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Figure 1: Example images of the five datasets we used. The rows from the top to the bottom are images from CIFAR10 [8],
CIFAR100 [8], SVHN [12], Places365 [18], and Textures [2], respectively.

A DATASETS ANDWEAK SUPERVISION
LABELS

A.1 Dataset Details
CIFAR10/CIFAR100 [8] are two subsets sampled from Tiny Image
[14], respectively. Both of them consist of 60,000 32x32 images.
CIFAR10 are labelled with 10 mutually exclusive classes, while
CIFAR100 contains 100 classes grouped into 20 super-classes. Since
they are both subsets of Tiny Image, we consider them as more
challenging near-OOD detection problems when they are used as
OOD data for each other.

SVHN [12] is a digit classification dataset cropped from house
number plate pictures. It includes 600,000 32 x 32 images of printed
digits (from 0 to 9). SVHN contains strong foreground OOD fea-
tures and strong background OOD features owing to the significant
semantic differences and scenario differences between SVHN and
CIFAR10/100.

Places365 [18] is a large-scale scene classification dataset. It
has 10 million images comprising 434 scene classes. Similar to
SVHN, Places365 also contains strong foreground OOD features and
background OOD features against CIFAR10/CIFAR100. Following
[6], we use a 10,000 images subset of Places365 as OOD data.

Textures [2] contains 5,640 texture images in the wild. Since
texture images do not contain specific objects and backgrounds, we
consider Textures has a significant difference in both foreground
and background distributions against CIFAR10/CIFAR100.

To provide intuitive understanding of the foreground and back-
ground difference between ID and OOD datasets, we present 10
example images for each dataset in Fig. 1.

A.2 Examples of the Weak Supervision
(Pseudo-masks) for ID Samples

Fig. 2 shows the class activation mappings generated utilizing the
pre-trained 𝐾-class classification network, and the pseudo-masks
then are used to train the dense prediction network. As can be seen
in the figure, the class activation mapping can generally well local-
ize the foreground information in the image, i.e., the foreground
objects. Although, the pseudo-masks generated by the class activa-
tion mapping cannot segment the complex contours perfectly, they
can only segment the foreground and background with a fairly good
quality, which can provide sufficient supervision for supporting the
learning of the background features, as shown by the results in the
main text.
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Figure 2: Examples of ID samples, CAMs, and pseudo-masks for CIFAR10. For each group of examples (three rows per group),
the images on the top are original image, the middle is its class activate mapping visualisation, and the bottom ones are its
pseudo-mask.
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Table 1: Ablation results. ‘BG’ is our method that uses only the background OOD score, while ‘Vanilla X ’ means the use of
original foreground OOD scoring function in the method X. Best results in each group are highlighted.

Methods
In:CIFAR10 In:CIFAR100

CIFAR100 SVHN Places365 Textures Average CIFAR10 SVHN Places365 Textures Average
FPR95↓ /AUROC↑ FPR95↓ /AUROC↑

BG 38.16/91.42 2.60/99.30 4.40/98.99 0.04/99.99 11.30/97.43 89.24/67.98 26.61/94.54 26.55/94.34 0.53/99.88 35.73/89.18
Vanilla MSP [4] 33.44/89.01 17.40/95.72 22.47/92.93 8.55/97.66 20.46/93.83 64.25/81.52 49.50/88.92 72.10/76.18 46.24/89.33 58.02/83.99
MSP-DFB 23.75/94.29 2.55/98.94 5.05/98.49 0.02/99.90 7.84/97.90 58.76/84.67 50.75/89.27 67.82/85.20 28.21/95.86 51.38/88.75
Vanilla ODIN [10] 34.62/87.83 16.13/95.66 22.15/92.43 7.45/97.86 20.09/93.45 59.67/82.39 38.11/91.32 69.80/75.39 37.38/91.10 51.24/85.05
ODIN-DFB 22.15/95.50 4.27/99.19 8.08/98.66 0.34/99.92 8.71/98.32 55.92/87.31 32.79/90.60 55.34/81.56 10.78/97.40 38.71/89.22
Vanilla Energy [11] 41.98/84.25 19.73/94.46 25.42/90.74 8.72/97.45 23.96/91.73 64.34/80.48 36.76/91.38 74.75/72.14 39.17/90.37 53.75/83.59
Energy-DFB 19.90/94.98 3.10/99.28 6.96/98.60 0.53/99.87 7.62/98.19 54.02/88.12 24.78/93.39 48.87/85.72 7.11/98.41 33.70/91.41
Vanilla ViM [15] 15.25/96.92 1.27/99.47 2.74/99.32 0.11/99.93 4.84/98.91 59.13/85.72 10.23/97.90 49.38/87.23 2.45/99.47 30.30/92.58
ViM-DFB 13.49/97.08 0.41/99.85 0.72/99.85 0.00/100.00 3.65/99.20 60.88/85.74 7.58/98.40 20.93/96.06 0.16/99.96 22.39/95.04

B IMPLEMENTATION DETAILS
We establish all experiments based on the Google BiT-M [7] model.
This model is a variant of ResNetv2 architecture [3] and is pre-
trained on ImageNet-21K. We use the official release checkpoint of
BiT-M-R50x1 as our pre-training parameters.

B.1 Main Results
In-distribution Classification Pretrain DetailsWe follow the
BiTHyperRule [7] setting to train the baseline classification network
on the in-distribution dataset (CIFAR10/CIFAR100) with pre-trained
weights. The classification network was trained using 20k steps
with a batch size of 128. SGD is used as parameter optimization with
an initial learning rate of 0.003 and a momentum of 0.9. We used
the STEP learning rate decay strategy, which decays the learning
rate by a factor of 10 at 30%, 60%, and 90% of the training steps.
Moreover, we used a learning rate warm-up in the first 500 steps of
training. All images were resized to 160x160 and randomly cropped
to 128x128. Finally, we used MixUp [16] with 𝛼 = 0.1 to combine
image samples in training.

The post hoc out-of-distribution detection comparison methods
in the experiments are based on the classification models trained
from this step.
Generation of Pseudo-masks Based on the well-trained classifica-
tion network, we use CAM (Class Activation Mapping) [17] to gen-
erate pseudo-mask labels for the in-distribution dataset. Consistent
with [1], we use the ensemble of multi-scale images to generate ac-
curate pseudo-mask labels. Specifically, an input image is converted
to a set of 8 images through 4 different scales {0.5, 1.0, 1.5, 2.0} and
horizontal flips. After computing the mean values of the CAMs
at all scales, the final CAM is smoothed by a Gaussian filter and
converted to pseudo-mask labels based on an empirical threshold.
In practice, we normalize the filtered CAMs and use 0.5 as the
threshold.
Dense Prediction Training Details Finally, we use a modified
Dense-BiT architecture to retrain the new dense prediction model
with BiT-M-R50x1 checkpoints on the in-distribution dataset and
pseudo-mask labels. We replace the MixUp augmentation from the
training with randomly scaling (from 0.5 to 2.0) and randomly hori-
zontally flipping augmentation. All images are resized to 128x128
during training and testing. Besides, the rest of the training strat-
egy and hyperparameters are the consistent as the classification
network.
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Figure 3: AUROC results of DFB using varying T settings in
the other two OOD dataset benchmark with CIFAR100 as the
ID data.

B.2 Experiments on Large-scale Semantic Space
We implement DBF on the high-resolution large-scale dataset ImageNet-
1k following the steps introduced in Sec. B.1 and evaluate its OOD
detection performance in large-scale semantic spaces that have a
large number of ID classes. There are two main differences in the
implementation of large-scale experiments:
Stable Mask Generation for High-resolution ImagesWe ob-
serve that since high-resolution images have richer appearance
information, the network pays more attention to the most discrimi-
native parts of the foreground object (e.g., the head of the fish). This
leads to CAM assigning the highest class activation to the most
discriminative parts and assigning the lower class activation to the
rest part of the object, which degrades the quality of the resulting
masks and does not completely segment the entire foreground ob-
ject. Given that the average class activation of the whole object is
still significantly higher than that of the background, we propose
to use the mean value of the class activation of the whole image as
the threshold for segmentation. As shown in Fig. 4, this trick sig-
nificantly improves the pseudo-mask generated for high-resolution
images.
High-resolution OOD Datasets In order to comprehensively
evaluate the performance of DBF under high-resolution images, we
add two high-resolution datasets as OOD datasets:

• ImageNet-O consists of images from classes that are not
found in the ImageNet-1k dataset. It is adversarially filtered
to fool the classifier and used to evaluate the robustness of
the classifier to out-of-distribution data.
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Figure 4: Examples of pseudo-masks generated for Ima-
geNet1k using different strategies. (Left) CAM (Middle)
Pseudo-masks generated using fixed threshold, and (Right)
Pseudo-masks generated using mean class activation as the
threshold.

• SUN contains 130,519 high-definition scene images from 397
categories. Following [6], we select 50 nature-related cate-
gories that do not overlap with ImageNet-1k, and randomly
sample 10,000 images as the OOD dataset.

C ADDITIONAL EXPERIMENT RESULTS
C.1 Detailed Analysis of OOD Scoring Methods
We report the detailed results of background OOD scoring com-
bined with all four post-hoc foreground OOD scoring methods in
Tab. 1, including the use of background OOD scores 𝑆𝑏 only (BG),
foreground OOD scores 𝑆ℎ (Vanilla), and the full DBF model. Con-
sistent with the results in the main text, using only the background
OOD scores in DBF can yield significantly improved performance
on OOD benchmarks with significant background differences from
the in-distribution image. Moreover, although BG underperforms
in the foreground-feature-dependent CIFAR100 vs. CIFAR10 bench-
mark, it still obtains competitive results in CIFAR10 vs. CIFAR100,
which also relies on foreground features. This difference is caused
by the number of ID categories, where more ID categories make the
ID background richer and more challenging to detect OOD samples
by using background features only. Holistically, the complete DBF
achieves the best performance on most benchmarks, demonstrating
the need to synthesize foreground and background OOD scores.

C.2 Additional Results w.r.t. the Temperature
Hyperparameter

Fig. 3 supplements the results of DBF on the remaining two bench-
marks using various temperatures. Due to the SVHN, Textures and
Places365 benchmarks having significant background distribution
differences, all methods’ performance gradually decreases as tem-
perature increases. Note that stronger foreground OOD scoring
methods (e.g., ViM) can significantly mitigate the decreasing perfor-
mance trend. We choose 𝑇 = 2.5 as a trade-off between foreground
and background scores in our experiment.

Table 2: Comparison of DBF and outlier exposure (OE). † indi-
cates that the results are taken from the original paper, and
other methods share the same architecture. Reported results
are averaged over the results on the four OOD datasets.

Methods ID: CIFAR10 ID: CIFAR100
FPR95↓ AUROC↑ FPR95↓ AUROC↑

Baseline 33.44 89.01 64.25 81.52
OE [5] 20.16 93.74 57.68 83.98
OE† [5] 15.57 96.40 52.30 83.47
DFB 7.87 98.04 42.29 91.03

Table 3: AUROC results using CAM and Grad-CAM for mask
generation.

ID:CIFAR100 CIFAR10 SVHN Places365 Textures Average
CAM 86.26 92.92 87.14 97.91 91.10
Grad-CAM 84.54 92.83 88.78 97.22 90.84

Table 4: AUROC results for DBF under various 𝜃 in mask
generation.

ID:CIFAR100 CIFAR10 SVHN Places365 Textures Average
𝜃 = 0.3 85.33 91.19 86.57 97.15 90.06
𝜃 = 0.5 86.46 92.92 87.14 97.91 91.10
𝜃 = 0.7 86.34 91.84 87.65 97.97 90.95

C.3 DBF vs. Outlier Exposure
OOD features can also be alternatively learned by using the popular
outlier exposure (OE) method [5] that uses external outlier data to
support the learning. The comparison of DFB and OE is presented
in Tab. 2, in which OE† uses the large-scale 80M Tiny Image [14]
as the outlier dataset, OE is trained using Tiny ImageNet [9] as the
outlier data, OE, OE† and DBF are all based on the MSP-based OOD
scoring function, and Baseline is the original MSP without using
outlier data. The results show that the two OE methods can also
significantly outperform the Baseline model, but their performance
is heavily dependent on the outlier data, e.g., the results of OE and
OE† differ significantly from each other. By contrast, DFB does not
need outlier data and significantly outperforms both OE methods
on both benchmarks.

C.4 Analysis of Pseudo Mask Quality
We investigate the impact of different pseudo-mask qualities on the
final performance of DBF during the pseudo-mask generation phase.
Experiments show that pseudo mask quality has limited impact on
final performance. Particularly, Table 3 compares Grad-CAM[13]
generated masks with CAM[17], showing similar performance. Ta-
ble 4 analyzes the threshold 𝜃 in mask generation. Results indicate
that a mask that roughly distinguishes objects from the background
is sufficient for DFB.



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Supplementary Materials: Improving Open-World Classification with Disentangled Foreground and Background Features ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

REFERENCES
[1] Jiwoon Ahn, Sunghyun Cho, and Suha Kwak. 2019. Weakly supervised learning

of instance segmentation with inter-pixel relations. In CVPR. 2209–2218.
[2] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and An-

drea Vedaldi. 2014. Describing textures in the wild. In CVPR. 3606–3613.
[3] KaimingHe, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identitymappings

in deep residual networks. In ECCV. Springer, 630–645.
[4] Dan Hendrycks and Kevin Gimpel. 2017. A Baseline for Detecting Misclassified

and Out-of-Distribution Examples in Neural Networks. ICLR (2017).
[5] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. 2019. Deep Anomaly

Detection with Outlier Exposure. In ICLR. https://openreview.net/forum?id=
HyxCxhRcY7

[6] Rui Huang and Yixuan Li. 2021. Mos: Towards scaling out-of-distribution detec-
tion for large semantic space. In CVPR. 8710–8719.

[7] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung,
Sylvain Gelly, and Neil Houlsby. 2020. Big transfer (bit): General visual represen-
tation learning. In ECCV. Springer, 491–507.

[8] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[9] Ya Le and Xuan Yang. 2015. Tiny imagenet visual recognition challenge. CS 231N
7, 7 (2015), 3.

[10] Shiyu Liang, Yixuan Li, and R. Srikant. 2018. Enhancing The Reliability of Out-of-
distribution Image Detection in Neural Networks. In ICLR. https://openreview.

net/forum?id=H1VGkIxRZ
[11] Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. 2020. Energy-based

out-of-distribution detection. 33 (2020), 21464–21475.
[12] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-

drew Y Ng. 2011. Reading digits in natural images with unsupervised feature
learning. (2011).

[13] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2017. Grad-cam: Visual explanations from
deep networks via gradient-based localization. In CVPR. 618–626.

[14] Antonio Torralba, Rob Fergus, and William T Freeman. 2008. 80 million tiny
images: A large data set for nonparametric object and scene recognition. IEEE
TPAMI 30, 11 (2008), 1958–1970.

[15] Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang. 2022. ViM: Out-Of-
Distribution with Virtual-logit Matching. In CVPR. 4921–4930.

[16] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. 2018.
mixup: Beyond Empirical Risk Minimization. In ICLR. https://openreview.net/
forum?id=r1Ddp1-Rb

[17] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
2016. Learning deep features for discriminative localization. In CVPR. 2921–2929.

[18] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba.
2017. Places: A 10 million image database for scene recognition. IEEE TPAMI 40,
6 (2017), 1452–1464.

https://openreview.net/forum?id=HyxCxhRcY7
https://openreview.net/forum?id=HyxCxhRcY7
https://openreview.net/forum?id=H1VGkIxRZ
https://openreview.net/forum?id=H1VGkIxRZ
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb

	A Datasets and Weak Supervision Labels
	A.1 Dataset Details
	A.2 Examples of the Weak Supervision (Pseudo-masks) for ID Samples

	B Implementation Details
	B.1 Main Results
	B.2 Experiments on Large-scale Semantic Space

	C Additional Experiment Results
	C.1 Detailed Analysis of OOD Scoring Methods
	C.2 Additional Results w.r.t. the Temperature Hyperparameter 
	C.3 DBF vs. Outlier Exposure
	C.4 Analysis of Pseudo Mask Quality

	References

