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Improving Open-World Classification with Disentangled
Foreground and Background Features
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ABSTRACT
Detecting out-of-distribution (OOD) inputs is a principal task for
ensuring the safety of deploying deep-neural-network classifiers in
open-world scenarios. OOD samples can be drawn from arbitrary
distributions and exhibit deviations from in-distribution (ID) data
in various dimensions, such as foreground features (e.g., objects
in CIFAR100 images vs. that in CIFAR10 images) and background
features (e.g., textural images vs. objects in CIFAR10). Existing meth-
ods can confound foreground and background features in training,
failing to utilize the background features for OOD detection. This
paper considers the importance of feature disentanglement in open-
world classification and proposes the simultaneous exploitation
of both foreground and background features to support the detec-
tion of OOD inputs in open-world classification. To this end, we
propose a novel framework that first disentangles foreground and
background features from ID training samples via a dense predic-
tion approach, and then learns a new classifier that can evaluate the
OOD scores of test images from both foreground and background
features. It is a generic framework that allows for a seamless com-
bination with various existing OOD detection methods. Extensive
experiments show that our approach 1) can substantially enhance
the performance of four different state-of-the-art (SotA) OOD detec-
tion methods on multiple widely-used OOD datasets with diverse
background features, and 2) achieves new SotA performance on
these benchmarks.

CCS CONCEPTS
• Computing methodologies→ Object recognition.

KEYWORDS
Open-World Classification, Out-of-Distribution, Disentangled Fea-
ture

1 INTRODUCTION
Deep neural networks have demonstrated superior performance in
computer vision tasks [24]. Most deep learning methods assume
that the training and test data are drawn from the same distri-
bution. Thus, they fail to handle real-world scenarios with out-
of-distribution (OOD) inputs that are not present in the training
data [35]. Failures in distinguishing these OOD inputs from in-
distribution (ID) data may lead to potentially catastrophic decisions,
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Figure 1: Example images in ID (CIFAR10 [23]) and OOD
datasets (CIFAR100 [23], SVHN [32], Places365 [53], Textures
[7]) with their attention maps from a vanilla classifier and
our proposed DFB classifier. Vanilla classifiers tend to focus
on objects unrelated to the ID class, e.g., the person on a horse
(ID class), due to spurious correlation. In OOD data, vanilla
classifiers struggle to localize objects within the image and
treat the background features as foreground for ID classifica-
tion. By disentangling foreground and background features,
DFB effectively addresses these issue.

especially in safety-critical applications like autonomous driving
or medical systems [5]. In open-world applications, encountering
unexpected OOD inputs is a common occurrence. Consequently, de-
tecting and rejecting these OOD inputs has emerged as a significant
challenge in the secure deployment of deep neural networks.

OOD detection approaches are designed to address this problem,
which aim to detect and reject these OOD samples while guarantee-
ing the classification of in-distribution data [16]. There are generally
two groups of OOD detection approaches. One of them are post-hoc
approaches that work with a trained classification network to de-
rive OOD scores without re-training or fine-tuning of the network,
e.g., by using maximum softmax probability of the network outputs
[16], maximum logits [15], or the Mahalanobis distance between
the input and the class centroids of ID data [26]. Another group of
approaches fine-tunes the classifiers with different methods, such
as the use of pseudo OOD samples [4, 17, 28, 31, 34, 45, 47]. Most of
these methods, especially the post-hoc methods, are primarily based
on the "foreground features" to detect OOD samples. These are the
features that exhibit the semantics of the in-distribution classes,
such as the appearance features of the ‘horse’ class images in the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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CIFAR10 image classification, as shown in Fig. 1. This introduces
two problems: 1) Owing to dataset bias, the foreground features
learned by vanilla classifiers may develop spurious correlations
[30] with other objects in the image. For instance, a correlation may
be incorrectly drawn between horses and riders. These spurious
correlations introduce irrelevant semantics, which can lead to the
misclassification of not only ID images but also OOD images. 2)
Focusing on foreground features overlooks other dimensions that
could also be important for OOD detection, as OOD samples can
be drawn from arbitrary distributions and can exhibit deviations
from in-distribution (ID) data in various dimensions. One such di-
mension is the set of “background features" that exhibit no class
semantics. We observe that the regions of interest for the classifiers
on OOD samples often tend to be the background, as shown in
the CIFAR100 example in Fig. 1. This phenomenon indicates that
existing classifiers have a foreground-background confusion issue,
and they misclassify OOD samples to the ID classes with similar
semantic features to these background features.

This paper considers the importance of disentangling foreground
and background features in OOD detection and proposes to lever-
age background features to enhance the OOD detection methods
that are based on foreground features. To this end, we introduce a
novel generic framework, called DFB, that can Disentangle the
Foreground and Background features from ID training sam-
ples by a dense prediction approach, with which different existing
foreground-based OOD detection methods can be seamlessly com-
bined to learn the in-distribution features from both the foreground
and background dimensions. Specifically, given a trained 𝐾-class
classification network where 𝐾 is the number of in-distribution
classes, DFB first generates pseudo semantic segmentationmasks by
a weakly-supervised segmentation approach that uses image-level
labels to locate discriminative regions in the images. These pseudo
segmentation masks are then utilized to train a (𝐾 + 1)-class dense
prediction network, with the first 𝐾 classes being the original 𝐾 ID
classes and the (𝐾 + 1)-th class corresponding to the ID background
features. The dense prediction network is further converted into a
(𝐾 +1)-class classification network by adding a global pooling layer.
The conversion is lossless and requires no re-training. In doing so,
the (𝐾 + 1)-class classifier learns both foreground and background
ID features. Different existing foreground-based methods, such
as the post-hoc methods, can be applied to the first 𝐾 prediction
outputs to obtain semantic OOD scores, while the (𝐾 + 1)-th
prediction can be directly used to define background OOD scores.
Combining these semantic and background OOD scores enable
OOD detection from both foreground and background features.

As depicted in Fig. 1, the proposed DFB effectively disentangles
foreground and background features. In the ID data CIFAR10, DFB
can more accurately locate the ID objects than the vanilla classifier.
In the OOD data CIFAR100, which contains significant foreground
objects, DFB successfully disentangle between the foreground and
background objects, both of which are important for detecting the
OOD. In the other three OOD datasets without prominent fore-
ground objects, the foreground branch of DFB focuses on fewer
areas compared to the vanilla classifier while its background branch
recognizes most of the background areas, in which the background
OOD scores would exert greater influence on the OOD detection.
Note that the influence of semantic and background features is

determined by the area of these features, so a hyperparameter with
a fixed value can well control these two OOD scores across diverse
OOD datasets; no careful tuning of this hyperparameter is required
per OOD dataset.

In summary, we make the following main contributions:

• This work studies the importance of disentangling fore-
ground and background features and proposes to synthesize
both foreground and background features for more effec-
tive OOD detection in diverse real-world applications. This
provides a new insight into the OOD detection problem.

• We then propose a novel approach DFB, in which different
existing foreground-based OOD detection methods can be
seamlessly combined to jointly learn the ID features from
both foreground and background dimensions. It offers a
generic approach to enhance current OOD detection meth-
ods. To our knowledge, this is the first generic framework
for joint foreground and background OOD detection.

• Extensive experiments on four widely-used OOD datasets
with diverse background show that our approach DFB 1) can
substantially enhance the performance of four different state-
of-the-art (SotA) OOD detection methods, and 2) achieves
new SotA performance on these benchmarks.

2 RELATEDWORK
Post-hoc Approaches.Modelling the uncertainty of pre-trained
DNN directly without retraining the network is one popular ap-
proach for OOD detection [2, 8, 10, 12, 20, 29, 33, 38, 43, 48, 54].
Hendrycks et al. [16] propose the uncertainty of DNNs and estab-
lish a baseline for OOD detection by maximum softmax probability
(MSP). ODIN [27] introduces input perturbation and temperature
scaling to enhance MSP. Lee et al. [26] propose the deep Maha-
lanobis distance-based detectors, which compute the distance-based
OOD scores from the pre-trained networks’ features. Liu et al. [28]
calculate the logsunexp on logit as the energy OOD score. ReAct
[39] reduces the DNN’s overconfidence in OOD samples by activa-
tion clipping, which further enhances the energy scores. MaSF [13]
considers the empirical distribution of each layer and channel in the
CNN and returns a p-value as the OOD score. ViM [42] attempts to
utilize not only primitive semantic features but also their residuals
to define more effective logit-based OOD scores. Recently, DML
[51] reformulate the logit into cosine similarity and logit norm and
propose to use flexibility balanced MaxCosine and MaxNorm. This
type of approach relies on the foreground semantic features learned
by the pre-trained networks, which neglects other relevant features,
such as background features.

Fine-tuning Approaches. Another dominant approach is to
fine-tune the classification networks for adapting to the OOD de-
tection tasks. In this line of research, Hsu et al. [19] further improve
ODIN by decomposing confidence scoring. Zaeemzadeh et al. [49]
project ID samples into a one-dimensional subspace during training.
Some other studies [21, 41] group ID data and assume them as OOD
samples for each other to guide the network training. Some studies
[3, 37] have noticed the influence of background features on OOD
detection, but they focus on solving the confusion between back-
ground and semantic features, and ignore the positive influence
of background features on OOD detection itself. Outlier Exposure
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Figure 2: Overview of our proposed framework. It first uses a trained 𝐾-class classification network to obtain pseudo semantic
segmentation masks and then learns the in-distribution features by training a (𝐾 + 1)-class classification network with the
pseudo labels (Left). It lastly converts the dense prediction network to a (𝐾 +1)-class classifier in a lossless fashion, and leverages
these (𝐾 + 1) prediction outputs for joint foreground and background OOD detection (Bottom Right).

(OE) [17] introduces auxiliary outlier data to train the network
and improve its OOD detection performance. Such approaches can
use real outliers [4, 6, 28, 31, 34, 45, 47] or synthetic ones from
generative models [25]. The performance of this approach often
depends on the quality of the outlier data. Fine-tuning the networks
may also lead to the loss of semantic information and consequently
degraded ID classification accuracy.

3 PROPOSED APPROACH
ProblemStatement.Given a set of training samplesX = {x𝑖 , y𝑖 }𝑁𝑖=1
drawn from an in-distribution PX with label space Y = {𝑦 𝑗 }𝐾𝑗=1,
and let 𝑓 : X → RY be a classifier trained on the in-distribution
samples X, then the goal of OOD detection is to obtain a new
decision function 𝑔 to discriminate whether x come from PX or
out-of-distribution data P𝑜𝑢𝑡 :

𝑔(x, 𝑓 ) =
{

1 if x ∈ P𝑜𝑢𝑡 ,
0 if x ∈ PX .

The difference between PX and P𝑜𝑢𝑡 determines the difficulty of
detecting the OOD samples. Existing OOD detection approaches
focus on the difference between PX and P𝑜𝑢𝑡 based on the semantic
information of the class label space Y, neglecting other relevant
dimensions such as the background feature space. This work aim
to learn the background features and leverage them to complement
these foreground-based OOD detection approaches.

3.1 Overview of Our Approach
Using semantic of foreground objects only to detect OOD samples
can often be successful when the OOD samples have some domi-
nant semantics that are different from the ID images. However, this
type of approach would fail to work effectively when the OOD sam-
ples do not have clear object semantics and/or exhibit some similar

semantic appearance to the ID samples, e.g., the images illustrated
in Fig. 1. Motivated by this, we introduce a generic framework DFB,
in which the model disentangle the foreground and background
features of the in-distribution data and learns ID background fea-
tures, upon which different existing OOD detection methods can be
applied with the learned background representations to detect OOD
samples from both of the foreground and background dimensions.A
high-level overview of our proposed framework is provided in Fig.
2.

(1) DFB first disentangles and learns the in-distribution fore-
ground and background features by a (𝐾 + 1)-class dense
prediction network trained from the given pre-trained K-
class classification network.

(2) It then seamlessly integrates the foreground and background
features into image classification models by transforming
the dense prediction network to a (𝐾 + 1)-class classification
network, where the prediction entries of the 𝐾 classes are
focused on the class semantics of the 𝐾 in-distribution class
while the extra (+1) class is focused on the in-distribution
background features.

(3) Lastly, an OOD score in the foreground dimension obtained
from existing post-hoc OOD detectors based on the 𝐾-class
predictions, and an OOD score obtained from the extra (+1)
class prediction from the background dimension, are synthe-
sized to perform OOD detection.

3.2 Learning In-distribution Background
Features via (𝐾 + 1)-class Dense Prediction

DFB aims to learn distinct representations of foreground and back-
ground information in images, while also considering them as in-
distribution features. The key challenge here is how to locate these
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background features and separate them from the foreground fea-
tures. We introduce a weakly-supervised dense prediction method
to tackle this challenge, in which weakly-supervised semantic seg-
mentation methods are first utilized to generate pseudo segmenta-
tion mask labels that are then used to train a (𝐾 + 1)-class dense
prediction network. The extra (+1) class learned in the dense predic-
tor is specifically designed to learn the background features, while
the other𝐾 class predictions are focused on learning the foreground
features of the 𝐾 classes given in the training data. Particularly,
given the training data X with 𝐾-class image-level labels Y and a
trained 𝐾-class classification network 𝜙 , the pseudo segmentation
mask labels can be obtained by the class activation mapping [52]:

M(𝑖, 𝑗 )
𝑦x = W⊤

𝑦x𝜙cnn (x)
(𝑖, 𝑗 ) , (1)

where W𝑦x is the classification weight of the trained classifier 𝜙
corresponding to the groundtruth class 𝑦x of x, and 𝜙cnn (x) (𝑖, 𝑗 )
obtains the feature vector at the unit (𝑖, 𝑗) in the feature map ex-
tracted by the feature extractor in 𝜙 from image x.M𝑦x ∈ R𝐻×𝑊

is an attention map indicating a pixel-wise semantic score of x
relative to its groundtruth class 𝑦x. We then define a foreground
decision threshold 𝜃 to generate the fine-grained pseudo labels of
background pixels and foreground pixels by:

Ŷ(𝑖, 𝑗 ) (x) =
{

0 if M(𝑖, 𝑗 )
𝑦x < 𝜃,

1 if M(𝑖, 𝑗 )
𝑦x ⩾ 𝜃,

(2)

where the attention scores are normalized into the range [0, 1]
and 𝜃 = 0.5 is used. We then leverage these pseudo labels of the
foreground and background pixels, Ŷ, to train a (𝐾 + 1)-class dense
prediction network 𝑓Θ𝑑

: X → {0, 1}𝐾×𝐻×𝑊 via a pixel-level cross
entropy loss:

𝐿(x, Ŷ) = −1
𝐻 ×𝑊

𝐻∑︁
𝑖=1

𝑊∑︁
𝑗=1

𝐾+1∑︁
𝑘=1

𝑦
(𝑖, 𝑗 )
𝑘

log
(
𝑓 (x,Θ𝑑 )

(𝑖, 𝑗 )
𝑘

)
, (3)

where 𝑓 (x,Θ𝑑 ) (𝑖, 𝑗 ) outputs a prediction vector consisting of pre-
diction probabilities of the 𝐾 + 1 classes at the image pixel (𝑖, 𝑗),
and ŷ(𝑖, 𝑗 ) denotes the corresponding pseudo labels at the same
pixel. In doing so, 𝑓Θ𝑑

learns both in-distribution foreground and
background features.

3.3 Dense Prediction to Image Classification
The pixel-level foreground and background features learned in the
dense prediction network cannot be applied directly to the image
classification task. We show below that the (𝐾 + 1)-class dense
prediction network can be transformed to a (𝐾 + 1)-class image
classification network in a lossless fashion: the dense prediction
and the classification networks share the same weight parameters,
and the classification network can be applied to image classifica-
tion without re-training. Particularly, the dense prediction network
𝑓Θ𝑑

: X → {0, 1} (𝐾+1)×𝐻×𝑊 can be decomposed into three main
modules: 1) a feature extraction network 𝑓ΘCNN : X → G con-
sisting of a convolutional neural network that extracts the input
image x ∈ R3×𝐻×𝑊 into a smaller scale but larger dimensional
feature map G ∈ R𝐶×ℎ×𝑤 , 2) an upsampling module up(·) that
upsamples the feature map G to original input size𝐻 ×𝑊 , typically
implemented using bilinear interpolation, and 3) a 1x1 convolution

1x1 Conv

Classifier

Linear

Classifier

Dense Prediction

Classification

Figure 3: Lossless conversion of a dense prediction network
to a classification network.

classifier 𝑓Θcls : G → L that computes the logit for each pixel in
the feature map and outputs a logit map L ∈ R(𝐾+1)×𝐻×𝑊 . The
size of weights of the convolutional classifier is 𝐶 × (𝐾 + 1). Thus,
the dense prediction network 𝑓Θ𝑑

can be denoted as:

𝑓 (x,Θ𝑑 ) = softmax(𝑓 (up(𝑓 (x,ΘCNN )),Θcls)), (4)

where Θ𝑑 = {ΘCNN ,Θcls}.
For a classification network 𝑓Θ𝑐

: X → RY , it can be similarly de-
composed into three main modules: 1) a feature extraction network
𝑓ΘCNN : X → G with the same function as the dense prediction
network, 2) a global average pooling GAP(·), which compresses
the feature map of𝐶 ×𝐻 ×𝑊 into a feature vector of size𝐶 × 1× 1,
integrating the features of the full image, and 3) a linear classifier
𝑓Θcls : G → L, which computes the logit of the full image based
on the feature vector with 𝐶 × (𝐾 + 1) weights. The classification
network 𝑓Θ𝑐

can be denoted as:

𝑓 (x,Θ𝑐 ) = softmax(𝑓 (GAP(𝑓 (x,ΘCNN )),Θcls)), (5)

where Θ𝑐 = {ΘCNN ,Θcls}. It is clear from Eqs. (4) and (5) that the
only difference between 𝑓Θ𝑑

and 𝑓Θ𝑐
is the upsampling module

and the GAP module, sharing the same feature extraction network
and the classifier. Further, the upsampling and the GAP modules
are weight-free operations, which can be easily replaced with each
other, as shown in Fig. 3. In this way, we directly transfer the in-
distribution foreground and background features learned in the
dense prediction network 𝑓Θ𝑑

to the image classification network
𝑓Θ𝑐

without any loss of the parameters learned in 𝑓Θ𝑑
. For a given

test image, the classifier 𝑓Θ𝑐
yields a (𝐾 + 1)-dimensional logit

vector, where the (𝐾 + 1)-th logit is focused on the in-distribution
background features and can be used directly to detect OOD samples
from the background dimension:

𝑆𝑏 (x) = Lx [𝐾 + 1], (6)

where Lx = 𝑓 (GAP(𝑓 (x,ΘCNN )),Θcls) is a (K+1)-dimensional pre-
diction logit vector yielded by 𝑓Θ𝑐

.

3.4 Joint Foreground and Background OOD
Detection

Although the background-based OOD score 𝑆𝑏 can be used to detect
OOD samples directly, it canmiss the OOD samples whose detection
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relies heavily on the foreground features. Thus, we propose to
utilize this background OOD score to complement existing SotA
foreground-based OOD detectors. Particularly, since the first 𝐾
classification logits in 𝑓Θ𝑐

capture similar class semantics as the
original 𝐾-class classifier, off-the-shelf post-hoc OOD detection
methods that derive an OOD score from these 𝐾 classification
logits can be plugged into DFB to obtain an OOD score from the
foreground feature aspect. These foreground and background-based
OOD scores are synthesized to achieve a joint foreground and
background OOD detection.

There are generally two types of post-hoc OOD detection ap-
proaches, including raw logit-based and softmax probability-based
methods. Our background-based OOD score is based on an un-
bounded logit value, which can dominant the overall OOD score
when combining with the foreground-based OOD score using the
softmax output (its value is within [0, 1]). To avoid this situa-
tion, we take a different approach to combine the foreground and
background-basedOOD scores, depending on the type of the foreground-
based OOD detector used:

𝑆 (x) =
{
𝑆ℎ (x) +

log(𝑆𝑏 (x) )
𝑇

if 𝑆ℎ is softmax-based,
𝑆ℎ (x) +

𝑆𝑏 (x)
𝑇

if 𝑆ℎ is logit-based,
(7)

where 𝑆 (x) is the final OOD score used to perform OOD detection
in DFB, 𝑆ℎ (x) = ℎ(x) denotes the OOD score obtained from us-
ing an existing foreground-based OOD scoring function ℎ, and 𝑇
is a temperature coefficient hyperparameter. In Eq. (7), to obtain
faithful foreground-and-background-combined OOD score, the log
function is used to constrain the value and the variance of the back-
ground scores 𝑆𝑏 , while 𝑇 is used to adjust the distribution of the
background scores to match that of the foreground scores.

4 EXPERIMENTS
Datasets. Following [13, 16, 26–28, 51], we choose two widely
used classification datasets: CIFAR10 and CIFAR100 [23], as the in-
distribution datasets. As OOD samples are unknown during train-
ing, their respective training and test data are used as ID data, with
samples from a different dataset added into the test set as the OOD
data. To evaluate the effectiveness of our approach, four commonly-
used OOD datasets consisting of natural image datasets with di-
verse background features are used, including SVHN [32], Places365
[53], Textures [7], and CIFAR100/CIFAR10 [23] (CIFAR100 is used
as OOD data when CIFAR10 is used as ID data, and vise versa
[11, 36, 38]) SVHN is a digit classification dataset cropped from
pictures of house number plates, Places365 is a large-scale scene
classification dataset,while Textures contains 5,640 texture images
in the wild that do not contain specific objects and backgrounds. Im-
ages in all these three datasets exhibit largely different foreground
and background distributions, so the three datasets contain strong
out-of-distribution semantic and background features. On the other
hand, both CIFAR10 and CIFAR100 are sampled from Tiny Images
[40]and they share similar background features, so when they are
used as OOD data for each other, the background features are weak.
As a result, this pair of mutual OOD/ID combination is considered
as hard OOD detection benchmarks [44]
ImplementationDetails.Weuse BiT-M [22], a variant of ResNetv2
architecture [14], as the default network backbone throughout the

experiments. The official release checkpoint of BiT-M-R50x1 trained
on ImageNet-21K is used as our initial 𝐾-class in-distribution classi-
ficationmodel. Themodel is further fine-tuned on the in-distribution
dataset (CIFAR10/CIFAR100) with 20,000 steps using a batch size
of 128. SGD is used as the optimizer with an initial learning rate
of 0.003 and a momentum of 0.9. We decay the learning rate by a
factor of 10 at 30%, 60%, and 90% of the training steps. All images
were resized to 160x160 and randomly cropped to 128x128. The
Mixup [50] with 𝛼 = 0.1 is also used to synthesize new image
samples during training. We subsequently use CAM (Class Acti-
vation Mapping) [52] to generate the pseudo mask labels for each
in-distribution image based on a multi-scale masking method used
in [1] (see Appendix A.1 for the example of pseudo mask and
Appendix C.4 for analysis of mask quality). With these pseudo
mask labels, we then use a modified Dense-BiT architecture to train
the (𝐾 + 1)-class dense prediction model with the BiT-M-R50x1
checkpoints as the initial weights. All input images are resized
to 128x128 during training and inference. We replace the Mixup
augmentation used in the training with randomly scaling (from 0.5
to 2.0) and randomly horizontally flipping augmentation. The other
training strategy and hyperparameters are maintained the same as
the ones used in training the 𝐾-class classification network above.
After that, the dense prediction model is converted to (𝐾 + 1)-class
image classification model using Eq. (5).

Four post-hocOODdetectionmethods, includingMSP [16], ODIN
[27], Energy [28], and ViM [42], are used as the plug-in base models.
They are respectively employed to combinewith DFB to detect OOD
samples in both of foreground and background features. To have
fair and straightforward comparison, these four plug-in models
are built upon the same 𝐾-class classification model as DFB. The
temperature 𝑇 = 2.5 is used in Eq. (7) by default.

We will release our code upon paper acceptance.
Evaluation Metrics.We use three widely-used evaluation metrics
for OOD detection, including: 1) FPR95 that evaluates the false
positive rate of the OOD samples when the true positive rate of
the in-distribution samples is 95%, 2) AUROC denotes the Area
Under the Receiver Operating Characteristic curve, and 3) AUPR
is the Area under the Precision-Recall curve. The ID images are the
positive samples in calculating AUROC and AUPR to measure the
OOD detection performance. In addition, we also report the Top-1
accuracy of classifying the in-distribution samples.

4.1 Main Results
The OOD detection results of DFB and its competing methods
with CIFAR10 and CIFAR100 as in-distribution data are reported in
Tabs. 1 and 2, respectively. Overall, DFB substantially improves four
different SotA detection methods in all three evaluation metrics on
both datasets, and obtains new SotA performance. We discuss the
results in detail as follows.
Enhancing Different OOD Detection Methods. Four differ-
ent SotA methods – MSP, ODIN, Energy, and ViM – are used as
foreground-based OOD detection baseline models and plugged into
DFB to perform joint foreground and background OOD detection.
Their results are shown at the bottom of Tabs. 1 and 2.

Compared to all the four plug-in base models, DFB can signifi-
cantly improve the performance of all evaluation metrics in terms
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Table 1: OOD detection results with CIFAR10 as in-distribution data. All methods are based on ID training data without using
any external outlier data. † indicates that the results are taken from the original paper, and other methods are reproduced
using the same network architecture. Four post-hoc foreground OOD detection methods are respectively plugged into our
method ‘X’-DFB, with improved results highlighted in red and in blue otherwise. The best result per dataset is boldfaced.

Methods
OOD Datasets AverageCIFAR100 SVHN Places365 Textures

FPR95↓ /AUROC↑ /AUPR↑
MaxLogit [15] [ICML’22] 39.11/85.07/78.13 17.95/94.78/84.22 24.05/91.10/86.41 7.93/97.57/98.07 22.26/92.13/86.71
KL-Matching [15] [ICML’22] 33.63/90.20/88.18 25.70/95.21/88.37 25.25/92.88/90.78 12.61/97.28/98.21 24.30/93.89/91.38
ReAct [39] [NIPS’21] 34.75/84.10/79.89 20.03/90.58/76.30 23.45/91.88/89.43 10.27/96.53/97.69 22.12/90.77/85.83
MaSF† [13] [ICLR’22] - /82.10/ - - /99.80/ - - /96.00/ - - /98.50/ - - /94.10/ -
DML+† [51] [CVPR’23] 42.55/91.36/ - 3.37/99.38/ - 24.34/94.87/ - 15.31/97.05/ - 21.39/95.67/-
MSP [16] [ICLR’17] 33.44/89.01/84.10 17.40/95.72/88.68 22.47/92.93/89.79 8.55/97.66/98.38 20.46/93.83/90.24
MSP-DFB [Ours] 23.75/94.29/93.48 2.55/98.94/97.88 5.05/98.49/98.60 0.02/99.90/99.95 7.84/97.90/97.48
ODIN [27] [ICLR’18] 34.62/87.83/81.92 16.13/95.66/87.30 22.15/92.43/88.59 7.45/97.86/98.37 20.09/93.45/89.04
ODIN-DFB [Ours] 22.15/95.50/95.29 4.27/99.19/98.30 8.08/98.66/98.76 0.34/99.92/99.95 8.71/98.32/98.07
Energy [28] [NIPS’20] 41.98/84.25/77.47 19.73/94.46/83.67 25.42/90.74/86.06 8.72/97.45/97.99 23.96/91.73/86.30
Energy-DFB [Ours] 19.90/94.98/93.76 3.10/99.28/98.14 6.96/98.60/98.52 0.53/99.87/99.91 7.62/98.19/97.58
ViM [42] [CVPR’22] 15.25/96.92/96.78 1.27/99.47/99.08 2.74/99.32/99.34 0.11/99.93/99.96 4.84/98.91/98.79
ViM-DFB [Ours] 13.49/97.08/96.75 0.41/99.85/99.68 0.72/99.85/99.85 0.00/100.00/100.00 3.65/99.20/99.07

Table 2: OOD detection results with CIFAR100 as in-distribution data. The notations here are the same as that in Tab. 1.

Methods
OOD Datasets AverageCIFAR10 SVHN Places365 Textures

FPR95↓ /AUROC↑ /AUPR↑
MaxLogit [15] [ICML’22] 61.61/81.09/79.25 37.12/91.29/80.77 71.89/73.12/67.64 37.61/90.63/93.73 52.06/84.03/80.35
KL-Matching [15] [ICML’22] 64.49/79.54/74.46 47.86/89.08/76.63 73.55/78.04/76.61 46.63/88.97/92.16 58.13/83.91/79.96
ReAct [39] [NIPS’21] 70.81/79.62/78.97 53.00/88.88/78.43 82.64/68.11/63.28 52.80/88.15/92.58 64.81/81.19/78.31
MaSF† [13] [ICLR’22] - /64.00/ - - /96.90/ - - /81.10/ - - /92.00/ - - /83.50/ -
DML+† [51] [CVPR’23] 79.35/76.69/ - 21.69/96.51/ - 68.31/83.31/ - 49.24/88.56/ - 54.65/86.27/ -
MSP [16] [ICLR’17] 64.25/81.52/80.87 49.50/88.92/79.07 72.10/76.18/71.52 46.24/89.33/93.44 58.02/83.99/81.23
MSP-DFB [Ours] 58.76/84.67/84.25 50.75/89.27/82.39 67.82/85.20/88.06 28.21/95.86/97.85 51.38/88.75/88.14
ODIN [27] [ICLR’18] 59.67/82.39/80.79 38.11/91.32/81.40 69.80/75.39/69.81 37.38/91.10/94.22 51.24/85.05/81.55
ODIN-DFB [Ours] 55.92/87.31/88.02 32.79/90.60/76.03 55.34/81.56/79.62 10.78/97.40/98.23 38.71/89.22/85.48
Energy [28] [NIPS’20] 64.34/80.48/78.89 36.76/91.38/80.98 74.75/72.14/67.10 39.17/90.37/93.61 53.75/83.59/80.15
Energy-DFB [Ours] 54.02/88.12/88.82 24.78/93.39/81.94 48.87/85.72/82.67 7.11/98.41/98.92 33.70/91.41/88.09
ViM [42] [CVPR’22] 59.13/85.72/85.87 10.23/97.90/95.74 49.38/87.23/86.19 2.45/99.47/99.69 30.30/92.58/91.87
ViM-DFB [Ours] 60.88/85.74/86.38 7.58/98.40/96.39 20.93/96.06/96.23 0.16/99.96/99.98 22.39/95.04/94.74

of the average results over the four OOD datasets on both of the
CIFAR10 and CIFAR100 datasets. In particular, for the averaged
improvement across the four base models, DFB boosts the FPR95
by 10.38%, the AUROC by 3.92% and the AUPR by 6.96% AUPR
in Tab. 1; and similarly, it boosts the FPR95 by 11.78% , the AU-
ROC by 4.8% and the AUPR by 5.41% in Tab. 2. Note that even for
the base model ViM, the most recent SotA method, DFB can still
considerably enhance its performance, especially on some datasets
where ViM does not work well, such as the SVHN, Places365, and
Textures datasets, resulting in over 6% reduction in FPR95 and 2.5%
increase in both AUROC and AUPR on the CIFAR100 data. DFB
shows slight performance drops on some metrics of CIFAR and

SVHN OOD datasets, which are mainly caused by suboptimal com-
binations of the foreground and background OOD scores with the
default temperature setting. The explanation would be discussed in
detail using Fig. 6 in Sec. 4.2.
Comparison to SotA Methods. DFB is also compared with five
very recent SotA methods, including MaxLogit [15], KL-Matching
[15], ReAct [39], MaSF [13] and DML+ [51] , with their results
reported at the top of Tabs. 1 and 2. Among all our four DFB meth-
ods and the SotA methods, ViM-DFB is consistently the best per-
former except the CIFAR10 data in Tab. 2 where Energy-DFB is
the best detector. This is mainly because the ViM is generally the
best semantic-feature-based OOD scoring method, and DFB can
perform better when the plug-in base model is stronger. Further, it
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Figure 4: Distribution of the foreground/background OOD
scores of ID (CIFAR10/100) and OOD samples (Textures) in
DFB.

CIFAR10 vs. Textures (Vanilla) CIFAR10 vs. Textures (DFB)

Figure 5: t-SNE visualization of the features learned by the
vanilla classification network and DFB, where the colored
dots are ID samples of different classes, and the black × are
OOD samples.

is impressive that although the base models MSP, ODIN and Energy
that largely underperform the SotA competing methods, DFB can
significantly boost their performance and outperform these SotA
competing methods on nearly all cases in Tabs. 1 and 2.
The Reasons behind the Effectiveness of DFB.We aim to under-
stand the effectiveness of DFB from two perspectives, including the
foreground and background OOD scoring, and the latent features
learned in DFB, with the results on the Textures dataset reported in
Figs. 4 and 5 respectively. We can see in Fig. 4 that the background
OOD scores in DFB enable a significantly better ID and OOD sep-
aration than the foreground OOD scores, indicating that the ID
and OOD samples can be easier to be separated by looking from
the background features than the semantic features since there
can be more background differences than the foreground ones in
each ID/OOD image. From the feature representation perspective,
compared to the features learned in the vanilla 𝐾-class classifier in

Table 3: FPR95 Results of DFB and its variants.

Module BG Energy Energy-DFB ViM ViM-DFB
𝑆ℎ ✓ ✓ ✓ ✓
𝑆𝑏 ✓ ✓ ✓

C
IF
A
R
10

CIFAR100 38.16 41.98 19.90 15.25 13.49
SVHN 2.60 19.73 3.10 1.27 0.41
Places365 4.40 25.42 6.96 2.74 0.72
Textures 0.04 8.72 0.53 0.11 0.00
Average 11.30 23.96 7.62 4.84 3.65

C
IF
A
R
10

0 CIFAR10 89.24 64.34 54.02 59.13 60.88
SVHN 26.61 36.76 24.7 10.23 7.58
Places365 26.55 74.75 48.87 49.38 20.93
Textures 0.53 39.17 7.11 2.45 0.16
Average 35.73 53.75 33.70 30.30 22.39

Fig. 5 (left), the features learned by the (𝐾 + 1)-class classifier in
DFB (Fig. 5 (right)) are more discriminative in distinguishing OOD
samples from ID samples, which demonstrates that the classifier
can learn better ID representation after disentangling foreground
and background features.

4.2 Ablation Study
Background OOD Score 𝑆𝑏 and the Joint OOD Score 𝑆 . Tab. 3
shows the FPR95 results of OOD scoring methods in our model,
including the use of background OOD scores 𝑆𝑏 only (BG), fore-
ground OOD scores 𝑆ℎ (Energy and ViM are used), and the full DFB
model (See Appendix C.1 for more detailed results). Compared to
the two semantic OOD scoring methods, Energy and ViM, using
only the background OOD scoring 𝑆𝑏 in DFB can obtain signifi-
cantly reduced FPR95 errors, especially on OOD benchmarks such
as Places356 and Textures where significant background differences
are presented compared to the in-distribution background. This
demonstrates that DFB can effectively learn the in-distribution
background features that can be used to detect OOD samples from
the background aspect. Nevertheless, BG works less effectively
on the benchmark CIFAR100 vs. CIFAR10 where the background
difference is weak and detecting OOD samples rely more on the
foreground features. In such cases, the full DFB models – Energy-
DFB and ViM-DFB – that synthesize semantic OOD scores 𝑆ℎ and
background OOD scores 𝑆𝑏 are needed; they significantly outper-
form the separate foreground/background OOD scoring methods
across the datasets.
Temperature 𝑇 in Synthesizing Foreground and Background
OOD Scores. One key challenge in plugging existing foreground
OOD scores into DFB in Eq. (7) is the diverse range of different
foreground OOD scores yielded by the existing methods. Fig. 6 the
variants of DFB of using different temperature 𝑇 values to study
the effects (see Appendix C.2 for the results on the other datasets).
We can observe that the performance of all methods in CIFAR100
vs. CIFAR10 gradually improves as the temperature increases. This
is because the increase of 𝑇 narrows down the distribution of back-
ground scores, thus making the final OOD scores emphasizing more
on the foreground OOD scores, which are more effective in the OOD
datasets like CIFAR100 (ID) vs. CIFAR10 (OOD) where the back-
ground difference is very small. In contrast, the performance of all
methods in CIFAR100 (ID) vs. Places365 (OOD) gradually decreases
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Table 4: Top-1 accuracy results of in-distribution classifica-
tion. Vanilla is the primitive trained classification network
𝜙 in Sec. 3.2.

Method CIFAR10 CIFAR100
Vanilla 97.25% 85.94%
DFB 97.13% 86.17%
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Figure 6: AUROC results of DFB using varying T settings.

as the temperature increases. This is because the background dis-
tribution difference dominates over the foreground difference in
such cases, on which enlarging the distribution of background OOD
scores is more effective. 𝑇 = 2.5 is generally a good trade-off of
the foreground and background OOD scores, and it is thus used
by default in DFB. Note that adjusting 𝑇 generally does not bring
the overall performance down below the baseline performance,
showing the effectiveness of DFB using different 𝑇 values.

4.3 Further Analysis of DFB
In-distribution Classification Accuracy.A potential risk of mod-
ifying the primitive classification network for OOD detection is the
large degradation of the in-distribution classification accuracy. As
shown in Tab. 4, our proposed DFB does not have this issue, as DFB
has only 0.12% top-1 accuracy drop on the CIFAR10 dataset and
improves the classification performance by 0.23% on the CIFAR100
dataset. This result indicates that the dense prediction training
in DFB ensures effective learning of foreground features, while
learning the background features. The 0.23% accuracy increase on
CIFAR100 also indicates that the dense prediction task can also
improve the foreground feature learning for in-distribution classifi-
cation.
Extending to Large-scale Semantic Space. A further challenge
for OOD detection is on datasets with a large number of ID classes
and high-resolution images, e.g., ImageNet-1k [9]. Fig. 7 presents the
detection performance of DFB using ImageNet-1k as in-distribution
dataset and on four OOD datasets, including two new high reso-
lution datasets, ImageNet-O [18] and SUN [46]. To examine the
impact of the number of classes, we show the results using C ∈
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Figure 7: AUROC results of DFB and the Energy baseline in
large-scale semantic space using ImageNet-1k as ID data.

{200, 300, 500, 1000} randomly selected ID classes from ImageNet-
1k (𝐶 = 1000 is the full ImageNet-1k data; see Appendix B.2 for
more details). The results show that DFB can consistently and signif-
icantly outperform its base model Energy with increasing number
of ID classes on four diverse OOD datasets, indicating the effective-
ness of DFB working in large-scale semantic space. On the other
hand, as expected, both Energy and DFB are challlenged by the
large semantic space, and thus, their performance decreases with
more ID classes. Extending to large-scale semantic space is a gen-
eral challenge for existing OOD detectors. We leave it for future
work.

5 CONCLUSIONS
In this paper, we reveal the importance of disentangling foreground
and background features in open-world classification and intro-
duce background features for OOD detection that are neglected in
current approaches. We further propose a novel OOD detection
framework DFB that utilizes dense prediction networks to seg-
ment the foreground and background from in-distribution training
data, and jointly learn foreground and background features. It then
leverages these background features to define background OOD
scores and seamlessly combines them with existing foreground-
based OOD methods to detect OOD samples from both foreground
and background aspects. Comprehensive results on popular OOD
benchmarks with diverse background features show that DFB can
significantly improve the detection performance of four different
existing methods. Through this work, we promote the design of
OOD detection algorithms to achieve more holistic OOD detection
in real-world applications.
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