (er-1: fu(ers o), AL (39)
Do (etfl | €, C) = N (etfl; Mo (eta ta C)7 BtI) ) (40)

where fi;(es, ep) is the mean of the posterior g(e;—1 | e, ep), Bt is the variance, and 3; is the
variance schedule for the reverse process.

The KL divergence between two Gaussian distributions can be computed as:

Dx1 (gl pe) = % <tr (ﬁt_lBtI) + (g — 1) BT (po — fur) — k+1n (3:%3)) , (41)

where k is the dimensionality of the Gaussian distributions (i.e., the embedding dimension).

Assuming that Bt = B¢ (Ho et al., 2020), the trace term simplifies to &, and the determinant term
becomes In(1) = 0. Therefore, the KL divergence simplifies to:

1 -
Dxw (|l pe) = 25, o — felf3 - (42)
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Next, we define the network prediction pg and relate it to the mean fi; from the forward process.
Relationship between fi; and e:

The mean fi; is given by:

VTR Vo (l— oy

e ep) = YO gy VOl Z ) 43)
1-— Qi 1-— Qi

where oy = 1 — 3, and &y = szl a,. In practice, it is common to predict eq directly using the

neural network Fy:

éo = fg(et,t,M(C)) . (44)
Given €y, we can compute ftg as:
N Vor (1l — ay_
polentyc) = YO 1Pre VoI 0n) (45)
1-— Qg 1-— Qg

Substituting equations equation [43]and equation [#3]into equation 2] we have:

? (Va—18:)”

1 _ 2 1 Vai-1B8 . N 2
D = e — ] = — || V2P, — = Wb o2
ki (¢ po) 2, o — el 5, H( —a (€0 e0)) L~ 2B (1= )’ €0 — eoll>
(46)

Simplifying the constants, we observe that the coefficient reduces to a constant factor dependent on ¢,
which we can denote as \;:

)\t (\/ﬁﬁt)z _ 01 (47)

2821 —ap)? 2(1—ay)?

Therefore, the KL divergence becomes:

Dic. (a1 po) = A &0 — eoll - (48)
Since \; is independent of ¢ and depends only on ¢, when we sum over all timesteps and average
over t, this term becomes proportional to the mean squared error between €y and eg.
Equivalence of MSE and Cosine Error for Unit Norm Vectors:

Alternatively, to mitigate sensitivity to vector norms and dimensionality (Friedman, 1997; Hou et al.,
2022b) (the recommendation performance of PreferDiff is competitive when embedding size is
higher), we can use the cosine error as the distance measure. The cosine similarity between €, and
e is given by:

AT
cos (€p,€9) = Aeoieg . (49)
l€oll2lleoll2
The cosine error is then:
S (é9,e9) =1 — cos (&g, ep) . (50)

Actually, when both €, and e are normalized to have unit norm (i.e., ||€||2 = ||€g||2 = 1), the mean
squared error and the cosine error are directly related. Specifically, the squared Euclidean distance
between two unit vectors is:

. 2 A T 4 o112 2 AT .
€0 — eoll; = (€0 —eo) (€0 —eo) = [[€0]l5 + [leoll; — 2€ €0 = 2(1 — cos (€, 0)). (51
Thus, under the unit norm constraint, minimizing the MSE is equivalent to minimizing the cosine
error up to a constant factor of 2. This shows that both distance measures capture the same notion

of similarity in this case. Substituting the KL divergence approximation back into equation and
considering both positive and negative items, we simplify the expression:

Leprpit(0) < ~E (ot o= o) v [1080 | = | S(&5.e5) — S(€g,eq) , (52

Positive item error ~ Negative item error,
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where & = Fp(e; ,t, M(c)) and &, = Fp(e; ,t, M(c)).
Equation equation [52|represents our final trainable objective:

‘CUpper(e) = _]E(ear’eg,c)JNU(l,T) [IOgG (_ (S (Fe(e?—atyM(c))aea_) -5 (]:a(et_vt’M(C))veE)))] .
(53)

Explanation. This objective encourages the model to minimize the distance between the predicted
embedding and the true embedding for the positive item while maximizing the distance for the
negative item, effectively widening the gap between them in the latent space. By doing so, we
enhance the personalized ranking capability of the model.

Summary. By minimizing Luypper(#), we implicitly minimize the original Lgpgr-pisr(¢) due to the
application of Jensen’s inequality. This aligns the training objective with the goal of improving
personalized ranking by leveraging DMs within the BPR.

C.4 EXTEND INTO MULTIPLE NEGATIVE SAMPLES

In this section, we provide a detailed derivation of the inequality Lgpr pift.v < Lppr-pitr.c, under the
assumption that Fy and .S are convex functions.

Definitions and Assumptions
We define:

» Fo(es,t, M(c)): the denoising function at time step ¢, parameterized by 6, conditioned on
context M(c).

* S(a,b): a measure function quantifying the discrepancy between vectors a and b, such as
Mean Squared Error (MSE).

* o(+): the sigmoid function.
Assume that:

» Fy is convex with respect to its input e;.

» Sis convex with respect to both of its inputs.

Starting with the definition of Lgpg pigt.v:

v

1
EBPR.Diff.V = — loga <—V (S (]:9 (e;r, t7M(C)) ,e0+) - V ZS (fg (e;v,t,M(C» ,eov)>>
v=1
(54)

Similarly, for EBPR.Diff_C .

EBPR.Diff_C = - IOgU (—V (S (.70 (etﬁt,/\/l(c)) ,eg) -5 (.7:9 (é;ﬂf,M(C)) ,éa))) 5 (55)

where we have defined the centroids:

1 & 1 &
& = det, & = v > et (56)
v=1 v=1

Our aim is to show that Lgpr_pift.v < LBPR-Diff-C-

First, consider the term:

1V
Dy =S5 (.7:9 (ej,t/\/l(c)) ,ear) 7 ZS’ (]—'9 (e;v,t,/\/l(c)) ,ea”) ) (57)

v=1
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By the convexity of S, we have:

4 v v
é,vz_lS (Fo (e;",t,M(c)) ,e;") < S ‘1/;}"9 (e;",t, M(c)), % ;ea” . (58)
Convex combination of Fo (e; ") &
Next, using the convexity of Fy, we have:
v
Fo (& ,t,M(c Z (e;¥,t, M(c)). (59)

Convex combination

Combining equation[58]and equation [59] and recognizing that S is non-decreasing with respect to its
first argument, we get:

174
VZ: (Fo (e7%,t, M(c)) ,e5") < S (Fo (67,1, M(c)),&;) - (60)

Therefore, we have:

Dy = S (Fy (ef ,t, M(c)) Zs Fo (e; ", t,M(c)) ,e;") (61)

>S (.7:9 (ej,t,/\/l(c)) 760) - S (]—'9 (et ,t,/\/l(c)) 7é6) = D¢. (62)

Since Dy > D, it follows that:

—VDy < -VDc¢. (63)

Applying the monotonicity of the log o(-) function (since o is an increasing function and log is
monotonic), we have:

Lgpr-pittv = —logo(=V Dy ) < —logo(—V Dc) = Lppr-pifr-c- (64)

Therefore, we have shown that:

Lppropifi-v < LBPR-Dff-C- (65)

Explanation. This inequality implies that minimizing Lgpr.pisr.c effectively minimizes an upper
bound of Lgpr pifr.v, leading to an efficient increase in the likelihood of positive items while distancing
them from the centroid of negative items. Notably, although the assumption of convexity is difficult
to satisfy in practice, the aforementioned method still empirically achieves strong results than one
negative item.

D EXPERIMENTS

D.1 DATASETS PREPOSSESSING IN USER SPLITTING SETTING

Following prior works (Yang et al., 2023a;b), we adopt the user-splitting setting, which has been
shown to effectively prevent information leakage in test sets (Ji et al., 2023). Specifically, we first
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Algorithm 2 Inference Phase of PreferDiff

1: Input: Trained parameters 6, Sequence encoder M (+), test dataset Dyesr = { (€0, C) ‘fj{‘l, total
steps 7', DDIM steps S, guidance weight w, variance schedules {cy }7_;
2: Qutput: Predicted next item &
3: ¢ ~ Diest > Sample user historical sequence from testing dataaset.
4: er ~N(0,I) > Sample standard Gaussian noise.
5:fors=25,...,1do > Denoise over S DDIM steps.
6: t=|sx(T/9)] > Map DDIM step s to original step ¢.
7: With probability p,: M(c) = ® > Set unconditional condition with probability p,,.
8: z~N(0,I)ifs > lelsez=0 > Sample noise if not final step.
9: &0 = (1 4+ w)Fp(é, M(c),t) — wFy(é, @, 1) > Apply classifier-free guidance.
10: €g = % > Compute predicted noise.
11: €1 =160+ V1 —u_1ép > DDIM update step when o; = 0.
12: end for
13: return &g

Table 5: Detailed Statistics of Datasets after Preprocessing.

Fully Trained Recommendation General Sequential Rec dation
Datasets Sports  Beauty Toys Pretraining  Validation CDs Movies Steam
#Sequences 35,598 22,363 19,412 746,688 101,501 112,379 297,529 39,795
#Items 18,357 12,101 11,924 68,068 8,623 15,520 25,925 9,265

#Interactions | 256,598 162,150 138,444 3,258,523 452,415 457,589 2,053,497 437,733

sort all sequences chronologically for each dataset, then split the data into training, validation, and
test sets with an 8:1:1 ratio, while preserving the last 10 interactions as the historical sequence.

Amazon 2014|'| Here, we choose three public real-world benchmarks (i.e., Sports, Beauty and Toys)
which has been widely utilized in recent studies (Rajput et al., 2023). Here, we utilize the common
five-core datasets (Hou et al., 2022a), filtering out users and items with fewer than five interactions
across all datasets. Following previous work (Yang et al., 2023b), we set the maximized length user
interaction sequence as 10.

Amazon 2018 ﬂ Following prior works (Hou et al., 2022a; Li et al., 2023a), we select five distinct
product review categories—namely, “Automotive,” “Electronics,” “Grocery and Gourmet Food,”
“Musical Instruments,” and “Tools and Home Improvement”—as pretraining datasets. “Cell Phones
and Accessories” is used as the validation set for early stopping. In line with previous research (Yang
et al., 2023b), we filter out items with fewer than 20 interactions and user interaction sequences
shorter than 5, capping the maximum length of each user’s interaction sequence at 10.

Steam is a game review dataset collected from Steam Due to the large number of game reviews,
we filter out users and items with fewer than 20 interactions.

D.2 IMPLEMENTATION DETAILS

For a fair comparison, all experiments are conducted in PyTorch using a single Tesla V100-SXM3-
32GB GPU and an Intel(R) Xeon(R) Gold 6248R CPU. We optimize all methods using the AdamW
optimizer and all models’ parameters are initialized with Xavier initialization. We fix the embedding
dimension to 64 for all models except DM-based recommenders, as the latter only demonstrate
strong performance with higher embedding dimensions, as discussed in Section 4.3. Since our focus
is not on network architecture and for fair comparison, we adopt a lightweight configuration for
baseline models that employ a Transformer backboneﬂ using a single layer with two attention heads.
Notably, all baselines, unless otherwise specified, use cross-entropy as the loss function, as recent
studies (Klenitskiy & Vasilev, 2023; Zhai et al., 2023) have demonstrated its effectiveness.

'"https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html
Zhttps://cseweb.ucsd.edu/ - jmcauley/datasets/amazon_v2/
*https://github.com/kang205/SASRec
*nttps://github.com/YangZhengyi98/DreamRec/
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For PerferDiff, for each user sequence, we treat the other next-items (a.k.a., labels) in the same batch
as negative samples. We set the default diffusion timestep to 2000, DDIM step as 20, p,, = 0.1, and
the /3 linearly increase in the range of [le~#,0.02] for all DM-basd sequential recommenders (e.g.,
DreamRec). We empirically find that tuning these parameters may lead to better recommendation
performance. However, as this is not the focus of the paper, we do not elaborate on it.

The other hyperparameter (e.g., learning rate) search space for PreferDiff and the baseline models is
provided in Table[TT] while the best hyperparameters for PreferDiff are listed in Table[12]

D.3 BASELINES OF SEQUENTIAL RECOMMENDATION

Traditional sequential recommenders:

o GRU4Rec (Hidasi et al., 2016) adopts RNNs to model user behavior sequences for session-based
recommendations. Here, following the previopus work (Kang & McAuley, 2018; Yang et al., 2023b),
we treat each user’s interaction sequence as a session.

o SASRec (Kang & McAuley, 2018) adopts a directional self-attention network to model the user
user behavior sequences.

o Bert4Rec (Sun et al., 2019) adapts the original text-based BERT model with the cloze objective for
modeling user behavior sequences. We adopt the implementation of mask from (Ren et al., 2024b)

Contrastive learning based sequential recommenders:

o CLA4SRec (Xie et al., 2022) incorporates the contrastive learning with the transformer-based
sequential recommendation model to obtain more robust results. We adopt the implementation
from (Ren et al., 2024b).

Generative sequential recommenders:

o TIGER(Rajput et al., 2023) introduces codebook-based identifiers through RQ-VAE, which
quantizes semantic information into code sequences for generative recommendation. Since the source
code is unavailable, we implement it using the HuggingFace and Transformers APIs, following
the original paper by utilizing T5 (Ni et al., 2022) as the backbone. For quantization, we employ
FAISS (Johnson et al., 2019), which is widely used °|in recent studies of recommendation (Hou et al.,
2023).

DM-based sequential recommenders:

o DiffRec (Wang et al., 2023b) introduces the application of diffusion on user interaction vectors
(i.e., multi-hot vectors) for collaborative recommendation, where “1” denotes a positive interaction
and “0” indicates a potential negative interaction. We adopt the author’s public implementation

e DreamRec (Yang et al., 2023b) uses the historical interaction sequence as conditional guiding
information for the diffusion model to enable personalized recommendations and utilize MSE as the
training objective. We adopt the author’s public implementation H

o DiffuRec (Li et al., 2024) introduces the DM to reconstruct target item embedding from a Trans-
former backbone with the user’s historical interaction behaviors and utilize CE as the training
objective. We adopt the author’s public implementationﬂ

Text-based sequential recommenders:

o MoRec (Yuan et al., 2023) utilizes item features from text descriptions or images, encoded using
a text encoder or vision encoder, and applies dimensional transformation to match the appropriate
dimension for recommendation. Here, we utilize the OpenAl-3-large embeddings, SASRec as
backbone and transform the dimension to 64.

Shttps://github.com/HKUDS/SSLRec/
Shttps://github.com/facebookresearch/faiss
"nttps://github.com/YiyanXu/DiffRec/
$https://github.com/YangZhengyi98/DreamRec/
‘https://github.com/WHUIR/DiffuRec/
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o LLM2Bert4Rec (Harte et al., 2023) proposes initializing item embeddings with textual embeddings.
In our implementation, we use OpenAl-3-large embeddings, Bert4Rec as backbone and apply PCA
to reduce the dimensionality to 64, as mentioned in the original paper.

Results of Other Backbone. Here, we present a comparison of PreferDiff with other recommenders
using a different backbone, namely GRU. As shown in Table[6} PreferDiff still outperforms DreamRec
across all datasets, further validating its versatility. Empirically, we find that, unlike SASRec, which
performs better with a Transformer than with GRU4Rec, PreferDiff performs better with GRU as the
backbone on the Sports and Toys datasets compared to using a Transformer. This could be due to the
relatively shallow Transformer used, making GRU easier to fit. More suitable network architectures
for DM-based recommenders will be explored in future work.

Table 6: Comparison of the performance with sequential recommenders with GRU as backbone. The
improvement achieved by PreferDiff is significant (p-value < 0.05).
Model Sports and Outdoors Beauty Toys and Games
R@5 N@5 R@10 N@10 R@5 N@5 R@l0 N@10 R@5 N@e5 R@l0 N@10

GRU4Rec  0.0022 0.0020 0.0030 0.0023 0.0093 0.0078 0.0102 0.0081 0.0097 0.0087 0.0100 0.0090
SASRec 0.0047 0.0036 0.0067 0.0042 0.0138 0.0090 0.0219 0.0116 0.0133 0.0097 0.0170 0.0109
DreamRec 0.0201 0.0147 0.0230 0.0165 0.0431 0.0290 0.0543 0.0321 0.0484 0.0343 0.0591 0.0382

PreferDiff  0.0216 0.0165 0.0250 0.0176 0.0451 0.0313 0.0590 0.0358 0.0530 0.0385 0.0623 0.0415

D.4 LEAVE ONE OUT

Evaluation. The “leave-one-out” strategy is another widely adopted evaluation protocol in sequential
recommendation. For each user’s interaction sequence, the final item serves as the test instance, the
penultimate item is reserved for validation, and the remaining preceding interactions are utilized for
training. During testing, the ground-truth item of each sequence is ranked against a set of candidate
items, allowing for a comprehensive assessment of the model’s ranking capabilities. Performance is
evaluated by computing ranking-based metrics over the test set, and the final reported result is the
average metric across all users in the test set.

Table 7: Detailed Statistics of Datasets after Preprocessing in Leave-One-Out Setting.

Datasets \ Sports  Beauty Toys Automotive Music  Office
#Sequences 35,598 22,363 19,412 2,929 1,430 4,906
#Items 18,357 12,101 11,924 1,863 901 2,421
#Interactions | 296,337 198,502 167,597 20,473 10,261 53,258
Avg. Length 8.32 8.87 8.63 6.99 7.17 10.86

Datasets. Except for the original three datasets (Sports, Toys and Beauty) in TIGER, we select
three additional product review categories—namely, “Automotive”, “Music Instrument” and “Office
Product” from Amazon 2014 for a more comprehensive comparison. Here, we utilize the common
five-core datasets, filtering out users and items with fewer than five interactions across all datasets.

Baselines. Here, we directly report baseline results (e.g., S>-Rec (Zhou et al., 2020), P5 (Geng et al.,
2022), FDSA (Hao et al., 2023)) from TIGER (Rajput et al., 2023) and evaluate DreamRec (Yang
et al., 2023b) and the proposed PreferDiff.

Results. Tables[§|and Tables [0 present the performance of PreferDiff compared with six categories
sequential recommenders. For breivty, R stands for Recall, and N stands for NDCG. The top-
performing and runner-up results are shown in bold and underlined, respectively. “Improv” represents
the relative improvement percentage of PreferDiff over the best baseline. We observe that in the
leave-one-out setting, PreferDiff demonstrates competitive recommendation performance compared
to the baselines. Specifically, on larger datasets (i.e., Sports and Beauty), PreferDiff performs on
par with TIGER. However, on the Toys dataset and the three smaller datasets, PreferDiff achieves
a significant lead.This may be due to PreferDiff adopting the same manner as DreamRec, where
recommendation is not included in the training process. With a smaller number of items, this approach
can result in more precise recommendation performance.

28



Under review as a conference paper at ICLR 2025

Table 8: Performance comparison on sequential recommendation under leave one out. The last row
depicts % improvement with PreferDiff relative to the best baseline.

Methods Sports and Outdoors Beauty Toys and Games

R@5 N@5 R@I0 N@I0 R@5 N@5 R@10 N@I0 R@5 N@5 R@10 N@I0
P5 0.0061 0.0041 0.0095 0.0052 0.0163 0.0107 0.0254 0.0136 0.0070 0.0050 0.0121  0.0066
Caser 0.0116 0.0072 0.0194 0.0097 0.0205 0.0131 0.0347 0.0176  0.0176  0.0166 ~ 0.0270  0.0141
HGN 0.0189 0.0120 0.0313 0.0159 0.0325 0.0206 0.0540 0.0257 0.0266 0.0321 0.0497  0.0277

GRU4Rec  0.0129 0.0086 0.0204 0.0111 0.0164 0.0113 0.0283 0.0137  0.0137 0.0097 0.0176  0.0084
BERT4Rec 0.0115 0.0075 0.0191 0.0099 0.0263 0.0184 0.0407 0.0214 0.0170 0.0161 0.0310  0.0183

FDSA 0.0182 0.0128 0.0288 0.0156 0.0261 0.0201 0.0407 0.0228  0.0228  0.0150  0.0381 0.0199
SASRec 0.0233 0.0162 0.0412 0.0209 0.0462 0.0387 0.0605 0.0318 0.0463 0.0463 0.0675  0.0374
S3-Rec 0.0251 0.0161 0.0385 0.0204 0.0380 0.0244 0.0647 0.0327 0.0327 0.0294 0.0700  0.0376
DreamRec  0.0087 0.0071 0.0096 0.0075 0.0318 0.0257 0.0624 0.0273  0.0422  0.0347 0.0689  0.0362
TIGER 0.0264 0.0181 0.0400 0.0225 0.0454 0.0321 0.0648 0.0384 0.0521 0.0371 0.0712  0.0432

PreferDiff  0.0275 0.0190 0.0405 0.0218 0.0455 0.0317 0.0660 0.0388 0.0603 0.0403 0.0851  0.0483
Improve 416% 497% 125% -31% 022% -125% 185% 1.04% 15.73% 8.63% 19.52% 11.81%

Table 9: Performance comparison on sequential recommendation under leave one out. The last row

depicts % improvement with PreferDiff relative to the best baseline.
Methods Automotive Music Office
R@ N@5 R@I0 N@l0) R@5 N@5 R@I0 Ne@l0 R@5 N@5 R@l0 _N@I0
DreamRec  0.0543  0.0400  0.0683  0.0445 0.0622 0.0414 0.0783 0.0467 0.0523 0.0378 0.0699  0.0434
TIGER 00454 00290 0.0745 0.0383  0.0532 0.0358 0.0840 0.0456 0.0462 0.0299 0.0746  0.0390
PreferDiff __ 0.0649 _ 0.0463 _ 0.0864 _ 0.0532__ 0.0650 0.0453_0.0874 _0.0526 00538 _0.0379 _ 0.0850 _ 0.0480
Improve  19.52% 15.75% 15.97% 19.55% 4.50% 9.42% 4.04% 12.63% 2.87% 0.26% 13.90% 10.60%

D.5 GENERAL SEQUENTIAL RECOMMENDATION

Pretraining Datasets. Here, we introduce more details about Pretraining datasets. Following the
previous work (Hou et al., 2022a; Li et al., 2023a), we select five different product reviews from
Amazon 2018 (Ni et al., 2019), namely, “Automotive”, “Cell Phones and Accessories”, “Grocery and
Gourmet Food”, “Musical Instruments” and “Tools and Home Improvement”, as pretraining datasets.
“Cell Phones and Accessories” is selected as the validation dataset for early stopping when Recall@5
(i.e., R@5) shows no improvement for 20 consecutive epochs. The detailed statistics of each dataset
used for pretraining are shown in Table Clearly, the pretraining datasets have no domain overlap
with the unseen datasets used in Section 4.2.

Table 10: Detailed Statistics of Pretraining Datasets.

Datasets \ Automotive Phones Tools Instruments Food
#Sequences 193,651 157,212 240,799 27,530 127,496
#Items 18,703 12,839 22,854 2,494 11,778
#Interactions 806,939 544,339 1,173,154 110,151 623,940
Avg. Length 7.26 6.51 7.19 7.06 7.24

Baselines. Here, we introduce more details for baselines in General Sequential Recommendation
tasks. Notably, for a fair comparison, we employ the text—embedding-3-1large model from
OpenAl (Neelakantan et al., 2022) as the text encoder instead of Bert (Devlin et al., 2019) in
UniSRec and MoRec to convert identical item descriptions (e.g., title, category, brand) into vector
representations, as it has been proven to deliver commendable performance in recommendation (Harte
et al., 2023). Different of the Mixed-of-Experts (MoE) Whitening utilized in UniSRec, we employ
identical ZCA-Whitening (Bell & Sejnowski, 1997) for the textual item embeddings for MoRec and
Our proposed PreferDiff.

e UniSRec (Hou et al., 2022a) uses textual item embeddings from frozened text encoder and adapts
to a new domain using an MoE-enhance adaptor. We adopt the author’s public implementation[ﬁ

e MoRec (Yuan et al., 2023) uses textual item embeddings from frozened text encoder and utilize
dimension transformation technique. The architecture is the same as previously mentioned.

Yhttps://github.com/RUCAIBox/UniSRec
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Positive Correlation Between Training Data Scale and General Sequential Recommendation
Performance. Here, we explore how the scale of training data impacts the general sequential
recommendation performance of PreferDiff-T. For brevity, we use the initials to represent each
dataset. For example, “A” stands for Automotive, and “P” stands for Phones. “AP” indicates that the
training data for pretraining includes both Automotive and Phones datasets’ training set.

We observe that both NDCG and HR increase as the training data grows, indicating that PreferDiff-T
can effectively learn general knowledge to model user preference distributions through pre-training on
diverse datasets and transfer this knowledge to unseen datasets via advanced textual representations.
Further studies can explore whether homogeneous datasets lead to greater performance improvements
(e.g., whether Amazon Book data provides a larger boost for Goodreads compared to other datasets)

and investigate the limits of data scalability for PreferDiff-T.
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D.6 HYPERPARAMETER SEARCH SPACE
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Here, we introduce the hyperparamter search space for baselines and PreferDiff.

Table 11: Hyperparameters Search Space for Baselines.
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Hyperparameter Seach Space

GRU4Rec \ Ir ~ {le-2, le-3, le-4, le-5}, weight decay=0

SASRec | Ir ~ {1e-2, le-3, le-4, le-5}, weight decay=0

BertdRec \ Ir ~ {le-2, le-3, le-4, le-5}, weight decay=0, mask probability~ {0.2,0.4,0.6,0.8}

CL4SRec \ Ir ~ {le-2, le-3, le-4, le-5}, weight decay=0, A\~ {0.1, 0.3, 0.5, 1.0, 3.0}

DiffRec ‘ Ir ~ {le-2, le-3, le-4, le-5}, weight decay=0, noise scale ~ {le-1, le-2, le-3, le-4, le-5}, T ~ {2, 5, 20, 50, 100}
DreamRec | Ir ~ {le-2, le-3, le-4, le-5}, weight decay=0, embedding size ~ {64, 128, 256, 1024, 1536, 3072} , w ~ {0, 2, 4, 6, 8, 10}
DiffuRec | Ir ~ {1e-2, le-3, le-4, le-5}, weight decay=0, embedding size ~ {64, 128, 256, 1024, 1536, 3072}

UniSRec \ Ir ~ {le-2, le-3, le-4, le-5}, weight decay=0, A~ {0.05, 0.1, 0.3, 0.5, 1.0, 3.0}

TIGER | Ir ~ {1e-2, le-3, le-4, le-5}, weight decay ~ {0, le-1, le-2, le-3}

MoRec \ Ir ~ {le-2, le-3, le-4, le-5}, weight decay=0, text-encoder=text-embedding-3-large

LLM2Bert4Rec \ Ir ~ {le-2, le-3, le-4, le-5}, weight decay=0, text-encoder=text-embedding-3-large

PreferDiff

| I~ {le-2, le-3, le-4, le-5}, A ~ {0.2, 0.4, 0.6, 0.8}, embedding size ~ {64, 128, 256, 1024, 1536, 3072} , w ~ {0, 2, 4,6, 8, 10}

Table 12: Best Hyperparameters for PreferDiff on Sports, Beauty, and Toys.

Dataset | learning rate | weightdecay | A | w | embedding size

Sports | le-4 ‘ 0 [ 042 | 3072
Beauty | le-4 \ 0 [08 ] 6 | 3072
Toys | le-4 | 0 [ 05 4 | 3072
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E HYPERPARAMETER ANALYSIS FOR PREFERDIFF
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Figure 6: Effect of the Number of Negative Samples for PreferDiff.
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Figure 7: Effect of the w for PreferDiff.

E.1 THE NUMBER OF NEGATIVE SAMPLES FOR PREFERDIFF.

Here, we discuss the impact of the number of negative samples on PreferDiff. As shown in Figure [6}
we observe that in cases where the number of items is relatively small (e.g., Beauty and Toys), 8
negative samples are sufficient. However, as the number of items increases, the required number of
negative samples also grows (e.g., in Sports).

E.2 IMPORTANCE OF GUIDANCE STRENGTH FOR PREFERDIFF

w controls the weight of personalized guidance during the inference stage of PreferDiff. As shown
in Figure [/] increasing w can enhance recommendation performance. However, an excessively

large w may reduce the generalization capability of DMs, negatively impacting the recommender’s
performance. Therefore, we think setting w € [2,4].

E.3 DIFFERENT TEXT ENCODERS

Table 13: Comparison of the PreferDiff-T performance with different text-encoder.

PreferDiff-T Sports and Outdoors Beauty Toys and Games

Text-Encoders R@5 N@5s R@10 N@10 R@5 N@s R@10 N@10 R@5 N@s R@10 N@10
Bert 0.0022  0.0020  0.0030  0.0023  0.0104 0.0128  0.0154  0.0148  0.0051  0.0022  0.0068  0.0044
T5 0.0011  0.0009 0.0014 0.0011 0.0241  0.0198 0.0282  0.0212  0.0283  0.0240  0.0309  0.0248
Robert 0.0115 0.0098 0.0135 0.0102 0.0331  0.0256  0.0393  0.0276  0.0391  0.0303  0.0438  0.0319
Mistral-7B 0.0166  0.0130  0.0213  0.0146  0.0375  0.0287  0.0456  0.0312  0.0427 0.0328  0.0505  0.0353
LLaMA-7B 0.0171  0.0126  0.0205 0.0137  0.0402  0.0297 0.0483  0.0323  0.0397 0.0298  0.0494  0.0330
OpenAl-Ada-V2  0.0160 0.0126 0.0183 0.0134 0.0407 0.0318 0.0469 0.0338  0.0396  0.0315  0.0467  0.0339
OpenAl-3-large  0.0182" 0.0145"  0.0222" 0.0158" 0.0429" 0.0327° 0.0532" 0.0360° 0.0460 0.0351" 0.0525" 0.0387"

Obtaining Item Embedding from Advanced Text Encoder Here, we introduce the process for
obtaining item embeddings from current advanced text-encoders. For encoder-based large language
models, such as Bert (Devlin et al., 2019) and Robert (Liu et al., 2019), we leverage the final hidden
state representation associated with the [CLS] token (Hou et al., 2024b). For convenient, we directly
utilize the Sentence Transformers APIs[' '} As for other large language models, including T5 (Ni et al.,

"https://huggingface.co/sentence-transformers
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2022), Llama-7B (Touvron et al., 2023), Mistral-7B (Jiang et al., 2023), we utilize the output from the
last transformer block corresponding to the final input token (Vaswani et al., 2017). Closed-source
large language models like text-embedding-ada-v2 and text-embeddings-3-large, we obtain the item
embeddings directly via OpenAl APIsEl (Neelakantan et al., 2022).

Results. Table [[3] shows the PreferDiff-T employing different item embeddings encoded from
text-encoders with varying parameter sizes and architectures. We can observe that

Positive Correlation Between LLM Size and Recommendation Performance. The results show
that OpenAlI-3-large outperforms all other models, indicating that larger language models (LLMs)
yield better results in recommendation tasks. This is because larger models generate richer and more
semantically stable embeddings, which improve PreferDiff’s ability to capture user preferences. Thus,
the larger the LLM, the better the embeddings perform within PreferDiff.

High-Quality Embeddings Improve Generalization. Models like Mistral-7B and LLaMA-7B,
although smaller than OpenAl-3-large, still perform relatively well across metrics. This suggests that
while model size is important, the quality of embeddings plays a crucial role. Especially in the Beauty,
these models provide embeddings with sufficient semantic power to enhance recommendation quality.

E.4 ANALYSIS OF LEARNED ITEM EMBEDDINGS

(a) SASRec (b) DreamRec (c) PreferDiff

Figure 8: t-SNE Visualization and Gaussian Kernel Density Estimation of Learned Item Embeddings
on Amazon Beauty.

To further analysis the item space learned by PreferDiff, we reduce the dimensionality of the learned
item embeddings using T-SNE (Van der Maaten & Hinton, 2008) El to visualize the underlying
distribution of the item space learned by PreferDiff. Due to the large number of items in Amazon
Beauty, we randomly select 2000 items as example. Then, we apply Gaussian kernel density
estimation (Botev et al., 2010) Elto analyze the density distribution of reduced item embeddings and
visualize the results using contour plots. The red regions indicate areas where a high concentration
of items is clustered. From figure[8] we can observe that comparing with SASRec, PreferDiff not
only explores the item space more thoroughly (covering most regions). Comparing with DreamRec,
PreferDiff exhibits a stronger clustering effect (with high-density regions concentrated in specific
areas), better reflecting the similarities between items, result in better recommendation performance.

Phttps://platform.openai.com/docs/guides/embeddings
13https://scikit—learn.org/dev/modules/generated/sklearn.manifold.TSNE.
html

“nttps://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.
gaussian_kde.html
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