
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PARALLEL SIMULATION FOR SAMPLING UNDER
ISOPERIMETRY AND SCORE-BASED DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

In recent years, there has been a surge of interest in proving discretization bounds
for sampling under isoperimetry and for diffusion models. As data size grows,
reducing the iteration cost becomes an important goal. Inspired by the great success
of the parallel simulation of the initial value problem in scientific computation, we
propose parallel Picard methods for sampling tasks. Rigorous theoretical analysis
reveals that our algorithm achieves better dependence on dimension d than prior
works in iteration complexity (i.e., reduced from Õ(poly(log d)) to Õ(log d)),
which is even optimal for sampling under isoperimetry with specific iteration
complexity. Our work highlights the potential advantages of simulation methods in
scientific computation for dynamics-based sampling and diffusion models.

1 INTRODUCTION

We study the problem of sampling from a probability distribution with density π(x) ∝ exp(−f(x))
where f : Rd → R is a smooth potential. We consider two types of setting. Problem (a): the
distribution is known only up to a normalizing constant (Chewi, 2023), and this kind of problem
is fundamental in many fields such as Bayesian inference, randomized algorithms, and machine
learning (Marin et al., 2007; Nakajima et al., 2019; Robert et al., 1999). Problem (b): known as the
score-based generative models (SGMs) (Song & Ermon, 2019), we are given an approximation of
∇ log πt, where πt is the density of a specific process at time t. The law of this process converges to
π over time. SGMs are now the state-of-the-art in many fields, such as computer vision and image
generation (Ho et al., 2022a; Dhariwal & Nichol, 2021), audio and video generation (Ho et al., 2022b;
Yang et al., 2023), and inverse problems (Song et al., 2021).

For Problem (a), specifically log-concave sampling, starting from the seminal papers of Dalalyan
& Tsybakov (2012), Dalalyan (2017), and Durmus & Moulines (2017), there has been a flurry of
recent works on proving non-asymptotic guarantees based on simulating a process which converges
to π over time (Wibisono, 2018; Vempala & Wibisono, 2019; Altschuler & Talwar, 2022; Mou et al.,
2021). Moreover, these processes, such as Langevin dynamics, converge exponentially quickly to π
under mild conditions (Dalalyan, 2017; Bernard et al., 2022; Mou et al., 2021). Such dynamics-based
algorithms for Problem (a) share a common feature with the inference process of SGMs that they are
actually a numerical simulation of an initial-value problem of differential equations (Hodgkinson
et al., 2021). Thanks to the exponentially fast convergence of the process, significant efforts have
been conducted on discretizing these processes using numerical methods such as the forward Euler,
backward Euler (proximal method), exponential integrator, mid-point, and high-order Runge-Kutta
methods (Vempala & Wibisono, 2019; Wibisono, 2019; Oliva & Akyildiz, 2024; Shen & Lee, 2019;
Li et al., 2019).

Furthemore, in recent years, there have been increasing interest and significant advances in under-
standing the convergence of inherently dynamics-based SGMs (De Bortoli, 2022; Lee et al., 2023;
Chen et al., 2024b; 2022; Tang & Zhao, 2024; Pedrotti et al., 2023; Li & Yan, 2024). Notably,
polynomial-time convergence guarantees have been established (Chen et al., 2022; 2024b; Benton
et al., 2024; Liang et al., 2024), and various discretization schemes for SGMs have been analyzed (Lu
et al., 2022a;b; Huang et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Comparison with existing parallel methods for sampling
under isoperimetry.

Work
dynamics Measure Iteration

Complexity
Space

Complexity
(Shen & Lee, 2019, Theorem 4)
underdamped Langevin diffusion W2 Õ

(
poly log

(√
d

ε

))
Õ

(
d3/2

ε

)
(Yu & Dalalyana, 2024, Corollary 2)

underdamped Langevin diffusion W2 Õ
(
poly log

(
d
ε2

))
Õ

(
d3/2

ε

)
(Anari et al., 2024, Theorem 13)
overdamped Langevin diffusion KL Õ

(
poly log

(
d
ε2

))
Õ

(
d2

ε2

)
(Anari et al., 2024, Theorem 15)
underdamped Langevin diffusion KL Õ

(
poly log

(
d
ε2

))
Õ

(
d3/2

ε

)
Theorem 4.3

overdamped Langevin diffusion KL Õ
(
log

(
d
ε2

))
Õ

(
d2

ε2

) Figure 1: Comparison with existing
parallel methods and lower bound
for sampling under isoperimetry.

The algorithms underlying the above results are highly sequential. However, with the increasing
size of data sets for sampling, we need to develop a theory for algorithms with limited iterations.
For example, the widely-used denoising diffusion probabilistic models (Ho et al., 2020) may take
1000 denoising steps to generate one sample, while the evaluations of a neural network-based score
function can be computationally expensive (Song et al., 2020).

As a comparison, recently, the (naturally parallelizable) Picard methods for diffusion models reduced
the number of steps to around 50 (Shih et al., 2024). Furthermore, in terms of the dependency on the
dimension d and accuracy ε, Picard methods for both Problems (a) and (b) were proven to be able to
return an ε-accurate solution within O(poly(log d)) iterations, improved from previous O(da) with
some a > 0. However, for Problem (a), a large gap remains relative to the recent lower bound shown
in Zhou et al. (2024), and the O(poly(log d)) iteration complexity is not yet optimal for diffusion
models.

OUR CONTRIBUTIONS

In this work, we propose a novel sampling method that employs a highly parallel discretization
approach for continuous processes, with applications to the overdamped Langevin diffusion and the
stochastic differential equation (SDE) implementation of processes in SGMs for Problems (a) and
(b), respectively.

Faster parallel sampling under isoperimetry1. We first present an improved result for parallel
sampling from a distribution satisfying the log-Sobolev inequality and log-smoothness. Specifically,
we improve the upper bound from Õ

(
log2

(
d
ε2

))
(Anari et al., 2024) to Õ

(
log
(

d
ε2

))
, with slightly

scaling the number of processors and gradient evaluations from O
(

d
ε2

)
to O

(
d
ε2 log

(
d
ε2

))
. Further-

more, our result matches the recent lower bound for log-concave distributions shown in Zhou et al.
(2024) for almost linear iterations and exponentially small accuracy. We summarize the comparison
in Figure 1.

Compared with methods based on underdamped Langevin diffusion, our method exhibits higher
space complexity2. This is primarily because underdamped Langevin diffusion typically follows
a smoother trajectory than overdamped Langevin diffusion, allowing for larger grid spacing and
consequently, a reduced number of grids. We summerize the comparison in Table 1. In this paper, we
will focus on the iteration complexity and discretization schemes for overdamped Langevin diffusion.

Faster parallel sampling for diffusion models. We then present an improved result for diffusion
models. Specifically, we propose an efficient algorithm with Õ

(
log
(

d
ε2

))
iteration complexity for

1In this work, we refer isoperimetry as the condition under which the target distribution satisfies the log-
Sobolev inequality. More generally, isoperimetry refers to isoperimetric inequalities that are implied by the
functional inequality such as the log-Sobolev inequality (Boucheron et al., 2003).

2We note, in this paper, that the space complexity refers to the number of words (Chen et al., 2024a;
Cohen-Addad et al., 2023) instead of the number of bits (Goldreich, 2008) to denote the approximate required
storage.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 2: Comparison with existing parallel methods for sampling for diffusion models.

Work
Implementation Measure Iteration

Complexity
Space

Complexity
(Chen et al., 2024a, Theorem 3.3)

SDE / Picard method KL Õ
(
poly log

(
d
ε2

))
Õ

(
d2

ε2

)
(Chen et al., 2024a, Theorem 3.5)

ODE / Picard method TV Õ
(
poly log

(
d
ε2

))
Õ

(
d3/2

ε2

)
(Gupta et al., 2024, Theorem B.13)

ODE / Parallel midpoint method TV Õ
(
poly log

(
d
ε2

))
Õ

(
d3/2

ε2

)
Theorem 5.4

SDE / Parallel Picard method KL Õ
(
log

(
d
ε2

))
Õ

(
d2

ε2

)
SDE implementations of diffusion models (Song & Ermon, 2019). Our method surpasses all the
existing parallel methods for diffusion models having Õ

(
poly log

(
d
ε2

))
iteration complexity (Chen

et al., 2024a; Gupta et al., 2024), with slightly increasing the number of the processors and gradient
evaluations and the space complexity for SDEs. We summarize the comparison in Table 2. Similarly,
the better space complexity of the ordinary differential equation (ODE) implementations is attributed
to the smoother trajectories of ODEs, which are more readily discretized.

2 PROBLEM SET-UP

In this section, we introduce some preliminaries and key ingredients of sampling under isoperimetry
and diffusion models in Sections 2.1 and 2.2, respectively. Subsequently, the basics of Picard
iterations are introduced in Section 2.3.

2.1 SAMPLING UNDER ISOPERIMETRY

Problem (a) (Sampling task). Given the potential function f : D → R, the goal of the sampling
task is to draw a sample from the density πf = Z−1

f exp(−f), where Zf :=
∫
D exp(−f(x))dx is

the normalizing constant.

Distribution and function class. If f is (strongly) convex, the density πf is said to be (strongly)
log-concave. If f is twice-differentiable and ∇2f ⪯ βI (where ⪯ denotes the Loewner order and I
is the identity matrix), we say the potential f is β-smooth and the density πf is β-log-smooth.

We say π satisfies a log-Sobolev inequality (LSI) with constant α > 0 if for all smooth f : R → R,

Entπ[f
2] := Eπ[f

2 log(f2/Eπ(f
2))] ≤ 2

α
Eπ[∥∇f∥2],

where ∥·∥ represents the l2-norm. By the Bakry–Émery criterion (Bakry & Émery, 2006), if π is
α-strongly log-concave then π satisfies LSI with constant α.

We define relative Fisher information of probability density ρ w.r.t. π as FI(ρ∥π) =

Eρ[∥∇ log(ρ/π)∥2] and the Kullback–Leibler (KL) divergence of ρ from π as KL(ρ∥π) =

Eρ log(ρ/π). By taking f =
√
ρ/π in the above definition of the LSI The LSI is equivalent to

the following relation between KL divergence and Fisher information:

KL(ρ∥π) ≤ 1

2α
FI(ρ∥π) for all probability measures ρ.

Langevin Dynamics. One of the most commonly-used dynamics for sampling is Langevin dynam-
ics (Chewi, 2023), which is the solution to the following SDE, dx = −∇f(x)dt+

√
2dBt, where

(Bt)t∈[0,T] is a standard Brownian motion in Rd. If π ∝ exp(−f) satisfies an LSI, then the law of
the Langevin diffusion converges exponentially fast to π (Bakry et al., 2014).

Score function for sampling task. We assume the score function s : Rd → R is a pointwise
accurate estimate of ∇V , i.e., ∥s(x)−∇V (x)∥ ≤ δ for all x ∈ Rd and some sufficiently small
δ ∈ R+.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Measures of the output. For two densities ρ and π, we define the total variation (TV) as
TV(ρ, π) = sup{ρ(E) − π(E) | E is an event}. We have the following relation between the KL
divergence and TV distance, known as the Pinsker inequality,

TV(ρ, π) ≤
√

1

2
KL(ρ∥π).

We denote by W2 the Wasserstein distance between ρ and π, which is defined as W2
2(ρ, π) =

inf
{
E(X,Y)∼Π

[
∥X − Y ∥2

]
| Π is a coupling of ρ, π

}
, where the infimum is over coupling distri-

butions
∏

of (X,Y) such that X ∼ ρ, Y ∼ π. If π satisfies an LSI with constant α, the following
transport-entropy inequality, known as Talagrand’s T2 inequality, holds (Otto & Villani, 2000) for all
ρ ∈ P2(Rd), i.e., with finite second moment,

α

2
W2

2(ρ, π) ≤ KL(ρ∥π).

Complexity. For any sampling algorithm, we consider the iteration complexity defined as unparal-
lelizable evaluations of the score function (Chen et al., 2024a; Zhou et al., 2024), and use the notion
of the space complexity to denote the approximate required storage during the inference. We note, in
this paper, that the space complexity refers to the number of words (Chen et al., 2024a; Cohen-Addad
et al., 2023) instead of the number of bits (Goldreich, 2008) to denote the approximate required
storage.

2.2 SCORE-BASED DIFFUSION MODELS

Sampling for diffusion models. In score-based diffusion models, one considers forward process
(xt)t∈[0,T] ∈ Rd governed by the canonical Ornstein-Uhlenbeck (OU) process (Ledoux, 2000):

dxt = −xtdt+ dBt, x0 ∼ q0, t ∈ [0, T], (1)

where q0 is the initial distribution over Rd. The corresponding backward process (⃗xt)t∈[0,T] ∈ Rd

follows an SDE defined as

d ⃗xt = −
[
1

2
⃗xt +∇ log ⃗pt(⃗xt)

]
dt+ dBt, ⃗x0 ∼ p0 ≈ N (0d, Id), t ∈ [0, T], (2)

where N (·, ·) represents the normal distribution over Rd. In practice, the score function ∇ log ⃗pt(⃗xt)
is estimated by neural network (NN) sθt : Rd 7→ Rd, where θ is the parameters of NN. The backward
process is approximated by

dyt = −
[
1

2
yt + sθt (yt)

]
dt+ dBt, y0 ∼ N (0d, Id), t ∈ [0, T]. (3)

Problem (b) (Sampling for SGMs). Given the learned NN-based score function sθt , the goal is to
simulate the approximated backward process such that the law of the output is close to q0.

Distribution class. For SGMs, we assume the data density p0 has finite second moments and
is normalized such that covp0

(x0) = Ep0

[
(x0 − Ep0

[x0])(x0 − Ep0
[x0])

⊤] = Id. Such a finite
moment assumption is standard across previous theoretical works on SGMs (Chen et al., 2023; 2024b;
2022) and we adopt the normalization to simplify true score function-related computations as Benton
et al. (2024) and Chen et al. (2024a) did.

OU process and inverse process The OU process and its inverse process also converge to the
target distribution exponentially fast in various divergences and metrics such as the 2-Wasserstein
metric W2; see Ledoux (2000). Furthermore, under mild conditions, the backward process (Eq. (2))
and its approximation version (Eq. (3)) contract exponentially, with TV between their distributions
diminishing exponentially as time progresses (Huang et al. (2024, Theorem 3.5) or setting the step
size h → 0 for the results in Chen et al. (2023; 2024b; 2022)).

Score function for SGMs. For the NN-based score, we assume the score function is L2-accurate,
bounded and Lipschitz; we defer the details in Section 5.2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2.3 PICARD ITERATIONS

Consider the integral form of the initial value problem, xt = x0 +
∫ t

0
ft(xs)ds+

√
2Bt. The main

idea (Clenshaw, 1957) is to approximate the difference over time slice [tn, tn+1] as

xtn+1
− xtn =

∫ tn+1

tn

ft(xs)ds+
√
2(Btn+1

−Btn)

≈
∑M

i=1
wift(xi)ds+

√
2(Btn+1

−Btn),

with a discrete grid of M collocation points as xtn = x0 ≤ x1 ≤ · · · ≤ xM = xtn+1
. We update

the points in a wave-like fashion, which inherently allows for parallelization:

xp+1
i = x0 +

∑M

i=1
wift(x

p
i) +

√
2(Bi −Btn), for i = 1, . . . ,M.

Various collocation points have been proposed, including uniform points and Chebyshev points (Bai
& Junkins, 2011). In this paper, however, we focus exclusively on the simplest case of uniform points,
and extension to other cases is future work. Picard iterations are known to converge exponentially
fast and, under certain conditions, even factorially fast for ODEs and backward SDEs (Hutzenthaler
et al., 2021).

3 TECHNICAL OVERVIEW

We adopt the time splitting for the time horizon used in the existing parallel methods (Gupta et al.,
2024; Chen et al., 2024a; Anari et al., 2024; Yu & Dalalyana, 2024; Shen & Lee, 2019). Our
algorithm, however, depart crucially from prior work in the design of parallelism across the time
slices, and the modification for controlling the score estimation error. Below we summarize these
notion contributions and technical novelties.

Recap of existing parallel sampling methods. Existing works for parallel sampling apply the
following generic discretization schemes (Gupta et al., 2024; Chen et al., 2024a; Anari et al., 2024;
Yu & Dalalyana, 2024; Shen & Lee, 2019). At a high level, these methods divide the time horizon
into many large time slices and each slice is further subdivided into grids with a small enough
step size. Instead of sequentially updating the grid points, they update all grids at the same time
slice simultaneously using exponentially fast converging Picard iterations (Alexander, 1990), or
randomized midpoint methods (Shen & Lee, 2019; Yu & Dalalyana, 2024; Gupta et al., 2024). With
Õ(log d) Picard iterations for Õ(log d) time slices, the total iteration complexity of their algorithms
is Õ(log2 d). However, while sequential updating of each time slice is not necessary for simulating
the process, it remains unclear how to parallelize across time slices for sampling to obtain O(log d)
time complexity.

Algorithmic novelty: parallel methods across time slices. Naively, if we directly update all the
grids simultaneously, the Picard iterations will not converge when the total length is T = Õ(log d).
Instead of updating all time slices together or updating the time slice sequentially, we update the
time slices in a diagonal style as illustrated in Figure 2. For any j-th update at then-th time slice
(corresponding the rectangle in the n-th column from the left and the j-th row from the top in Figure
2), there will be two inputs: (a) the right boundary point of the previous time slice, which has been
updated j times, and (b) the points on the girds of the same time slice that have been updated j − 1
times. Then we perform P times Picard iterations with these inputs, where the hyperparameter P
depends on the smoothness of the score function. The main difference compared to the existing
Picard methods is that for a fixed time slice, the starting points in our method are updated gradually,
whereas in existing methods, the starting points remain fixed once processed.

Challenges for convergence. Similar to the arguments for sequentially updating the time slices, we
use the standard techniques such as the interpolation method or Girsanov’s theorem (Chewi, 2023;
Vempala & Wibisono, 2019; Oksendal, 2013) and decompose the total error w.r.t. KL into three
components: (i) convergence error of the continuous process, (ii) discretization error, and (iii) score
estimation error. For (i) the convergence error of the continuous process, it is rather straightforward

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Time Depth: N = Õ(log d) time slices
initial dist. π0 target dist. π

Picard Depth:
J = Õ(log d)

depth

1

2

3

...
...

...

J

2 · · · N

N + 1

N + 2

N + J

· · ·

· · ·

· · ·

3

4

J + 1

...
...

...
...

...
...

Figure 2: Illustration of the parallel Picard method: each rectangle represents an update, and the
number within each rectangle indicates the index of the Picard iteration. The approximate time
complexity is N + J = Õ(log d).

to control and is actually independent of the specific method used to update the time slices. The
technical challenges rise from controlling the remaining two errors, which we summarize below.

(ii) Discretization error: Discretization error mainly arise from the truncation errors on discrete
grids with the grids gap as O(1/d). In existing parallel methods, the sequential update across time
slices benefits the convergence of truncation errors along the time direction. Assuming the truncation
errors in the previous time slice have converged, its right boundary serves as the starting point for all
grids in the current O(1)-length time slice which results in an initial bias of O(d). Subsequently, by
performing O(log d) exponentially fast Picard iterations, the truncation error will converge. However,
in our diagonal-style updating scheme across time, the truncation error interacts with inputs from both
the previous time slice and prior updates in the same time slice. Consequently, the bias-convergence
loop that holds in sequential updating no longer holds.

(iii) Score estimation error: If the score function itself is Lipschitz continuous (Assumption 5.3 for
Problem (b)), no additional score matching error will arise during the Picard iterations. This allows
the total score estimation error to remain bounded under mild conditions (Assumption 5.1). However,
for Problem (a), since it is the velocity field ∇f instead of the score function s that is Lipschitz,
additional score estimation errors will occur during each update. For the sequential algorithm, these
additional score estimation errors are contained within the bias-convergence loop, ensuring the total
score estimation error remains to be bounded. Conversely, for our diagonal-style updating algorithm,
the absence of convergence along the time direction causes these additional score estimation errors to
accumulate exponentially over the time direction.

Technical novelty. Our technical contributions address these challenges by the appropriate selection
of the number of Picard iterations within each update P and the depth of the Picard iterations J . We
outline the details of the choices below.

In the following, we assume that the truncation error at the n-th time slice and the j-th iteration scales
with Lj

n , and that the additional score estimation error for each update scales with δ2.

To address the initial challenge related to the truncation error, we choose the Picard depth as
J = O(N + log d). We first bound the error of the output for each update with respect to its inputs
as Lj

n ≤ aLj
n−1 + bLj−1

n , where a and b are constants. By carefully choosing the length of the time
slices, we can ensure that b < 1 along the Picard iteration direction. Consequently, the truncation
error will converge if the iteration depth J is sufficiently large, such that aNbJ is sufficiently small.
This requirement implies that J = O(N + log d).

To mitigate the additional score estimation error for Problem (a), we perform P Picard iterations
within each update. The interaction between the truncation error and additional score estimation error

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

can be expressed as Lj
n ≤ aLj

n−1+bLj−1
n +cδ2, where a, b, c are constants. To ensure the total score

estimation error remains bounded, it is necessary to have a, b < 1, which guarantees convergence
along both the time and Picard directions. By the convergence of the Picard iteration, we can achieve
b < 1. For a, the right boundary point of the previous time slice, and prior updates within the same
time slice introduce discrepancies in the truncation error. For the impact from the previous time slice,
we make use of the contraction of gradient decent to ensure convergence. However, since the grid gap
scale as 1/d, the contraction factor is close to 1. Consequently, we have to minimize the impact from
prior updates within the same time slice, which scales as O(1) by repeating P = logO(1) Picard
iterations for each update.

Balance between time and Picard directions. We note that the Picard method, despite being
the simplest approach for time parallelism, has achieved optimal performance in certain specific
settings. On the one hand, the continuous processes need to run for at least O(log d) time. To ensure
convergence within every time slice, the time slice length have to be set as O(1), resulting in a
necessity for at least O(log d) iterations. On the other hand, with a proper initialization O(d), Picard
iterations converge within O(log d) iterations. Our parallelization balances the convergence of the
continuous diffusion and the Picard iterations to achieve the improved results.

Realed works in scientific computation. Similar parallelism across time slices has also been
proposed in scientific computation (Gear, 1991; Ong & Schroder, 2020; Gander, 2015), especially
for parallel Picard iterations (Wang, 2023). Compared with prior work in scientific computation, our
approach exhibits several significant differences. Firstly, our primary objective differs from that in
simulation. In sampling, we aim to ensure that the output distribution closely approximates the target
distribution, whereas simulation seeks to make each point on the discrete grid closely match the true
dynamics. Second, our algorithm differs significantly from that of Wang (2023). In our algorithm,
each update takes the inputs without the corrector operation. Furthermore, we perform P Picard
iterations in each update to prevent error accumulation over time T = Õ(log d). In comparison, the
algorithm proposed in Wang (2023) performs a single Picard iteration in each update for simulation
on a finite time interval. However, these two fields are connected through the sampling strategies that
ensure each discrete point closely approximates the true process at every sampling step.

4 PARALLEL PICARD METHOD FOR SAMPLING UNDER ISOPERIMETRY

In this section, we present parallel Picard methods for sampling under isoperimetry (Algorithm 1)
and show it holds improved convergence rate w.r.t. the KL divergence and total variance under an
Log-Sobolev Inequality (Theorem 4.3 and Corollary 4.4). We illustrate the algorithm in Section 4.1,
and give a proof sketch in Section 4.3. All the missing proofs can be found in Appendix B.

4.1 ALGORITHM

Our parallel Picard method for sampling under isoperimetry is summarized in Algorithm 1. In Lines
1–3, we generate the noise part and fix them. In Lines 4–7, we initialize the value at the grid via
Langevin Monte Carlo (Chewi, 2023) with a stepsize h = O(1). In Lines 8–19, the time slices are
updated in a diagonal manner within the outer loop, as illustrated in Figure 2. In Lines 11–12 and
Lines 17-18, we repeat P Picard iterations for each update.

Remark 4.1. Parallelization should be understood as evaluating the score function concurrently,
with each time slice potentially being computed in an asynchronous parallel manner, resulting in the
overall P (N + J) +N iteration complexity.

Remark 4.2. If provided with a warm start, initialization becomes unnecessary. Additionally, in
practice, once the Picard iterations converge within a time slice, further updates are redundant. The
convergence can be verified by calculating the maximum changes of values across the girds.

4.2 THEORETICAL GUARANTEES

The following theorem summarizes our theoretical analysis for Algorithm 1.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 1: Parallel Picard Method for sampling
Input : x0 ∼ µ0, approximate score function s ≈ ∇f , the number of the iterations in outer loop

J , the number of the iteration in inner loop P , the number of time slices N , the length of
time slices h, the number of points on each time slices M .

1 for n = 0, . . . , N − 1 do
2 for m = 0, . . . ,M (in parallel) do
3 Bnh+m/Mh = Bnh +N (0, (mh/M)Id) ▷ generate the noise

4 for n = 0, . . . , N − 1 do
5 for m = 0, . . . ,M (in parallel) do
6 xj

−1,M = x0, for j = 0, . . . , J , ▷ initialization

7 x0
n,m = x0

n−1,M − hm
M s(x0

n−1,M) +
√
2(Bnh+mh/M −Bnh),

8 for k = 1, . . . , N do
9 for j = 1, . . . ,min{k − 1, J} and m = 1, . . . ,M (in parallel) do

10 let n = k − j, xj
n,0 = xj

n−1,M , and xj,0
n,m = xj−1

n,m,
11 for p = 1, . . . , P do

12 xj,p
n,m = xj

n,0 − h
M

m−1∑
m′=0

s(xj,p−1
n,m′) +

√
2(Bnh+mh/M −Bnh),

13 xj
n,m = xj,P

n,m,

14 for k = N + 1, . . . , N + J − 1 do
15 for n = max{0, k − J}, . . . , N − 1 and m = 1, . . . ,M (in parallel) do
16 let j = k − n, xj

n,0 = xj
n−1,M , and xj,0

n,m = xj−1
n,m,

17 for p = 1, . . . , P do

18 xj,p
n,m = xj

n,0 − h
M

m−1∑
m′=0

s(xj,p−1
n,m′) +

√
2(Bnh+mh/M −Bnh),

19 xj
n,m = xj,P

n,m,

20 return xJ
N−1,M .

Theorem 4.3. Suppose the potential function f is β-smooth and π satisfies a log-Sobolev inequality
with constant α, and the score function s is δ-accurate. Let κ = β/α. Suppose

βh = 0.1, M ≥ κd

ε2
, N ≥ 10κ log

(
KL(µ0∥π)

ε2

)
, δ ≤ 0.2

√
αε,

P ≥ 2 log κ

3
+ 4 and J −N ≥ log

(
N3

(
κδ2h+ κKL(µ0∥π) + κ2d

ε2

))
.

then Algorithm 1 runs within N + (N + J)P iterations with MN queries per iteration and outputs
a sample with marginal distribution ρ such that

max

{√
α

2
W2(ρ, π),TV(ρ, π)

}
≤
√

KL(ρ, π)

2
≤ 2ε.

To make the guarantee more explicit, we can combine it with the following well-known initialization
bound, see, e.g., Dwivedi et al. (2019, Section 3.2).
Corollary 4.4. Suppose that π = exp(−f) is α-strongly log-concave and β-log-smooth, and let κ =
β/α. Let x⋆ be the minimizer of f . Then, for µ0 = N (x⋆, β−1), it holds that KL(µ0∥π) ≤ d

2 log κ.
Consequently, setting

h =
1

10β
, N = 10κ log

(
d log κ

ε2

)
, δ ≤ 0.2

√
αε, M =

κd

ε2
,

P ≥ 2 log κ

3
+ 4 and J −N = O

(
log

κ2d log κ

ε2

)
,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

then Algorithm 1 runs within N + (N + J)P = Õ(κ log d
ε2) iterations with MN = Õ(κ

2d
ε2 log d

ε2)
queries per iteration and outputs a sample with marginal distribution ρ such that

max

{√
α

2
W2(ρ, π),TV(ρ, π)

}
≤
√

KL(ρ, π)

2
≤ 2ε.

Remark 4.5. Compared to the existing parallel methods, our method improves the iteration com-
plexity from O(poly(log d

ε2)) to O(log d
ε2), which matches the lower bound for exponentially small

accuracy shown in Zhou et al. (2024). The main drawback of our method is the sub-optimal space
complexity due to its application to overdamped Langevin diffusion which has a less smooth trajectory
compared to underdamped Langevin diffusion. However, we anticipate that our method could achieve
comparable space complexity when adapted to underdamped Langevin diffusion.

4.3 PROOF SKETCH OF THEOREM 4.3: PERFORMANCE ANALYSIS OF ALGORITHM 1

The detailed proof of Theorem 4.3 is deferred to Appendix B. By interpolation methods (Anari et al.,
2024), we decompose the error w.r.t. the KL divergence into four error components (corollary B.4):

KL ≲ e−Θ(N)KL(µ0∥π) +
N−1∑
n=1

e−Θ(n)EJ
N−n +

dh

M
+ δ2,

where Ej
n represents the truncation error of the grids at n-th time slice after j update. For the right

terms, with the choice of N = O(log d/ε2), M = O(dh/ε2) and δ ≤ ε, we can conclude that

e−Θ(N)KL(µ0∥π) +
dh

M
+ δ2 ≲ ε2

Thus, we will focus on proving the convergence of the truncation error in the Picard iterations, and
avoiding the accumulation of the score estimation error as discussed before.

Considering that the truncation error expands at most exponentially along the time direction, but
diminishes exponentially with an increased depth of the Picard iterations, convergence can be
achieved by ensuring that the depth of the Picard iterations surpasses the number of time slices as
J ≥ N +O(log d/ε2) with initialization error bounded by O(d) (the second part of Corollary B.7
and second part of Corollary B.9).

Due to the non-Lipschitzness of the score function, we can only bound Ej
n by quantity a∆j

n−1 +

bEj−1
n + cδ2h2 (Lemma B.5 and Lemma B.8), where ∆j

n−1 represents the truncation error from
the previous time slice. To control the increase of the score error, it is essential to ensure that the
coefficients a and b remain below one. To achieve this, the proof leverages the contraction properties
of the gradient descent map and executes P Picard iterations in each update.

5 PARALLEL PICARD METHOD FOR SAMPLING OF DIFFUSION MODELS

In this section, we present parallel Picard methods for diffusion models in Section 5.1 and assumptions
in Section 5.2. Then we show it holds improved convergence rate w.r.t. the KL divergence (Theorem
5.4). All the missing details can be found in Appendix C.

5.1 ALGORITHM

Due to the space limit, we refer the readers to Appendix C.1 and Algorithm 2 for the details of
our parallelization of Picard methods for diffusion models. It keeps same parallel structure as that
illustrated in Figure 1. Notably, it has the following distinctions compared with parallel Picard
methods for sampling (Algorithm 1):

• Instead of uniform discrete grids, we employ a shrinking step size discretization scheme towards
the data end, and the early stopping technique which is unvoidable to show the convergence for
diffusion models (Chen et al., 2024a). We show the details in Appendix C.1;

• We use an exponential integrator instead of the Euler-Maruyama Integrator in Picard iterations,
where an additional high-order discretization error term would emerge (Chen et al., 2023), which
we believe would not affect the overall O(log d) iteration complexity with parallel sampling;

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

• Since the score function itself is Lipschitz, there will not be additional score matching error during
Picard iterations. As a result, we perform single Picard iteration in one update, i.e., P = 1.

5.2 ASSUMPTIONS

Our theoretical analysis of the algorithm assumes mild conditions regarding the data distribution’s
regularity and the approximation properties of NNs. These assumptions align with those established
in previous theoretical works, such as those described by Chen et al. (2024a; 2023; 2024b; 2022).
Assumption 5.1 ((L2([0, tN]) δ-accurate learned score). The learned NN-based score sθt is δ2-
accurate in the sense of

E ⃗p

[∑N−1

n=0

∑Mn−1

m=0
ϵn,m

∥∥∥sθtn+τn,m
(⃗xtn+τn,m)−∇ log ⃗ptn+τn,m

(⃗xtn+τn,m)
∥∥∥2] ≤ δ22 .

Assumption 5.2 (Regular and normalized data distribution). The data density p0 has finite second
moments and is normalized such that covp0

(x0) = Id.
Assumption 5.3 (Bounded and Lipschitz learned NN-based score). The learned NN-based score
function sθt has a bounded C1 norm, i.e. ,

∥∥∥∥sθt (·)∥∥∥∥L∞([0,T])
with Lipschitz constant Ls.

5.3 THEORETICAL GUARANTEES

Theorem 5.4. Under Assumptions 5.1, 5.2, and 5.3, given the following choices of the order of the
parameters

h = Θ(1), N = O
(
log

d

ε2

)
, M = O

(
d

ε2
log

d

ε2

)
,

T = O
(
log

d

ε2

)
, and J = O

(
N + log

Nd

ε2

)
,

the parallel Picard algorithm for diffusion models (Algorithm 2) generates samples from satisfies the
following error bound,

KL(pη∥q̃tN) ≲ de−T +
dT

M
+ ε2 + δ22 ≲ ε2, (4)

with total 2N + J = Õ
(
log d

ε2

)
iteration complexity and dM = Õ

(
d2

ε2

)
space complexity for

parallalizable δ2-accurate score function computations.
Remark 5.5. Compared to existing parallel methods, our method improves the iteration complexity
from O(poly(log d

ε2)) to O(log d
ε2). The main drawback of our method is the sub-optimal space

complexity due to its application to SDE implementations which has a less smooth trajectory compared
to ODE implementations. However, we believe that our method could achieve comparable space
complexity when adapted to ODE implementations.

6 DISCUSSION AND CONCLUSION

In this work, we proposed novel parallel Picard methods for various sampling tasks. Notably, we
obtain ε2-accurate sample w.r.t. the KL divergence within Õ

(
log d

ε2

)
, which is the tight rate for

exponentially small accuracy for sampling with isoperimetry and represents a significant improvement
from Õ

(
poly log d

ε2

)
for diffusion models. Furthermore compared with the existing methods applied

to the overdamped Langevin dynamics or the SDE implementations for diffusion models, our space
complexity only scales by a logarithmic factor.

Several promising theoretical directions for future research emerge from our study. First, by serving
as an analogue of simulation methods in scientific computation, our work demonstrates the potentials
for developing rapid and efficient sampling methods through other discretization techniques for
simulation. Another avenue involves exploring smoother dynamics, aiming to reduce the space
complexity associated with these methods.

Lastly, although our highly parallel methods may introduce engineering challenges, such as the
memory bandwidth, we believe our theoretical works will motivates the empirical development of
parallel algorithms for both sampling and diffusion models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Roger Alexander. Solving ordinary differential equations i: Nonstiff problems. Siam Review, 1990.

Jason M Altschuler and Kunal Talwar. Resolving the mixing time of the Langevin algorithm to its
stationary distribution for log-concave sampling. arXiv preprint arXiv:2210.08448, 2022.

Nima Anari, Sinho Chewi, and Thuy-Duong Vuong. Fast parallel sampling under isoperimetry. arXiv
preprint arXiv:2401.09016, 2024.

Xiaoli Bai and John L Junkins. Modified Chebyshev-Picard iteration methods for orbit propagation.
The Journal of the Astronautical Sciences, 2011.

Dominique Bakry and Michel Émery. Diffusions hypercontractives. In Séminaire de Probabilités
XIX 1983/84: Proceedings. Springer, 2006.

Dominique Bakry, Ivan Gentil, Michel Ledoux, et al. Analysis and geometry of Markov diffusion
operators, volume 103. Springer, 2014.

Joe Benton, VD Bortoli, Arnaud Doucet, and George Deligiannidis. Nearly d-linear convergence
bounds for diffusion models via stochastic localization. 2024.

Étienne Bernard, Max Fathi, Antoine Levitt, and Gabriel Stoltz. Hypocoercivity with schur comple-
ments. Annales Henri Lebesgue, 5:523–557, 2022.

Stéphane Boucheron, Gábor Lugosi, and Olivier Bousquet. Concentration inequalities. In Summer
school on machine learning, pp. 208–240. Springer, 2003.

Haoxuan Chen, Yinuo Ren, Lexing Ying, and Grant M Rotskoff. Accelerating Diffusion Models with
Parallel Sampling: Inference at Sub-Linear Time Complexity. arXiv preprint arXiv:2405.15986,
2024a.

Hongrui Chen, Holden Lee, and Jianfeng Lu. Improved analysis of score-based generative modeling:
User-friendly bounds under minimal smoothness assumptions. In International Conference on
Machine Learning. PMLR, 2023.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy
as learning the score: theory for diffusion models with minimal data assumptions. arXiv preprint
arXiv:2209.11215, 2022.

Sitan Chen, Sinho Chewi, Holden Lee, Yuanzhi Li, Jianfeng Lu, and Adil Salim. The probability
flow ODE is provably fast. Advances in Neural Information Processing Systems, 36, 2024b.

Sinho Chewi. Log-concave sampling. Book draft available at https://chewisinho. github. io, 2023.

Sinho Chewi, Murat A Erdogdu, Mufan Li, Ruoqi Shen, and Matthew S Zhang. Analysis of Langevin
Monte Carlo from Poincaré to Log-Sobolev. Foundations of Computational Mathematics, 2024.

CW Clenshaw. The numerical solution of linear differential equations in Chebyshev series. In
Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press,
1957.

Vincent Cohen-Addad, David P Woodruff, and Samson Zhou. Streaming Euclidean k-median and
k-means with o(log n) Space. In 2023 IEEE 64th Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 2023.

Arnak S Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave
densities. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2017.

Arnak S Dalalyan and Alexandre B Tsybakov. Sparse regression learning by aggregation and
Langevin Monte-Carlo. Journal of Computer and System Sciences, 2012.

Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis.
arXiv preprint arXiv:2208.05314, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Sever Silvestru Dragomir. Some Gronwall type inequalities and applications. Science Direct Working
Paper, 2003.

Alain Durmus and Eric Moulines. Nonasymptotic convergence analysis for the unadjusted Langevin
algorithm. 2017.

Raaz Dwivedi, Yuansi Chen, Martin J Wainwright, and Bin Yu. Log-concave sampling: Metropolis-
Hastings algorithms are fast. Journal of Machine Learning Research, 2019.

Martin J Gander. 50 years of time parallel time integration. In Multiple Shooting and Time Domain
Decomposition Methods: MuS-TDD, Heidelberg, May 6-8, 2013, pp. 69–113. Springer, 2015.

CW Gear. Waveform methods for space and time parallelism. Journal of Computational and Applied
Mathematics, 1991.

Oded Goldreich. Computational complexity: a conceptual perspective. ACM Sigact News, 2008.

Shivam Gupta, Linda Cai, and Sitan Chen. Faster diffusion-based sampling with randomized
midpoints: Sequential and parallel. arXiv preprint arXiv:2406.00924, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 2020.

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans.
Cascaded diffusion models for high fidelity image generation. Journal of Machine Learning
Research, 23(47):1–33, 2022a.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in Neural Information Processing Systems, 35:8633–8646,
2022b.

Liam Hodgkinson, Robert Salomone, and Fred Roosta. Implicit Langevin algorithms for sampling
from log-concave densities. Journal of Machine Learning Research, 22(136):1–30, 2021.

Daniel Zhengyu Huang, Jiaoyang Huang, and Zhengjiang Lin. Convergence Analysis of Probability
Flow ODE for Score-based Generative Models. arXiv preprint arXiv:2404.09730, 2024.

Martin Hutzenthaler, Thomas Kruse, and Tuan Anh Nguyen. On the speed of convergence of Picard
iterations of backward stochastic differential equations. arXiv preprint arXiv:2107.01840, 2021.

Michel Ledoux. The geometry of markov diffusion generators. In Annales de la Faculté des sciences
de Toulouse: Mathématiques, 2000.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence of score-based generative modeling for general
data distributions. In International Conference on Algorithmic Learning Theory. PMLR, 2023.

Gen Li and Yuling Yan. Adapting to Unknown Low-Dimensional Structures in Score-Based Diffusion
Models. arXiv preprint arXiv:2405.14861, 2024.

Xuechen Li, Yi Wu, Lester Mackey, and Murat A Erdogdu. Stochastic Runge-Kutta Accelerates
Langevin Monte Carlo and Beyond. Advances in neural information processing systems, 32, 2019.

Yuchen Liang, Peizhong Ju, Yingbin Liang, and Ness Shroff. Non-asymptotic convergence of discrete-
time diffusion models: New approach and improved rate. arXiv preprint arXiv:2402.13901, 2024.

C Lu, Y Zhou, F Bao, J Chen, and C Li. A Fast ODE Solver for Diffusion Probabilistic Model
Sampling in Around 10 Steps. Proc. Adv. Neural Inf. Process. Syst., New Orleans, United States,
pp. 1–31, 2022a.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jean-Michel Marin, Christian P Robert, et al. Bayesian Core: A Practical Approach to Computational
Bayesian statistics, volume 268. Springer, 2007.

Wenlong Mou, Yi-An Ma, Martin J Wainwright, Peter L Bartlett, and Michael I Jordan. High-
order Langevin diffusion yields an accelerated MCMC algorithm. Journal of Machine Learning
Research, 2021.

Shinichi Nakajima, Kazuho Watanabe, and Masashi Sugiyama. Variational Bayesian learning theory.
Cambridge University Press, 2019.

Bernt Oksendal. Stochastic differential equations: an introduction with applications. Springer
Science & Business Media, 2013.

Paul Felix Valsecchi Oliva and O Deniz Akyildiz. Kinetic Interacting Particle Langevin Monte Carlo.
arXiv preprint arXiv:2407.05790, 2024.

Benjamin W Ong and Jacob B Schroder. Applications of time parallelization. Computing and
Visualization in Science, 23:1–15, 2020.

Felix Otto and Cédric Villani. Generalization of an inequality by talagrand and links with the
logarithmic sobolev inequality. Journal of Functional Analysis, 2000.

Francesco Pedrotti, Jan Maas, and Marco Mondelli. Improved convergence of score-based diffusion
models via prediction-correction. arXiv preprint arXiv:2305.14164, 4, 2023.

Christian P Robert, George Casella, and George Casella. Monte Carlo statistical methods, volume 2.
Springer, 1999.

Ruoqi Shen and Yin Tat Lee. The Randomized Midpoint Method for Log-Concave Sampling.
Advances in Neural Information Processing Systems, 32, 2019.

Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, and Nima Anari. Parallel sampling of
diffusion models. Advances in Neural Information Processing Systems, 36, 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medical imaging
with score-based generative models. arXiv preprint arXiv:2111.08005, 2021.

Wenpin Tang and Hanyang Zhao. Contractive diffusion probabilistic models. arXiv preprint
arXiv:2401.13115, 2024.

Santosh Vempala and Andre Wibisono. Rapid convergence of the unadjusted langevin algorithm:
Isoperimetry suffices. Advances in neural information processing systems, 2019.

Yinkun Wang. Parallel numerical picard iteration methods. Journal of Scientific Computing, 95(1):
27, 2023.

Andre Wibisono. Sampling as optimization in the space of measures: The Langevin dynamics as a
composite optimization problem. In Conference on Learning Theory, 2018.

Andre Wibisono. Proximal Langevin algorithm: Rapid convergence under isoperimetry. arXiv
preprint arXiv:1911.01469, 2019.

Ruihan Yang, Prakhar Srivastava, and Stephan Mandt. Diffusion probabilistic modeling for video
generation. Entropy, 25(10):1469, 2023.

Lu Yu and Arnak Dalalyana. Parallelized midpoint randomization for langevin monte carlo. arXiv
preprint arXiv:2402.14434, 2024.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
arXiv preprint arXiv:2204.13902, 2022.

Huanjian Zhou, Baoxiang Wang, and Masashi Sugiyama. Adaptive complexity of log-concave
sampling. arXiv preprint arXiv:2408.13045, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A USEFUL TOOLS

A.1 GIRSANOV’S THEOREM

Theorem A.1 (Properties of f -divergence). Suppose p and q are two probability measures on a
common measurable space (Ω,F) with p ≪ q. The f -divergence between p and q is defined as

Df (p∥q) = EX

[
f

(
dp

dq

)]
,

where dp
dq is the Radon-Nikodym derivative of p with respect to q, and f : R+ → R is a convex function.

In particular, Df (·∥·) coincides with the Kullback–Leibler (KL) divergence when f(x) = x log x
and Df (·∥·) = TV coincides with the total variation (TV) distance when f(x) = 1

2 |x− 1|.
For the f -divergence defined above, we have the following properties:

1. (Data-processing inequality). Suppose H is a sub-σ-algebra of F , the following inequality
holds

Df (p|H∥q|H) ≤ Df (p∥q),
for any f -divergence Df (·∥·).

2. (Chain rule). Suppose X is a random variable generating a sub-σ-algebra FX of F , and
p(·|X) ≪ q(·|X) holds for any value of X , then

KL(p∥q) = KL(pFX
∥q|FX

) + E|FX
[KL(p(·|X)∥q(·|X))] .

Similar as Chen et al. (2024a), for the diffusion model, we consider a probability space (Ω,F , p) on
which (wt(ω))t≥0 is a Wiener process in Rd. The Wiener process (wt(ω))t≥0 generates the filtration
{Ft}t≥0 on the measurable space (Ω,F). For an Itô process zt(ω) with the following governing
SDE:

dzt(ω) = α(t, ω)dt+Σ(t, ω)dwt(ω),

for any time t, we denote the marginal distribution of zt by pt, i.e.,

pt := p
(
z−1
t (·)

)
, where zt : Ω → Rm, ω 7→ zt(ω),

as well as the path measure of the process zt in the sense of

pt1:t2 := p
(
z−1
t1:t2(·)

)
, where zt1:t2 : Ω → C([t1, t2],Rm), ω 7→ (zt(ω))t∈[t1,t2].

For the sake of simplicity, we define the following class of functions:
Definition A.2. For any 0 ≤ t1 < t2, we define V(t1, t2) as the class of functions f(t, ω) :
[0,+∞)× Ω → R such that:

1. f(t, ω) is B × Ft-measurable, where B is the Borel σ-algebra on Rd;

2. f(t, ω) is Ft-adapted for all t ≥ 0;

3. The following Novikov condition holds:

E
[
exp

(∫ t2

t1

f2(t, ω)dt

)]
< +∞.

and V = ∩ϵ>0V(ϵ). For vectors and matrices, we say it belongs to Vn(t, ω) or Vm×n(t, ω) if each
component of the vector or each entry of the matrix belongs to V(t, ω).

For such class of functions, we remind the following generalized version of Girsanov’s theorem
Theorem A.3 (Girsanov’s Theorem (Oksendal, 2013, Theorem 8.6.6)). Let α(t, ω) ∈ Vm,
Σ(t, ω) ∈ Vm×n, and (wt(ω))t≥0 be a Wiener process on the probability space (Ω,F , q). For
t ∈ [0, T], suppose zt(ω) is an Itô process with the following SDE:

dzt(ω) = α(t, ω)dt+Σ(t, ω)dwt(ω), (5)

and there exist processes δ(t, ω) ∈ Vn and β(t, ω) ∈ Vm such that:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

1. Σ(t, ω)δ(t, ω) = α(t, ω)− β(t, ω);

2. The process Mt(ω) as defined below is a martingale with respect to the filtration {Ft}t≥0

and probability measure q:

Mt(ω) = exp

(
−
∫ t

0

δ(s, ω)⊤dws(ω)−
1

2

∫ t

0

∥δ(s, ω)∥2ds
)
,

then there exists another probability measure p on (Ω,F) such that:

1. p ≪ q with the Radon-Nikodym derivative dp
dq (ω) = MT (ω),

2. The process w̃t(ω) as defined below is a Wiener process on (Ω,F , p):

w̃t(ω) = wt(ω) +

∫ t

0

δ(s, ω)ds,

3. Any continuous path in C([t1, t2],Rm) generated by the process zt satisfies the following
SDE under the probability measure p:

dz̃t(ω) = β(t, ω)dt+Σ(t, ω)dw̃t(ω). (6)
Corollary A.4. Suppose the conditions in Theorem A.3 hold, then for any t1, t2 ∈ [0, T] with
t1 < t2, the path measure of the SDE equation 6 under the probability measure p in the sense of
pt1:t2 = p(z−1

t1:t2(·)) is absolutely continuous with respect to the path measure of the SDE equation 5
in the sense of qt1:t2 = q(z−1

t1:t2(·)). Moreover, the KL divergence between the two path measures is
given by

KL(pt1:t2∥qt1:t2) = KL(pt1∥qt1) + Eω∼p|Ft1

[
1

2

∫ t2

t1

∥δ(t, ω)∥2dt
]
.

A.2 COMPARISON INEQUALITIES

Theorem A.5 (Gronwall inequality (Dragomir, 2003, Theorem 1)). Let x, Ψ and χ be real
continuous functions defined in [a, b], χ(t) ≥ 0 for t ∈ [a, b]. We suppose that on [a, b] we have the
inequality

x(t) ≤ Ψ(t) +

∫ t

a

χ(s)x(s)ds.

Then

x(t) ≤ Ψ(t) +

∫ t

a

χ(s)Ψ(s) exp

[∫ t

s

χ(u)du

]
ds.

A.3 HELP LEMMAS FOR DIFFUSION MODELS

Lemma A.6 (Lemma 9 in Chen et al. (2023)). For q̂0 ∼ N (0, Id) and ⃗p = pT is the distribution of
the solution to the forward process (Eq. (2)), we have

KL(⃗p0∥q̂0) ≲ de−T .

B MISSING PROOF FOR SAMPLING UNDER ISOPERIMETRY

B.1 ONE STEP ANALYSIS OF KLjn: FROM KL’S CONVERGENCE TO PICARD CONVERGENCE

In this section, we use the interpolation method to analyse the change of KLjn along time direction,
which will be bounded by discretization error and score error.
Lemma B.1. Assume βh ≤ 0.1. For any j = 1, . . . , J , n = 1, . . . , N − 1, we have

KLjn ≤ exp(−1.2αh)KLjn−1 +
0.5βdh

M
+ 4.4β2hEj

n + 2.1δ2h.

Furthermore, for initialization part, i.e., j = 0, n = 0, . . . , N − 1, we have

KL0n ≤ exp (−α(n+ 1)h)KL(µ0∥π) +
8β2dh

α
,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Remark B.2. In the first equation, the term exp(−1.2αh)KLjn−1 characterizes the convergence
of the continuous diffusion. Additionally, the second and third terms quantify the discretization
error. Adopting P = 0 and M = 1 reverts to the classical scenario, where the discretization error
approximates O(hd), as discussed in Section 4.1 of Chewi (2023). Moreover, the second term is
influenced by the density of the grids, while the third term is dependent on the convergence of the
Picard iterations. The fourth term accounts for the score error.

Proof. We will use the interpolation method and follow the proof of Theorem 13 in Anari et al.
(2024). For j ∈ [J], n = 0, . . . , N − 1 and m = 0, . . . ,M − 1, it is easy to see that

xj
n,m+1 = xj

n,m − h

M
s(xj,P−1

n,m) +
√
2(Bnh+(m+1)/h −Bnh+mh/M).

Let xt denote the linear interpolation between xj
n,m+1 and xj

n,m, i.e., for t ∈[
nh+ mh

M , nh+ (m+1)hh
M

]
, let

xt = xj
n,m −

(
t− nh− mh

M

)
s(xj,P−1

n,m) +
√
2(Bt −Bnh+mh/M).

Note that s(xj,P
n,m) is a constant vector field. Let µt be the law of xt. The same argument as in

(Vempala & Wibisono, 2019, Lemma 3/Equation 32) yields the differential inequality

∂tKL(µt∥π) = −FI(µt∥π) + E
〈
∇f(xt)− s(xj,P−1

n,m),∇ log
µt(xt)

π(xt)

〉
≤ −3

4
FI(µt∥π) + E

[∥∥∇f(xt)− s(xj,P−1
n,m)

∥∥2] , (7)

where we used (a, b) ≤ 1
4∥a∥

2 + ∥b∥2 and E
[∥∥∥∇ log µt(xt)

π(xt)

∥∥∥2] = FI(µt∥π). For the first term, by

LSI, we have KL(µt∥π) ≤ 1
2αFI(µt∥π). For the second term, we have

E
[∥∥∇f(xt)− s(xj,P−1

n,m)
∥∥2]

≤ 2E
[∥∥∇f(xt)−∇f(xj,P−1

n,m)
∥∥2]+ 2E

[∥∥∇f(xj,P−1
n,m)− s(xj,P−1

n,m)
∥∥2]

≤ 2β2E
[∥∥xt − xj,P−1

n,m

∥∥2]+ 2δ2. (8)

Moreover,

E
[∥∥xt − xj,P−1

n,m

∥∥2] ≤ 2E
[∥∥xt − xj

n,m

∥∥2]+ 2E
[∥∥xj,P

n,m − xj,P−1
n,m

∥∥2] (9)

For the first term, which will be influenced by density of grids, we have

E
[∥∥xt − xj

n,m

∥∥2]
≤
(
t− nh− mh

M

)2

E
[∥∥s(xj,P−1

n,m)
∥∥2]+ d

(
t− nh− mh

M

)
≤ h2

M2
E
[∥∥s(xj,P−1

n,m)
∥∥2]+ d

(
t− nh− mh

M

)
≤ 2h2

M2
E
[∥∥∇f(xj,P−1

n,m)
∥∥2]+ 2δ2h2

M2
+

dh

M

≤ 4β2h2

M2
E
[∥∥xt − xj,P−1

n,m

∥∥2]+ 4h2

M2
E
[
∥∇f(xt)∥2

]
+

2δ2h2

M2
+

dh

M
. (10)

Taking βh ≤ 1
10 , and combining Eq. (9) and Eq. (10), we have

E
[∥∥xt − xj,P−1

n,m

∥∥2] ≤ 4.4h2

M2
E
[
∥∇f(xt)∥2

]
+

2.2δ2h2

M2
+

1.1dh

M
+ 2.2E

[∥∥xj
n,m − xj,P−1

n,m

∥∥2] .
(11)

For the first term, we recall the following lemma.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Lemma B.3 (Lemma 16 in Chewi et al. (2024)).

E
[
∥∇f(xt)∥2

]
≤ FI(µt∥π) + 2βd.

Combining Eq. (7), Eq. (8), Eq. (11) and βh ≤ 1
10 , we have for j ∈ [J], n = 0, . . . , n − 1,

m = 0, . . . ,M − 1, and t ∈
[
nh+ mh

M , nh+ (m+1)hh
M

]
,

∂tKL(µt∥π)

≤ − 3

4
FI(µt∥π) + E

[∥∥∇f(xt)− s(xj,P−1
n,m)

∥∥2]
≤ − 3

4
FI(µt∥π) + 2β2E

[∥∥xt − xj,P−1
n,m

∥∥2]+ 2δ2

≤ − 3

4
FI(µt∥π) +

8.8β2h2

M2
E
[
∥∇f(xt)∥2

]
+

4.4β2δ2h2

M2
+

2.2β2dh

M
+ 4.4β2E

[∥∥xj,P
n,m − xj,P−1

n,m

∥∥2]+ 2δ2

≤ − 3

4
FI(µt∥π) +

0.1

M2
E
[
∥∇V (Xt)∥2

]
+

0.1δ2

M2
+

2.2β2dh

M
+ 4.4β2Ej

n + 2δ2

≤ − 3

4
FI(µt∥π) +

0.1

M2
(FI(µt∥π) + 2βd) +

0.1δ2

M2
+

2.2β2dh

M
+ 4.4β2Ej

n + 2δ2

≤ − 1.2αKL(µt∥π) +
0.5βd

M
+ 4.4β2Ej

n + 2.1δ2

Since this inequality holds independently of m, we integral from t = nh to t = (n+ 1)h,

KLjn ≤ exp(−1.2αh)KLjn−1 +
0.5βdh

M
+ 4.4β2hEj

n + 2.1δ2h.

As for j = 0, actually, Line 4-7 performs a Langevin Monte Carlo with step size h, by Theorem 4.2.6
in Chewi (2023), we have

KL0n ≤ exp (−αnh)KL00 +
8dhβ2

α
,

with 0 < h ≤ 1
4L .

Corollary B.4. Assume βh ≤ 0.1. We have

KLJN−1 ≤ e−1.2α(N−1)h
(
KL(µ0∥π) + 4.4β2h∆J

0

)
+

N−1∑
n=1

e−1.2α(n−1)h4.4β2hEJ
N−n+

0.5βd

αM
+
2.1δ2

α
.

Furthermore, if EJ
N−n has a uniform bound as EJ

N−n ≤ E + 500δ2h2, we have

KLJN−1 ≤ e−1.2α(N−1)h
(
KL(µ0∥π) + 4.4β2h∆J

0

)
+ 5βκE +

0.5βd

αM
+

2.5δ2

α
.

Proof. By Lemma B.1, we decompose KLJN−1 as

KLJN−1 ≤ e−1.2α(N−1)hKLJ0 +

N−1∑
n=1

e−1.2α(n−1)h

(
0.5βdh

M
+ 4.4β2hEJ

N−n + 2.1δ2h

)
≤ e−1.2α(N−1)h

(
KL(µ0∥π) + 4.4β2h∆J

0

)
+

4.4β2h(E + 500δ2h2) + 0.5βdh
M + 2.1δ2h

1− exp(−1.2αh)

≤ e−1.2α(N−1)h
(
KL(µ0∥π) + 4.4β2h∆J

0

)
+

1.1

αh
4.4β2hE +

1.1

αh

0.5βdh

M

+
1.1

αh
25δ2h

= e−1.2α(N−1)h
(
KL(µ0∥π) + 4.4β2h∆J

0

)
+ 5κβE +

0.6βd

αM
+

28δ2

α
,

where the third inequality holds since 0 < x < 0.4, we have 1.1 − 1.1 exp(−1.2x) − x > 0. It is
clear that αh < βh < 0.1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B.2 ONE STEP ANALYSIS OF ∆j
n

In this section, we analyze the one step change of ∆j
n first.

Lemma B.5. Assume βh = 1
10 and P ≥ 2 log κ

3 + 4. For any j = 2, . . . , J , n = 1, . . . , N − 1, we
have

∆j
n ≤

(
1− 0.005

κ

)
∆j

n−1 + 4.4

(
1

M
+ 10κ

)
h2δ2 + 4.4

(
1

M
+ 10κ

)
β2h2Ej−1

n .

Furthermore, for j = 1, n = 1, . . . , N − 1, we have

∆1
n ≤ ∆1

n−1 +

(
1

M
+ 10κ

)(
5δ2h2 + 6β2dh3 + 0.4β2h2KL

0
n−1

α

)
.

Proof. Decomposition when j ≥ 2. In fact, for j ∈ [J], n = 0, . . . , N − 1, m = 0, . . . ,M − 1, and
p = 1, . . . , P , it is easy to see that

xj,p
n,m+1 = xj,p

n,m − h

M
s(xj,p−1

n,m) +
√
2(Bnh+(m+1)/h −Bnh+mh/M).

For any j = 2, . . . , J , n = 1, . . . , N − 1, by the contraction of ϕ(x) = x− h
M∇f(x) (Lemma 2.2

in Altschuler & Talwar (2022)), for any m = 1, . . . ,M , we have,

E
[∥∥xj,P

n,m − xj−1,P
n,m

∥∥2]
= E

[∥∥∥∥xj,P
n,m−1 −

h

M
s(xj,P−1

n,m−1)−
(
xj−1,P
n,m−1 −

h

M
s(xj−1,P−1

n,m−1)

)∥∥∥∥2
]

≤ (1 + η)E

[∥∥∥∥xj,P
n,m−1 −

h

M
∇f(xj,P

n,m−1)−
(
xj−1,P
n,m−1 −

h

M
∇f(xj−1,P

n,m−1)

)∥∥∥∥2
]

+

(
2 +

2

η

)
E

[∥∥∥∥ h

M
∇f(xj,P

n,m−1)−
h

M
∇f(xj,P−1

n,m−1) +
h

M
∇f(xj−1,P

n,m−1)−
h

M
∇f(xj−1,P−1

n,m−1)

∥∥∥∥2
]

+

(
2 +

2

η

)
E

[∥∥∥∥ h

M
∇f(xj,P−1

n,m−1)−
h

M
s(xj,P−1

n,m−1) +
h

M
∇f(xj−1,P−1

n,m−1)− h

M
s(xj−1,P−1

n,m−1)

∥∥∥∥2
]

≤ (1 + η)

(
1− αh

M

)2

E
[∥∥∥xj,P

n,m−1 − xj−1,P
n,m−1

∥∥∥2]+ (4 + 4

η

)
h2

M2
δ2

+

(
4 +

4

η

)
β2h2

M2
E
[∥∥∥xj,P

n,m−1 − xj,P−1
n,m−1

∥∥∥2]+ (4 + 4

η

)
β2h2

M2
E
[∥∥∥xj−1,P

n,m−1 − xj−1,P−1
n,m−1

∥∥∥2] .
18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

By setting η = αh
M = 1

10κM , we have

E
[∥∥∥xj,P

n,M − xj−1,P
n,M

∥∥∥2]
≤
(
1− αh

M

)M

E
[∥∥∥xj,P

n,0 − xj−1,P
n,0

∥∥∥2]+ (4 + 4

η

)
h2

M
δ2

+

M∑
m=1

(
4 +

4

η

)
β2h2

M2
E
[∥∥∥xj,P

n,m−1 − xj,P−1
n,m−1

∥∥∥2]

+

M∑
m=1

(
4 +

4

η

)
β2h2

M2
E
[∥∥∥xj−1,P

n,m−1 − xj−1,P−1
n,m−1

∥∥∥2]
≤ exp(−αh)∆j

n−1 +

(
4 +

4

η

)
h2

M
δ2 +

(
4 +

4

η

)
β2h2

M
Ej
n +

(
4 +

4

η

)
β2h2

M
Ej−1
n

≤ (1− 0.1αh)∆j
n−1 +

(
4 +

4

η

)
h2

M
δ2 +

(
4 +

4

η

)
β2h2

M
Ej
n +

(
4 +

4

η

)
β2h2

M
Ej−1
n

=

(
1− 0.01

κ

)
∆j

n−1 + 4

(
1

M
+ 10κ

)
h2δ2 + 4

(
1

M
+ 10κ

)
β2h2Ej

n

+ 4

(
1

M
+ 10κ

)
β2h2Ej−1

n . (12)

In the following, we further decompose Ej
n. For any n = 0, . . . , N − 1, j ∈ [J], p = 2, . . . , P , and

m = 1, . . . ,M , we can decompose E
[∥∥xj,p

n,m − xj,p−1
n,m

∥∥2] as follows. By definition (Line 12 or 18
in Algorithm 1), we have

E
[∥∥xj,p

n,m − xj,p−1
n,m

∥∥2]
=

h2

M2
E

∥∥∥∥∥
m−1∑
m′=0

s(xj,p−1
n,m′)−

m−1∑
m′=0

s(xj,p−2
n,m′)

∥∥∥∥∥
2

≤ h2m

M2

m−1∑
m′=0

E
[∥∥∥s(xj,p−1

n,m′)− s(xj,p−2
n,m′)

∥∥∥2]

≤ h2m

M2

m−1∑
m′=0

3

[
E
[∥∥∥∇f(xj,p−1

n,m′)−∇f(xj,p−2
n,m′)

∥∥∥2]+ E
[∥∥∥∇f(xj,p−1

n,m′)− s(xj,p−1
n,m′)

∥∥∥2]
+ E

[∥∥∥∇f(xj,p−2
n,m′)− s(xj,p−2

n,m′)
∥∥∥2]]

≤ 3β2h2 max
m′=1,...,M

E
[∥∥∥xj,p−1

n,m′ − xj,p−2
n,m′

∥∥∥2]+ 6δ2h2. (13)

Furthermore,

E
[∥∥∥xj,1

n,m−1 − xj,0
n,m−1

∥∥∥2]

= E

∥∥∥∥∥xj
n−1,M − h

M

m−1∑
m′=0

s(xj,0
n,m′)−

(
xj−1
n−1,M − h

M

m−1∑
m′=0

s(xj−1,P−1
n,m′)

)∥∥∥∥∥
2

≤ 2E
[∥∥∥xj

n−1,M − xj−1
n−1,M

∥∥∥2]+ 2
h2m

M2

m−1∑
m′=0

E
[∥∥∥s(xj−1,P

n,m′)− s(xj−1,P−1
n,m′)

∥∥∥2]
≤ 2∆j

n−1 + 6β2h2Ej−1
n + 12δ2h2. (14)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Combining Eq. (13) and Eq. (14), we have

Ej
n =E

[∥∥∥xj,P
n,m−1 − xj,P−1

n,m−1

∥∥∥2] ≤ 2 · 0.03P−1∆j
n−1 + 6 · 0.03PEj−1

n + 6.6δ2h2. (15)

Substitute it into Eq. (12), we have for any j = 2, . . . , J , n = 1, . . . , N − 1,

∆j
n ≤

(
1− 0.01

κ
+ 8

(
1

M
+ 10κ

)
0.03P

)
∆j

n−1 + 4.4

(
1

M
+ 10κ

)
h2δ2

+ 4.4

(
1

M
+ 10κ

)
β2h2Ej−1

n (16)

≤
(
1− 0.005

κ

)
∆j

n−1 + 4.4

(
1

M
+ 10κ

)
h2δ2 + 4.4

(
1

M
+ 10κ

)
β2h2Ej−1

n , (17)

where the second inequality holds since P ≥ 2 log κ
3 + 4 implies 8

(
1
M + 10κ

)
0.03P ≤ 0.005

κ .

Decomposition when j = 1. When j = 1, similarly, we have for p = 1, . . . , P ,

x1,p
n,m+1 = x1,p

n,m − h

M
s(x1,p−1

n,m) +
√
2(Bnh+(m+1)/h −Bnh+mh/M),

and
x0
n,m+1 = x0

n,m − h

M
s(x0

n−1,M) +
√
2(Bnh+(m+1)/h −Bnh+mh/M).

Thus by the contraction of ϕ(x) = x− h
M∇f(x) (Lemma 2.2 in Altschuler & Talwar (2022)), we

have

E
[∥∥∥x1,P

n,m+1 − x0
n,m+1

∥∥∥2]
= E

[∥∥∥∥x1,P
n,m − h

M
s(x1,P−1

n,m′)−
(
x0
n,m − h

M
s(x0

n−1,M)

)∥∥∥∥2
]

≤ (1 + η)E

[∥∥∥∥x1,P
n,m − h

M
∇f(x1,P

n,m)−
(
x0
n,m − h

M
∇f(x0

n,m)

)∥∥∥∥2
]

+

(
2 +

2

η

)
E

[∥∥∥∥ h

M
∇f(x1,P

n,m)− h

M
∇f(x1,P−1

n,m) +
h

M
∇f(x0

n,m)− h

M
∇f(x0

n−1,M)

∥∥∥∥2
]

+

(
2 +

2

η

)
E

[∥∥∥∥ h

M
∇f(x1,P−1

n,m)− h

M
s(x1,P−1

n,m) +
h

M
∇f(x0

n−1,M)− h

M
s(x0

n−1,M)

∥∥∥∥2
]

≤ (1 + η)

(
1− αh

M

)2

E
[∥∥x1,P

n,m − x0
n,m

∥∥2]+ (4 + 4

η

)
δ2h2

M2

+

(
4 +

4

η

)
β2h2

M2
E
[∥∥x1,P

n,m − x1,P−1
n,m

∥∥2]+ (4 + 4

η

)
β2h2

M2
E
[∥∥x0

n,m − x0
n−1,M

∥∥2] .
For third term E

[∥∥x1,P
n,m − x1,P−1

n,m

∥∥2], we have

E
[∥∥x1,P

n,m − x1,P−1
n,m

∥∥2]
= E

∥∥∥∥∥ h

M

m∑
m′=0

s(x1,P−1
n,m′)− s(x1,P−2

n,m′)

∥∥∥∥∥
2

≤ mh2

M2

m∑
m′=0

E
[∥∥∥s(x1,P−1

n,m′)− s(x1,P−2
n,m′)

∥∥∥2]
≤ 3β2h2 max

m′=0,...,M
E
[∥∥∥x1,P−1

n,m′ − x1,P−2
n,m′

∥∥∥2]+ 6δ2h2.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Thus

E
[∥∥x1,P

n,m − x1,P−1
n,m

∥∥2] ≤ 0.03P−1 max
m′=0,...,M

E
[∥∥∥x1,1

n,m′ − x1,0
n,m′

∥∥∥2]+ 6.2δ2h2. (18)

For E
[∥∥x1,1

n,m − x1,0
n,m

∥∥2], by definition, we have

E
[∥∥x1,1

n,m − x1,0
n,m

∥∥2]
= E

∥∥∥∥∥x1
n−1,M − h

M

m−1∑
m′=0

s(x0
n,m′)−

(
x0
n−1,M − h

M

m−1∑
m′=0

s(x0
n−1,M)

)∥∥∥∥∥
2

≤ 2E
[∥∥x1

n−1,M − x0
n−1,M

∥∥2]+ 2E

∥∥∥∥∥ h

M

m−1∑
m′=0

s(x0
n,m′)−

h

M

m−1∑
m′=0

s(x0
n−1,M)

∥∥∥∥∥
2

≤ 2E
[∥∥x1

n−1,M − x0
n−1,M

∥∥2]+ 2
h2m

M2

m−1∑
m′=0

E
[∥∥s(x0

n,m′)− s(x0
n−1,M)

∥∥2]
≤ 2E

[∥∥x1
n−1,M − x0

n−1,M

∥∥2]+ 6β2h2 max
m′∈[M]

E
[∥∥x0

n,m′ − x0
n−1,M

∥∥2]+ 12δ2h2. (19)

For E
[∥∥x0

n,m − x0
n−1,M

∥∥2], by definition of x0
n,m (Line 7 in Algorithm 1), we have

E
[∥∥x0

n,m − x0
n−1,M

∥∥2]
=

h2m2

M2
E
[∥∥s(x0

n−1,M)
∥∥2]+ dhm

M

≤ 2δ2h2 + 2h2E
[∥∥∇f(x0

n−1,M)
∥∥2]+ dh

≤ 2δ2h2 + 2h2

(
2βd+

4β2

α
KL(µ0

n−1,M∥π)
)
+ dh

= 4h2βd+ 2h2δ2 +
8β2h2

α
KL0n−1 + dh, (20)

where the last inequality is implied from the following lemma, (Vempala & Wibisono, 2019, Lemma
10)

E
[∥∥∇f(x0

n−1,M)
∥∥2] ≤ 2βd+

4β2

α
KL(µ0

n−1,M∥π).

Combining Eq. (18), Eq. (19), and Eq. (20), and P ≥ 4, we have

E
[∥∥x1,P

n,m − x1,P−1
n,m

∥∥2]
≤ 0.03P−1 max

m′=0,...,M
E
[∥∥∥x1,1

n,m′ − x1,0
n,m′

∥∥∥2]+ 6.2h2δ2

≤ 0.03P−1

[
2∆1

n−1 + 6β2h2

(
4h2βd+ 2h2δ2 +

8β2h2

α
KL0n−1 + dh

)
+ 12δ2h2

]
+ 6.2h2δ2

≤ 2 · 0.03P−1∆1
n−1 + 6.3h2δ2 + 0.01dh+ 0.01

β2h2

α
KL0n−1. (21)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

By setting η = αh
M = 1

10κM , we have

E
[∥∥∥x1,P

n,M − x0
n,M

∥∥∥2]
≤
(
1− αh

M

)M

E
[∥∥∥x1,P

n,0 − x0
n,0

∥∥∥2]+ (4 + 4

η

)
δ2h2

M

+

(
4 +

4

η

)
β2h2

M

(
2 · 0.03P−1∆1

n−1 + 6.3h2δ2 + 0.01dh+ 0.01
β2h2

α
KL0n−1

)
+

(
4 +

4

η

)
β2h2

M

(
4h2βd+ 2h2δ2 +

8β2h2

α
KL0n−1 + dh

)
≤
(
1− 0.01

κ
+ 4

(
1

M
+ 10κ

)
0.03P

)
∆1

n−1 +

(
1

M
+ 10κ

)(
5δ2h2 + 6β2dh3 + 0.4β2h2KL

0
n−1

α

)

≤∆1
n−1 +

(
1

M
+ 10κ

)(
5δ2h2 + 6β2dh3 + 0.4β2h2KL

0
n−1

α

)

where the last inequality holds since P ≥ 2 log κ
3 + 4 implies 8

(
1
M + 10κ

)
0.03P ≤ 0.005

κ .

When n = 0, the update is identical to the Picard iteration shown in Anari et al. (2024), thus we have
the following lemma.

Lemma B.6 (Lemma 18 in Anari et al. (2024)). For j = 1, . . . , J , we have

∆j
0 ≤ 0.03P∆j−1

0 + 6.2δ2h2,

with ∆0
0 := max

m=0,...,M
E
[∥∥x0

0,m − x0

∥∥2] ≤ 4β2h2

α KL(µ0∥π) + 1.4dh+ 2δ2h2.

Corollary B.7. For n = 1, . . . , N − 1, we have

∆1
n ≤ n

(
1

M
+ 10κ

)(
5.1δ2h2 + 0.5

β2h2

α
KL(µ0∥π) + 10κ2β2dh3

)
.

Furthermore, for j = 1, . . . , J and n = 0, we have

∆j
0 ≤ 0.03jP

4β2h2

α
KL(µ0∥π) + 1.4 · 0.03jP dh+ 6.7δ2h2.

Proof. By Lemma B.6, we have

∆j
0 ≤ 0.03P∆j−1

0 + 6.2δ2h2

≤ 0.03jP∆0
0 + 6.6δ2h2

≤ 0.03jP
(
4β2h2

α
KL(µ0∥π) + 1.4dh+ 2δ2h2

)
+ 6.6δ2h2

≤ 0.03jP
4β2h2

α
KL(µ0∥π) + 1.4 · 0.03jP dh+ 6.7δ2h2.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Combining Lemma B.1 and Lemma B.5, we have

∆1
n ≤ ∆1

0 +

n∑
i=1

(
1

M
+ 10κ

)(
5δ2h2 + 6β2dh3 + 0.4β2h2KL

0
i−1

α

)

≤ ∆1
0 + n

(
1

M
+ 10κ

)(
5δ2h2 + 6β2dh3

)
+

n∑
i=1

(
1

M
+ 10κ

)
0.4

β2h2

α

(
exp (−αnh)KL(µ0∥π) +

8β2dh

α

)
≤ ∆1

0 + n

(
1

M
+ 10κ

)(
5δ2h2 + 6β2dh3 + 0.4

β2h2

α
KL(µ0∥π) + 3.2κ2β2dh3

)
≤ n

(
1

M
+ 10κ

)(
5.1δ2h2 + 0.5

β2h2

α
KL(µ0∥π) + 10κ2β2dh3

)
.

B.3 ONE STEP ANALYSIS OF Ej
n

In this section, we analyze the one step change of Ej
n.

Lemma B.8. For any j = 2, . . . , J , n = 1, . . . , N − 1, we have

Ej
n ≤ 2 · 0.03P−1∆j

n−1 + 2 · 0.03PEj−1
n + 7δ2h2.

Furthermore, for n = 1, . . . , N − 1, we have

E1
n ≤ 2 · 0.03P−1∆1

n−1 + 6.3h2δ2 + 0.01dh+ 0.01
β2h2

α
KL0n−1.

Proof. By Eq. (15), the first inequality holds. By Eq. (21), the second inequality holds.

Corollary B.9. For n = 1, . . . , N − 1, we have

E1
n ≤ n

(
5.5δ2h2 + 0.1

β2h2

α
KL(µ0∥π) + 0.1κ2dh

)
.

Proof. Combining Lemma B.1, Lemma B.8 and Corollary B.7, we have

E1
n ≤ 2 · 0.03P−1∆1

n−1 + 6.3h2δ2 + 0.01dh+ 0.01
β2h2

α
KL0n−1

≤ 2 · 0.03P−1∆1
n−1 + 6.3h2δ2 + 0.01dh

+ 0.01
β2h2

α

(
exp (−α(n+ 1)h)KL(µ0∥π) +

8β2dh

α

)
≤ 2 · 0.03P−1∆1

n−1 + 6.3h2δ2 + 0.02κdh+ 0.01
β2h2

α
KL(µ0∥π)

≤ 2 · 0.03P−1

(
n

(
1

M
+ 10κ

)(
5.1δ2h2 + 0.5

β2h2

α
KL(µ0∥π) + 10κ2β2dh3

))
+ 6.3h2δ2 + 0.02κdh+ 0.01

β2h2

α
KL(µ0∥π)

≤ n · 0.06
(
5.1δ2h2 + 0.5

β2h2

α
KL(µ0∥π) + 0.1κ2dh

)
+ 6.3h2δ2 + 0.02κdh+ 0.01

β2h2

α
KL(µ0∥π)

≤ n

(
5.5δ2h2 + 0.1

β2h2

α
KL(µ0∥π) + 0.1κ2dh

)
.

where the fifth inequality holds since P ≥ 2 log κ
3 + 4 implies

(
1
M + 10κ

)
0.03P−1 ≤ 0.03.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

B.4 PROOF OF THEOREM 4.3

We define an energy function as

Lj
n = ∆j

n−1 + κEj−1
n .

We note that 2 · 0.03P−1Lj
n + 7δ2h2 ≥ Ej

n. By Lemma B.5 and Lemma B.8, we can decompose Lj
n

as

Lj
n = ∆j

n−1 + κEj−1
n

≤
(
1− 0.005

κ

)
∆j

n−2 + 4.4

(
1

M
+ 10κ

)
h2δ2 + 4.4

(
1

M
+ 10κ

)
β2h2Ej−1

n−1

+ κ(0.03P−1∆j−1
n−1 + 2 · 0.03PEj−2

n + 7δ2h2)

≤
(
1− 0.005

κ

)
∆j

n−2 + κ

(
1− 0.005

κ

)
Ej−1
n−1 + κ · 0.03P−1∆j−1

n−1 + κ · 0.03P−1 · κEj−2
n

+ 56κδ2h2

=

(
1− 0.005

κ

)
Lj
n−1 +

(
κ · 0.03P−1

)
Lj−1
n + 56κδ2h2. (22)

Combining P ≥ 2 log κ
3 + 4 implies κ · 0.03P−1 ≤ 0.04, we recursively bound Lj

n as

Lj
n ≤

n∑
a=2

0.04j−2

(
n− a+ j − 2

j − 2

)
L2
a +

j∑
b=2

(
κ · 0.03P−1

)j−b
(
1− 0.005

κ

)n−1(
n− 1 + j − b

j − b

)
Lb
1

+

j∑
a=2

n∑
b=2

(
1− 0.001

κ

)n−b

0.04j−a65κδ2h2

≤
n∑

a=2

0.04j−2

(
n− a+ j − 2

j − 2

)
L2
a +

j∑
b=2

(
κ · 0.03P−1

)j−b
(
1− 0.005

κ

)n−1(
n− 1 + j − b

j − b

)
Lb
1

+ 68000κ2δ2h2. (23)

For the first term
n∑

a=2
0.04j−2

(
n−a+j−2

j−2

)
L2
a, we first bound L2

a. To do so, we first bound ∆2
n as

follows. Combining Lemma B.5 and Corollary B.9, we have

∆2
n ≤

(
1− 0.005

κ

)
∆2

n−1 + 4.4

(
1

M
+ 10κ

)
h2δ2 + 4.4

(
1

M
+ 10κ

)
β2h2E1

n

≤∆2
n−1 + 48.4κh2δ2 + 48.4κβ2h2

(
n

(
5.5δ2h2 + 0.1

β2h2

α
KL(µ0∥π) + 0.1κ2dh

))
≤∆2

n−1 + 48.4κβ2h2n

(
55.5δ2h2 + 0.1

β2h2

α
KL(µ0∥π) + 0.1κ2dh

)
≤∆2

0 + 48.4κβ2h2n2

(
55.5δ2h2 + 0.1

β2h2

α
KL(µ0∥π) + 0.1κ2dh

)
≤ 0.032P

4β2h2

α
KL(µ0∥π) + 1.4 · 0.032P dh+ 6.7δ2h2

+ 48.4κβ2h2n2

(
55.5δ2h2 + 0.1

β2h2

α
KL(µ0∥π) + 0.1κ2dh

)
≤ 48.4κβ2h2n2

(
67.2δ2h2 + 0.2

β2h2

α
KL(µ0∥π) + 0.2κ2dh

)
.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Thus

L2
a = ∆2

a−1 + κE1
a

≤ 0.49κ(a− 1)2
(
67.2δ2h2 + 0.2

β2h2

α
KL(µ0∥π) + 0.2κ2dh

)
+ κ

(
a

(
5.5δ2h2 + 0.1

β2h2

α
KL(µ0∥π) + 0.1κ2dh

))
≤ κa2

(
39δ2h2 + 0.2

β2h2

α
KL(µ0∥π) + 0.2κ2dh

)
.

Thus by
(
m
n

)
≤
(
em
n

)n
for m ≥ n > 0, we have

n∑
a=2

0.04j−2

(
n− a+ j − 2

j − 2

)
L2
a

≤
n∑

a=2

0.04j−2ej−2

(
n− a+ j − 2

j − 2

)j−2

L2
a

≤
n∑

a=2

0.04j−2e2j−4L2
a

≤
n∑

a=2

0.3j−2κa2
(
39δ2h2 + 0.2

β2h2

α
KL(µ0∥π) + 0.2κ2dh

)
≤ 0.3j−2κn3

(
39δ2h2 + 0.2

β2h2

α
KL(µ0∥π) + 0.2κ2dh

)
. (24)

For the second term
j∑

b=2

(
κ · 0.03P−1

)j−b (
1− 0.005

κ

)n−1 (n−1+j−b
j−b

)
Lb
1, we first bound Lb

1. Firstly,

for Eb−1
1 , combining Corollary B.7 and Corollary B.9, we have

Eb−1
1 ≤ 2 · 0.03P−1∆b−1

0 + 2 · 0.03PEb−2
1 + 7δ2h2

≤ 2 · 0.03P−1

(
0.03(b−1)P 4β2h2

α
KL(µ0∥π) + 1.4 · 0.03(b−1)P dh+ 6.7δ2h2

)
+ 2 · 0.03PEb−2

1 + 7δ2h2

≤ 2 · 0.03PEb−2
1 + 0.03b

(
0.01

4β2h2

α
KL(µ0∥π) + 0.01dh

)
+ 7.1δ2h2

≤ (2 · 0.03P)b−2E1
1 +

b−3∑
i=0

(
2 · 0.03P

)i(
0.03b−i

(
0.01

4β2h2

α
KL(µ0∥π) + 0.01dh

)
+ 7.1δ2h2

)

≤ (2 · 0.03P)b−2E1
1 +

b−3∑
i=0

0.01i0.03i
(
0.03b−i

(
0.01

4β2h2

α
KL(µ0∥π) + 0.01dh

)
+ 7.1δ2h2

)
≤ (2 · 0.03P)b−2

(
5.5δ2h2 + 0.1

β2h2

α
KL(µ0∥π) + 0.1κ2dh

)
+ 0.03b

(
0.02

4β2h2

α
KL(µ0∥π) + 0.02dh

)
+ 7.2δ2h2

≤ 0.03b
(
0.1

β2h2

α
KL(µ0∥π) + 0.1dh

)
+ 7.3δ2h2.

As for ∆b
0 we have

∆b
0 ≤ 0.03bP

4β2h2

α
KL(µ0∥π) + 1.4 · 0.03bP dh+ 6.7δ2h2.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Thus, we bound the first term as

Lb
1 = ∆b

0 + κEb−1
1

≤ 0.03bP
4β2h2

α
KL(µ0∥π) + 1.4 · 0.03bP dh+ 6.7δ2h2

+ κ0.03b
(
0.1

β2h2

α
KL(µ0∥π) + 0.1dh

)
+ 7.3δ2h2

≤ κ0.03b
(
0.2

β2h2

α
KL(µ0∥π) + 0.2dh

)
+ 14δ2h2.

Thus by
(
m
n

)
≤
(
em
n

)n
for m ≥ n > 0, and

m∑
i=0

(
n+i
n

)
xi =

1−(m+1)(m+n+1
n)Bx(m+1,n+1)

(1−x)n+1 ≤
1

(1−x)n+1 we have

j∑
b=2

(
κ · 0.03P−1

)j−b
(
1− 0.005

κ

)n−1(
n− 1 + j − b

j − b

)
Lb
1

≤
j∑

b=2

0.04j−b

(
1− 0.005

κ

)n−1(
n− 1 + j − b

j − b

)(
κ0.03b

(
0.2

β2h2

α
KL(µ0∥π) + 0.2dh

))

+

j∑
b=2

(
κ · 0.03P−1

)j−b
(
1− 0.005

κ

)n−1(
n− 1 + j − b

j − b

)
14δ2h2

≤
j∑

b=2

0.04j
(
n− 1 + j − b

j − b

)
κ

(
0.2

β2h2

α
KL(µ0∥π) + 0.2dh

)

+

j∑
b=2

(
κ · 0.03P−1

)j−b
(
1− 0.005

κ

)n−1(
n− 1 + j − b

j − b

)
14δ2h2

≤
j−2∑
i=0

0.04jei
(
1 +

n− 1

i

)i

κ

(
0.2

β2h2

α
KL(µ0∥π) + 0.2dh

)

+

j−2∑
i=0

(
κ · 0.03P−1

)i(
1− 0.005

κ

)n−1(
n− 1 + i

i

)
14δ2h2

≤ 0.11jen−1κ

(
0.2

β2h2

α
KL(µ0∥π) + 0.2dh

)
+

1

(1− κ · 0.03P−1)n

(
1− 0.005

κ

)n−1

(6.6 + 7.9κ)δ2h2

≤ 0.11jen−1κ

(
0.2

β2h2

α
KL(µ0∥π) + 0.2dh

)
+

1

(1− κ · 0.03P−1)
(6.6 + 7.9κ)δ2h2

≤ 0.11jen−1

(
2.2κ

(
4β2h2

α
KL(µ0∥π) + 1.6dh+ 2δ2h2

))
+ 20κδ2h2,

where the second-to-last inequality is implied by 8
(

1
M + 10κ

)
0.03P ≤ 0.005

κ .

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Combing Eq. (23) and Eq. (24), we bound Lj
n as

Lj
n ≤

n∑
a=2

0.04j−2

(
n− a+ j − 2

j − 2

)
L2
a +

j∑
b=2

(
κ · 0.03P−1

)j−b
(
1− 0.005

κ

)n−1(
n− 1 + j − b

j − b

)
Lb
1

+ 68000κ2δ2h2

≤ 0.3j−2κn3

(
39δ2h2 + 0.2

β2h2

α
KL(µ0∥π) + 0.2κ2dh

)
+ 0.11jen−1

(
2.2κ

(
4β2h2

α
KL(µ0∥π) + 1.6dh+ 2δ2h2

))
+ 20κδ2h2 + 68000κ2δ2h2

≤ 0.3j−2en−1κn3
(
41δ2h2 + 1.8κ2dh+ 0.5κhKL(µ0∥π)

)
+ 68020κ2δ2h2.

Since 8
(

1
M + 10κ

)
0.03P ≤ 0.005

κ implies κ20.03P−1 ≤ 0.003, we have

Ej
n

≤ 2 · 0.03P−1Lj
n + 7δ2h2

≤ 2 · 0.03P−1
(
0.3j−2en−1κn3

(
41δ2h2 + 1.8κ2dh+ 0.5κhKL(µ0∥π)

)
+ 68020κ2δ2h2

)
+ 7δ2h2

≤ 0.3j−2en−1n3
(
δ2h2 + hKL(µ0∥π) + κdh

)
+ 416δ2h2.

Thus when J −N ≥ log
(
N3
(

κδ2h+κKL(µ0∥π)+κ2d
ε2

))
, we have for any n = 0, . . . , N − 1

EJ
n ≤ ε2

5κβ
+ 416δ2h2.

Recall

KLJN−1 ≤ e−1.2α(N−1)h
(
KL(µ0∥π) + 4.4β2h∆J

0

)
+ 5κβE +

0.6βd

αM
+

28δ2

α
,

thus when δ2 ≤ αε2

29 , M ≥ κd
ε2 , and N ≥ 10κ log KL(µ0∥π)

ε2 , we have

KLJN−1 ≤ e−1.2α(N−1)h
(
KL(µ0∥π) + 4.4β2h∆J

0

)
+ 5κβE +

0.6βd

αM
+

28δ2

α

≤ e−1.2α(N−1)h

(
KL(µ0∥π) + 4.4β2h

(
0.03JP

4β2h2

α
KL(µ0∥π) + 1.4 · 0.03JP dh+ 6.7δ2h2

))
+ 5κβE +

0.6βd

αM
+

28δ2

α

≤ e−1.2α(N−1)hKL(µ0∥π) + ε2 + 5κβE +
0.6βd

αM
+

29δ2

α

≤ 5ε2.

C MISSING DETAILS FOR SAMPLING FOR DIFFUSION MODELS

In this section, we first present the details of algorithm in Section C.1, then give the detailed analysis
in the rest parts.

C.1 ALGORITHM

Stepsize scheme. We first present the stepsize schedule for diffusion models, which is the same as
the discretization scheme in Chen et al. (2024a). Specifically, we split the the time horizon T into

N time slices with length hn ≤ h = T
N = Ω(1), forming a large gap grid (tn)

N
n=0 with tn =

n∑
i=1

hi.

For any n ∈ [0 : N − 1], we further split the n-th time slice into a grid (τn,m)Mn
m=0 with τn,0 = 0 and

τn,Mn
= hn. We denote the step size of the m-th step in the n-th time slice as ϵn,m = τn,m+1−τn,m,

and the total number of steps in the n-th time slice as Mn.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Algorithm 2: Parallel Picard Iteration Method for diffusion models

Input : ŷ0 ∼ q̂0 = N (0, Id), the learned NN-based score function sθt (·), the depth of Picard
iterations J , the depth of inner Picard iteration P , and a discretization scheme
(T, (hn)

N
n=1 and (τn,m)n∈[0:N−1],m∈[0:M]).

1 for n = 0, . . . , N − 1 do
2 for m = 0, . . . ,M (in parallel) do
3 ξn,m ∼ N (0, Id)

4 for n = 0, . . . , N − 1 do
5 for m = 0, . . . ,Mn (in parallel) do
6 ŷj

−1,M = ŷ0, for j = 0, . . . , J ,
7

ŷ0
n,τn,m

= e
τn,m

2 ŷ0
n−1,τn,M

+

m−1∑
m′=0

e
τn,m−τ

n,m′+1
2

[
2(eϵn,m′ − 1)sθtn+τn,m′ (ŷ

0
n−1,τn,M

) +
√
eϵn,m′ − 1ξm′

]
,

(25)

8 for k = 1, . . . , N do
9 for j = 1, . . . ,min{k − 1, J} and m = 0, . . . ,Mn (in parallel) do

10 let n = k − j, and ŷj
n,0 = ŷj

n−1,Mn
,

11
ŷj
n,τn,m

= e
τn,m

2 ŷj
n,0

+

m−1∑
m′=0

e
τn,m−τ

n,m′+1
2

[
2(eϵn,m′ − 1)sθtn+τn,m′ (ŷ

j−1
n,τn,m′) +

√
eϵn,m′ − 1ξm′

]
,

(26)

12 for k = N + 1, . . . , N + J − 1 do
13 for n = max{0, k − J}, . . . , N − 1 and m = 0, . . . ,Mn (in parallel) do
14 let j = k − n, and ŷj

n,0 = ŷj
n−1,Mn

,
15

ŷj
n,τn,m

= e
τn,m

2 ŷj
n,0

+

m−1∑
m′=0

e
τn,m−τ

n,m′+1
2

[
2(eϵn,m′ − 1)sθtn+τn,m′ (ŷ

j−1
n,τn,m′) +

√
eϵn,m′ − 1ξm′

]
,

(27)

16 return ŷJ
N−1,MN−1

.

For the first N − 1 time slice, we simply use the uniform discretization, i.e., hn = h, ϵn,m = ϵ,
and Mn = M = h

ϵ for n = 0, . . . , N − 2 and m = 0, . . . ,M − 1. For the last time slice, we
also apply early stopping at time tN = T − η, where η is chosen in a way such that the O(

√
η)

2-Wasserstein distance between ⃗pN and its smoothed version ⃗pT−η that we aim to sample from
alternatively, is tolerable for the downstream tasks. An exponential decay of the step size towards the
data end in the last time slice is also employed. Specificly, we let hN−1 = h− δ, and discretize the
interval [tN−1, tN] = [(N − 1)h, T − η] into a grid (tN−1,m)

MN−1

m=0 with step sizes (ϵN−1,m)
MN−1

m=0
satisfying

ϵN−1,m ≤ ϵ ∧ ϵ (h− τN−1,m+1) .

For the simplicity of notations, we introduce the following indexing function: for τ ∈ [tn, tn+1], we

define In(τ) ∈ N such that
In(τ)∑
j=1

ϵn,j ≤ τ <
In(τ)+1∑

j=1

ϵn,j . We define a piecewise function g such that

gn(τ) =
In(τ)∑
j=1

ϵn,j and thus we have In(τ) = ⌊τ/ϵ⌋ and gn(τ) = ⌊τ/ϵ⌋ϵ.

Exponential integrator for Picard iterations. Compared with Line 12 and Line 18, where we
use a forward Euler-Maruyama scheme for Picard iterations, we use the the following exponential
integrator scheme (Zhang & Chen, 2022; Chen et al., 2024a). Specifically, In n-th time slice

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

[tn, tn + τn,Mn
], for each grid tn + τn,m, we simulate the approximated backward process (Eq. (3))

with Picard iterations as

ŷj+1
n,τn,m

= e
τn,m

2 ŷj+1
n−1,τn,M

+

m−1∑
m′=0

e
τn,m−τ

n,m′+1
2

[
2(eϵn,m′ − 1)sθtn+τn,m′ (ŷ

j
n−1,τn,M

) +
√
eϵn,m′ − 1ξm′

]
.

We note such update also inherently allows for parallelization for m = 1, . . . ,Mn.

C.2 INTERPOLATION PROCESSES

Following the proof framework in Chen et al. (2024a), we consider the following processes. We first
reiterate the backward process

d ⃗xt =

[
1

2
⃗xt +∇ log ⃗pt(⃗xt)dt

]
+ dw t, with ⃗x0 ∼ pT , (28)

and its approximate version with the learned score function

dyt =

[
1

2
yt + sθt (yt)

]
dt+ dw t, with y0 ∼ N (0, Id).

The filtration Ft refers to the filtration of the backward SDE equation 28 up to time t. For any
fixed n = 0, . . . , N − 1, j = 1, . . . , J , we define the auxiliary process (ŷj

tn,τ)τ∈[0,h] for τ ∈ [0, h]
conditioned on the filtration Ftn at time tn as the solution to the following SDE for n ̸= 0,

dŷj
tn,τ (ω) =

[
1

2
ŷj
tn,τ (ω) + sθtn+gn(τ)

(
ŷj−1
tn,gn(τ)

(ω)
)]

dτ + dw tn+τ (ω) (29)

with ŷj
tn,0

(ω) = ŷj
tn−1,τn−1,Mn−1

(ω). The initialization process is defined as

dŷ0
tn,τ (ω) =

[
1

2
ŷ0
tn,τ (ω) + sθtn+gn(τ)

(
ŷ0
tn−1,τn−1,M

(ω)
)]

dτ + dw tn+τ (ω), (30)

with ŷ0
t0,0 = ŷ0 and ŷ0

tn,0 = ŷtn−1,τn−1,M
.

Remark C.1. The main difference compared to the auxiliary process defined in Chen et al. (2024a)
is the change of the start point across each update.

The iteration should be perceived as a deterministic procedure to each event ω ∈ Ω, i.e. each
realization of the Wiener process (w t)t≥0. The following lemma clarifies this fact and proves the
well-definedness and parallelability of the iteration.

Lemma C.2. The auxiliary process (ŷj
tn,τ (ω))τ∈[0,hn] is Ftn+τ -adapted for any j = 1, . . . , j and

n = 0, . . . , n− 1.

Proof. Since the initialization ŷ0
tn,τ (ω) satisfies

dŷ0
tn,τ (ω) =

[
1

2
ŷ0
tn,τ (ω) + sθtn+gn(τ)

(
ŷ0
tn−1,τn−1,M

(ω)
)]

dτ + dw tn+τ (ω),

ŷ0
tn,τ (ω) is obliviously Ftn+τ -adapted. Now suppose that ytn,τ is Ftn+τ -adapted, since gn(τ) ≤ τ ,

we have the following Itô integral well-defined and Ftn+τ -adapted:∫ τ

0

sθtn+gn(τ ′)(ytn,gn(τ ′))dτ
′,

and therefore SDE

dy′
tn,τ (ω) =

[
1

2
y′
tn,τ (ω) + sθtn+gn(τ)

(
ytn,gn(τ)(ω)

)]
dτ + dw tn+τ (ω)

has a unique strong solution (y′
tn,τ (ω))τ∈[0,hn] that is also Ftn+τ -adapted. The lemma follows by

induction.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Finally, the following lemma shows the equivalence of our update rule and the auxiliary process, i.e.,
the auxiliary process is an interpotation of the discrete points.

Lemma C.3. For any n = 0, . . . , N − 1, the update rule (Eq. (25)) in Algorithm 2 and the update
rule (Eq. (26) or Eq. (27)) are equivalent to the exact solution of the auxiliary process Eq. (30), and
Eq. (29) respectively, for any j = 1, . . . , J , and τ ∈ [0, hn].

Proof. Due to the similarity, we only prove the equivalence of the update rule (Eq. (25)). The
dependency on ω will be omitted in the proof below.

For SDE equation 29, by multiplying e−
τ
2 on both sides then integrating on both side from 0 to τ , we

have

e−
τ
2 ŷj

tn,τ − ŷj
tn,0

=

Mn∑
m=0

2
(
e−

τ∧τn,m
2 − e−

τ∧τn,m+1
2

)
sθtn+τn,m

(
ŷj−1
tn,τn,m

)
+

∫ τ

0

e−
τ′
2 dwtn+τ ′ .

Thus then multiplying e
τ
2 on both sides above yields

ŷj
tn,τ = e

τ
2 ŷj

tn,0
+

Mn∑
m=0

2
(
e−

τ∧τn,m−τ∧τn,m+1
2 − 1

)
e

0∨(τ−τn,m+1)

2 sθtn+τn,m

(
ŷj−1
tn,τn,m

)
+

Mn∑
m=0

∫ τ∧τn,m+1

τ∧τn,m

e
τ−τ′

2 dwtn+τ ′ ,

where by Itô isometry and let τ = τn,m we get the desired result.

C.2.1 DECOMPOSITION OF KL DIVERGENCE

We invoke Girsanov’s theorem (Theorem A.3) as follows, and the applicability of Girsanov’s theorem
here relies on the Fτ -adaptivity established by Lemma C.2.

1. We set equation 5 as the auxiliary process Eq. (29) with j = J , where wt(ω) is a Wiener
process under the measure q|Ftn

.

2. Defining another process w̃tn+τ (ω) governed by the following SDE

dw̃tn+τ (ω) = dwtn+τ (ω) + δ(tn)(τ, ω)dτ,

where
δtn(τ, ω) = sθtn+gn(τ)

(ŷJ−1
tn,gn(τ)

(ω))−∇ log ⃗ptn+τ (ŷ
J
tn,τ (ω)).

3. Concluding that the auxiliary processes (Eq. (29)) with j = J under the measure q|Ftn

satisfies the following SDE

dŷJ
tn,τ (ω) =

[
1

2
ŷJ
tn,τ (ω) +∇ log ⃗ptn+τ (ŷ

J
tn,τ (ω))

]
dτ + dw̃tn+τ (ω),

with (w̃tn+τ (ω))τ≥0 being a Wiener process under the measure ⃗p|Ftn
. Note this is identical

to the original backward SDE equation 28 by variable replacement.

Now we conclude the following lemma by Corollary A.4.

Lemma C.4. Assume δtn(τ, ω) = sθtn+gn(τ)
(ŷJ−1

tn,gn(τ)
(ω))−∇ log ⃗ptn+τ (ŷ

J
tn,τ (ω)). Then we have

the following one-step decomposition,

KL(⃗ptn+1
∥q̂tn+1) ≤ KL(⃗ptn∥q̂tn) + Eω∼q|Ftn

[
1

2

∫ hn

0

∥δtn(τ, ω)∥
2
dτ

]
.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Now, the problem remaining is to bound the discrepancy quantified by

∫ hn

0

∥δtn(τ, ω)∥2dτ

=

∫ hn

0

∥∥∥sθtn+gn(τ)
(ŷJ−1

tn,gn(τ)
(ω))−∇ log ⃗ptn+τ (ŷ

J
tn,τ (ω))

∥∥∥2 dτ
≤ 3

∫ hn

0

∥∥∥∇ log ⃗ptn+gn(τ)(ŷ
J
tn,gn(τ)

(ω))−∇ log ⃗ptn+τ (ŷ
J
tn,τ (ω))

∥∥∥2 dτ︸ ︷︷ ︸
:=Atn (ω)

+

∫ hn

0

∥∥∥sθtn+gn(τ)
(ŷJ

tn,gn(τ)
(ω))−∇ log ⃗ptn+gn(τ)(ŷ

J
tn,gn(τ)

(ω))
∥∥∥2 dτ︸ ︷︷ ︸

:=Btn (ω)

+

∫ hn

0

∥∥∥sθtn+gn(τ)
(ŷJ

tn,gn(τ)
(ω))− sθtn+gn(τ)

(ŷJ−1
tn,gn(τ)

(ω))
∥∥∥2 dτ︸ ︷︷ ︸

:=Ctn (ω)

 , (31)

where Atn(ω) measures the discretization error, Btn(ω) measures the estimation error of score
function, and Ctn(ω) measures the error by Picard iteration.

C.3 DISCRETIZATION ERROR AND ESTIMATION ERROR OF SCORE FUNCTION IN EVERY TIME
SLICE

The following lemma from Benton et al. (2024); Chen et al. (2024a) bounds the expectation of the
discretization error Atn .

Lemma C.5 (Discretization error (Benton et al., 2024, Section 3.1) and (Chen et al., 2024a,
Lemma B.7)). We have for n ∈ [0 : N − 2]

Eω∼ ⃗p|Ftn
[Atn(ω)] ≲ ϵdhn,

and

Eω∼ ⃗p|Ftn

[
AtN−1

(ω)
]
≲ ϵd log η−1,

where η is the parameter for early stopping.

The following lemma from Chen et al. (2024a) bounds the expectation of the estimation error of
score function, Btn .

Lemma C.6 (Estimation error of score function (Chen et al., 2024a, Section B.3)).
N−1∑
n=0

Eω∼ ⃗p|Ftn
[Btn] ≤ δ22 .

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Proof. By Assumption 5.1 and the the fact that the process ŷJ
tn,τ (ω) follows the backward SDE with

the true score function under the measure ⃗p, we have

N−1∑
n=1

Eω∼ ⃗p|Ftn
[Btn(ω)]

≤ Eω∼ ⃗p|Ftn

[
N−1∑
n=1

∫ hn

0

∥∥∥sθtn+τ (ŷ
J
tn,τ (ω))−∇ log ⃗ptn+gn(τ)(ŷ

J
tn,τ (ω))

∥∥∥2 dτ]

= Eω∼ ⃗p|Ftn

[
N−1∑
n=1

Mn∑
m=0

ϵn,m

∥∥∥sθtn+τ (ŷ
J
tn,τ (ω))−∇ log ⃗ptn+gn(τ)(ŷ

J
tn,τ (ω))

∥∥∥2 dτ]

= Eω∼ ⃗p|Ftn

[
N−1∑
n=0

Mn∑
m=0

ϵn,m

∥∥∥sθtn+τ (⃗xtn+τ (ω))−∇ log ⃗ptn+gn(τ)(⃗xtn+τ (ω))
∥∥∥2 dτ]

≤ δ22 .

C.4 ANALYSIS FOR INITIALIZATION

By setting the depth of iteration as K = 1 in Chen et al. (2024a), our initialization parts (Lines 4-7
in Algorithm 2) and the initialization process (Eq. (30)) are identical to the Algorithm 1 and the
the auxiliary process (Definition B.1) in Chen et al. (2024a). We provide a brief overview of their
analysis by setting K = 1 and reformulate it to align with our initialization. Let

A0
tn(ω) :=

∫ hn

0

∥∥∥∇ log ⃗ptn+gn(τ)(ŷ
0
tn,gn(τ)

(ω))−∇ log ⃗ptn+τ (ŷ
0
tn,τ (ω))

∥∥∥2 dτ
and

B0
tn(ω) :=

∫ hn

0

∥∥∥sθtn+gn(τ)
(ŷ0

tn,gn(τ)
(ω))−∇ log ⃗ptn+gn(τ)(ŷ

0
tn,gn(τ)

(ω))
∥∥∥2 dτ

Lemma C.7 (Lemma B.5 or Lemma B.6 with K = 1 in Chen et al. (2024a)). For any n =

0, . . . , N − 1, suppose the initialization ŷ0
tn,0 follows the distribution of ⃗xtn ∼ ⃗ptn , if 3e

7
2hnhnLs <

0.5, then the following estimate

sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

[∥∥ŷ0
tn,τ (ω)− ŷ0

tn,0(ω)
∥∥2] ≤ 2hne

7
2hn(Ms + 2d)

+ 6e
7
2hnEω∼ ⃗p|Ftn

[
A0

tn(ω) +B0
tn(ω)

]
.

Furthermore, the A0
tn(ω) and B0

tn(ω) can be bounded as

Lemma C.8 ((Chen et al., 2024a, Lemma B.7)). We have for n ∈ [0 : N − 2]

Eω∼ ⃗p|Ftn

[
A0

tn(ω)
]
≲ ϵdhn,

and
Eω∼ ⃗p|Ftn

[
A0

tN−1
(ω)
]
≲ ϵd log η−1,

where η is the parameter for early stopping.

Lemma C.9 ((Chen et al., 2024a, Section B.3)).
∑N−1

n=1 Eω∼ ⃗p|Ftn
[Btn(ω)] ≤ δ22 .

Thus we have the following conclusion

Corollary C.10. With the same assumption in Lemma C.7, we have

sup
n=0,...,N

sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

[∥∥ŷ0
tn,τ (ω)− ŷ0

tn,0(ω)
∥∥2] ≲ d.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

C.5 CONVERGENCE OF PICARD ITERATION

Similarly, we define

Ej
n = sup

τ∈[0,hn]

Eω∼ ⃗p|Ftn

[
∥ŷj

tn,τ (ω)− ŷj−1
tn,τ (ω)∥

2
]
,

and
∆j

n = Eω∼ ⃗p|Ftn

[
∥ŷj

tn,τn,M
(ω)− ŷj−1

tn,τn,M
(ω)∥2

]
.

Furthermore, we let EI = sup
n=0,...,N−1

sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

[∥∥∥ŷ0
n,τ − ŷ0

n−1,τn,M

∥∥∥2]. We note that by

Corollary C.10, EI ≲ d.
Lemma C.11 (One-step decomposition of Ej

n). Assume L2
se

2hnhn ≤ 0.01 and and e2hn ≤ 2. For
any j = 2, . . . , J , n = 0, . . . , N − 1, we have

Ej
n ≤ 2∆j

n−1 + 0.01Ej−1
n .

Furthermore, for j = 1, n = 1, . . . , N − 1, we have

E1
n ≤ 2∆1

n + 0.01

(
sup

τ∈[0,hn]

Eω∼ ⃗p|Ftn

∥∥∥ŷ0
tn,τ (ω)− ŷ0

tn−1,τn−1,M
(ω)
∥∥∥2) .

Proof. For each ω ∈ Ω conditioned on the filtration Ftn , consider the auxiliary process defined as in
the previous section,

dŷj
tn,τ (ω) =

[
1

2
ŷj
tn,τ (ω) + sθtn+gn(τ)

(
ŷj−1
tn,gn(τ)

(ω)
)]

dτ + dw tn+τ (ω),

and

dŷj−1
tn,τ (ω) =

[
1

2
ŷj−1
tn,τ (ω) + sθtn+gn(τ)

(
ŷj−2
tn,gn(τ)

(ω)
)]

dτ + dw tn+τ (ω).

We have

d
(
ŷj
tn,τ (ω)− ŷj−1

tn,τ (ω)
)

=

[
1

2

(
ŷj
tn,τ (ω)− ŷj−1

tn,τ (ω)
)
+ sθtn+gn(τ)

(
ŷj−1
tn,gn(τ)

(ω)
)
− sθtn+gn(τ)

(
ŷj−2
tn,gn(τ)

(ω)
)]

dτ,

where the diffusion term dw tn+τ (ω) cancels each other out. By above equation we can calculate the

derivative d
dτ

∥∥∥ŷj
tn,τ (ω)− ŷj−1

tn,τ (ω)
∥∥∥2 as

d

dτ

∥∥∥ŷj
tn,τ (ω)− ŷj−1

tn,τ (ω)
∥∥∥2

= 2
(
ŷj
tn,τ (ω)− ŷj−1

tn,τ (ω)
)⊤ [1

2

(
ŷj
tn,τ (ω)− ŷj−1

tn,τ (ω)
)
+ sθtn+gn(τ)

(
ŷj−1
tn,gn(τ)

(ω)
)
− sθtn+gn(τ)

(
ŷj−2
tn,gn(τ)

(ω)
)]

.

By integrating from 0 to τ , we have∥∥∥ŷj
tn,τ (ω)− ŷj−1

tn,τ (ω)
∥∥∥2 − ∥∥∥ŷj

tn,0
(ω)− ŷj−1

tn,0
(ω)
∥∥∥2

=

∫ τ

0

∥∥∥ŷj
tn,τ ′(ω)− ŷj−1

tn,τ ′(ω)
∥∥∥2 dτ ′

+

∫ τ

0

2
(
ŷj
tn,τ (ω)− ŷj−1

tn,τ ′(ω)
)⊤ [

sθtn+gn(τ ′)

(
ŷj−1
tn,gn(τ ′)(ω)

)
− sθtn+gn(τ ′)

(
ŷj−2
tn,gn(τ ′)(ω)

)]
dτ ′

≤ 2

∫ τ

0

∥∥∥ŷj
tn,τ ′(ω)− ŷj−1

tn,τ ′(ω)
∥∥∥2 dτ ′ + ∫ τ

0

∥∥∥sθtn+gn(τ ′)

(
ŷj−1
tn,gn(τ ′)(ω)

)
− sθtn+gn(τ ′)

(
ŷj−2
tn,gn(τ ′)(ω)

)∥∥∥2 dτ ′
≤ 2

∫ τ

0

∥∥∥ŷj
tn,τ ′(ω)− ŷj−1

tn,τ ′(ω)
∥∥∥2 dτ ′ + L2

s

∫ τ

0

∥∥∥ŷj−1
tn,gn(τ ′)(ω)− ŷj−2

tn,gn(τ ′)(ω)
∥∥∥2 dτ ′.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

By Theorem A.5, and ŷj,p
tn,0

(ω) = ŷj
tn−1,τn−1,M

(ω), we have∥∥∥ŷj
tn,τ (ω)− ŷj−1

tn,τ (ω)
∥∥∥2 ≤ L2

se
2τ

∫ τ

0

∥∥∥ŷj−1
tn,gn(τ ′)(ω)− ŷj−2

tn,gn(τ ′)(ω)
∥∥∥2 dτ ′ + e2τ∆j

n−1.

By taking expectation, for all τ ∈ [0, hn]

Eω∼ ⃗p|Ftn

∥∥∥ŷj
tn,τ (ω)− ŷj−1

tn,τ (ω)
∥∥∥2 − e2τ∆j

n−1

≤ L2
se

2τ

∫ τ

0

Eω∼ ⃗p|Ftn

∥∥∥ŷj−1
tn,gn(τ ′)(ω)− ŷj−2

tn,gn(τ ′)(ω)
∥∥∥2 dτ ′

≤ L2
se

2ττ sup
τ ′∈[0,τ]

Eω∼ ⃗p|Ftn

∥∥∥ŷj−1
tn,τ ′(ω)− ŷj−2

tn,τ ′(ω)
∥∥∥2 .

Thus

sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

∥∥∥ŷj−1
tn,τ (ω)− ŷj−2

tn,τ (ω)
∥∥∥2

≤ e2hn∆j
n−1 + L2

se
2hnhnEj−1

n .

For j = 1, we consider the following two processes,

dŷ1
tn,τ (ω) =

[
1

2
ŷ1
tn,τ (ω) + sθtn+gn(τ)

(
ŷ0
tn,gn(τ)

(ω)
)]

dτ + dw tn+τ (ω),

and

dŷ0
tn,τ (ω) =

[
1

2
ŷ0
tn,τ (ω) + sθtn+gn(τ)

(
ŷ0
tn−1,τn−1,M

(ω)
)]

dτ + dw tn+τ (ω).

Similarly, we have

sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

∥∥ŷ1
tn,τ (ω)− ŷ0

tn,τ (ω)
∥∥2

≤ e2hn∆1
n + L2

se
2hnhn

(
sup

τ∈[0,hn]

Eω∼ ⃗p|Ftn

∥∥∥ŷ0
tn,τ (ω)− ŷ0

tn−1,τn−1,M
(ω)
∥∥∥2) .

Lemma C.12 (One-step decomposition of ∆j
n). Assume L2

se
2hnhn ≤ 0.01 and and e2hn ≤ 2. For

any j = 2, . . . , J , n = 1, . . . , N − 1, we have

∆j
n ≤ 3∆j

n−1 + 0.4Ej−1
n .

Furthermore, for j = 1, n = 1, . . . , N − 1, we have

∆1
n ≤ 3∆1

n−1 + 0.4 sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

[∥∥∥ŷ0
n,τ − ŷ0

n−1,τn,M

∥∥∥2] .
For n = 0, we have ∆j

0 ≤ 0.32∆j−1
0 , and ∆1

0 ≤ sup
τ∈[0,h0]

Eω∼ ⃗p|Ft0

[∥∥ŷ0
t0,τ (ω)− ŷ0

t0,0(ω)
∥∥2].

Proof. By definition of ŷj
tn,τn,M

(ω) we have∥∥∥e−hn
2 ŷj

tn,τn,M
− e−

hn
2 ŷj−1

tn,τn,M

∥∥∥2
=

∥∥∥∥∥ŷj
n,0 − ŷj−1

n,0 +

m−1∑
m′=0

e
−τ

n,m′+1
2 2(eϵn,m′ − 1)

[
sθtn+τn,m′ (ŷ

j−1
n,τn,m′)− sθtn+τn,m′ (ŷ

j−2
n,τn,m′)

]∥∥∥∥∥
2

≤ 2
∥∥∥ŷj

n,0 − ŷj−1
n,0

∥∥∥2 + 2

∥∥∥∥∥
m−1∑
m′=0

e
−τ

n,m′+1
2 2(eϵn,m′ − 1)

[
sθtn+τn,m′ (ŷ

j−1
n,τn,m′)− sθtn+τn,m′ (ŷ

j−2
n,τn,m′)

]∥∥∥∥∥
2

≤ 2
∥∥∥ŷj

n,0 − ŷj−1
n,0

∥∥∥2 + 32ϵ2n,m′M

M−1∑
m′=0

∥∥∥[sθtn+τn,m′ (ŷ
j−1
n,τn,m′)− sθtn+τn,m′ (ŷ

j−2
n,τn,m′)

]∥∥∥2
≤ 2

∥∥∥ŷj
n,0 − ŷj−1

n,0

∥∥∥2 + 32h2
n sup

τ∈[0,hn]

L2
s

∥∥ŷj−1
n,τ − ŷj−2

n,τ

∥∥2 ,
34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

where the second inequality is implied by that ex − 1 ≤ 2x when x < 1. By taking expectation, and
the assumption that L2

se
2hnhn ≤ 0.1 and e2hn ≤ 2, we have

e−
hn
2 ∆j

n = Eω∼ ⃗p|Ftn
e−

hn
2

[∥∥∥ŷj
tn,τn,M

− ŷj−1
tn,τn,M

∥∥∥2]
≤ 2Eω∼ ⃗p|Ftn

[∥∥∥ŷj
n,0 − ŷj−1

n,0

∥∥∥2]+ 32h2
nL

2
s sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

[∥∥ŷj−1
n,τ − ŷj−2

n,τ

∥∥2]
≤ 2∆j

n−1 + 0.32Ej−1
n .

Thus
∆j

n ≤ 3∆j
n−1 + 0.4Ej−1

n .

In the remaining part, we will bound ∆1
n. By definition, we have∥∥∥e−hn

2 ŷ1
tn,τn,M

(ω)− e−
hn
2 ŷ0

tn,τn,M
(ω)
∥∥∥2

=

∥∥∥∥∥ŷ1
n,0 − ŷ0

n−1,τn,M
+

m−1∑
m′=0

e
−τ

n,m′+1
2 2(eϵn,m′ − 1)

[
sθtn+τn,m′ (ŷ

0
n−1,τn,m′)− sθtn+τn,m′ (ŷ

0
n−1,τn,M

)
]∥∥∥∥∥

2

≤ 2
∥∥∥ŷ1

n,0 − ŷ0
n−1,τn,M

∥∥∥2 + 2

∥∥∥∥∥
M−1∑
m′=0

e
−τ

n,m′+1
2 2(eϵn,m′ − 1)

[
sθtn+τn,m′ (ŷ

0
n−1,τn,m′)− sθtn+τn,m′ (ŷ

0
n−1,τn,M

)
]∥∥∥∥∥

2

≤ 2
∥∥∥ŷ1

n,0 − ŷ0
n−1,τn,M

∥∥∥2 + 32h2
nL

2
s sup
τ∈[0,hn]

∥∥∥ŷ0
n−1,τ − ŷ0

n−1,τn,M

∥∥∥2 ,
where the second inequality is implied by that ex−1 ≤ 2x when x < 1. Thus with L2

se
2hnhn ≤ 0.01

and e2hn ≤ 2, we have

e−
hn
2 ∆1

n = Eω∼ ⃗p|Ftn
e−

hn
2

[∥∥∥ŷ1
tn,τn,M

− ŷ0
tn,τn,M

∥∥∥2]
≤ 2Eω∼ ⃗p|Ftn

[∥∥∥ŷ1
n,0 − ŷ0

n−1,τn,M

∥∥∥2]+ 32h2
nL

2
s sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

[∥∥∥ŷ1,P−1
n−1,τ − ŷ0

n−1,τn,M

∥∥∥2]
≤ 2∆1

n−1 + 0.32 sup
τ∈[0,hn]

Eω∼ ⃗p|Ftn

[∥∥∥ŷ0
n,τ − ŷ0

n−1,τn,M

∥∥∥2] .

Let Lj
n = 2∆j

n−1 + 0.01Ej−1
n . We note that Lj

n ≥ Ej
n. Thus for n ≥ 1 and j ≥ 2,

Lj
n = 2∆j

n−1 + 0.01Ej−1
n

≤ 2(80∆j
n−1 + 0.4Ej−1

n) + 0.01Lj
n

≤ 160Lj
n−1 + 0.01Lj

n. (32)

We recursively bound Lj
n as

Lj
n ≤

n∑
a=2

(0.01)j−2160n−a

(
n− a+ j − 2

j − 2

)
L2
a +

j∑
b=2

(0.01)
j−b

160n−1

(
n− 1 + j − b

j − b

)
Lb
1.

Bound for
n∑

a=2
(0.01)j−2160n−a

(
n−a+j−2

j−2

)
L2
a. Firstly, we bound L2

a. To do so, by Lemma C.12,

we bound ∆1
n as

∆1
n ≤ 3∆1

n−1 + 4EI ≤ 3n∆1
0 +

n−1∑
i=0

4 · 3iEI ≤ 4

n∑
i=0

3iEI ≤ 3n+2EI .

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

and by Lemma C.11, bound E1
n as

E1
n ≤ 2∆1

n + 0.1EI ≤ 3n+3EI .

Furthermore, by Lemma C.12, we bound ∆2
n as

∆2
n ≤ 3∆2

n−1 + 0.4E1
n ≤ 3n∆2

0 +

n−1∑
i=0

3iE1
n−i ≤ 0.32 · 3nEI + 3n+3nEI ≤ 28 · 3nnEI .

Thus
L2
a = 2∆2

a−1 + 0.01E1
a ≤ 28 · 3aaEI .

Furthermore, by
(
m
n

)
≤
(
em
n

)n
for m ≥ n > 0, we have

n∑
a=2

(0.01)j−2160n−a

(
n− a+ j − 2

j − 2

)
L2
a

≤ (0.01)j−2(28 · 160nn2)ej−2

(
n− a+ j − 2

j − 2

)j−2

EI

≤ (e2 · 0.01)j−2(28 · 160nn2)EI .

Bound for
j∑

b=2

(0.01)
j−b

160n−1
(
n−1+j−b

j−b

)
Lb
1. By Lemma C.11, we have

Ej
1 ≤ 0.01Ej−1

1 + 2∆j
0

≤ (0.01)
j EI +

j−1∑
i=0

(0.01)
i
2∆j−i

0 .

Combining the fact that ∆j
0 ≤ 0.32j−1EI , we have

Ej
1 ≤ 7 · j · 0.32jEI .

Thus

Lb
1 = 2∆j

0 + 0.01Eb−1
1

≤ 2 · 0.32b−1EI + 0.01 · 7 · (b− 1) · 0.32b−1EI
≤ 7 · b · 0.32b−1EI .

Furthermore, by
m∑
i=0

(
n+i
n

)
xi =

1−(m+1)(m+n+1
n)Bx(m+1,n+1)

(1−x)n+1 ≤ 1
(1−x)n+1 , we have

j∑
b=2

(0.01)
j−b

160n−1

(
n− 1 + j − b

n− 1

)
Lb
1

≤
j∑

b=2

(0.01)
j−b

160n−1

(
n− 1 + j − b

n− 1

)
7 · b · 0.32b−1EI

≤ 22 · 0.87j440n−1jEI .

Combining the above two results, we have

EJ
n ≤ (e2 · 0.01)j−2(28 · 160nn2)EI + 22 · 0.87j440n−1jEI .

If J − 45N ≳ log NEI

ε2 , for any n = 0, . . . , N

EJ
n ≤ ε2

N
. (33)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

C.5.1 OVERALL ERROR BOUND

By the previous computation, we have

KL(⃗ptn+1
∥q̂tn+1

)

≤ KL(⃗ptn∥q̂tn) + Eω∼q|Ftn

[
1

2

∫ hn

0

∥δtn(τ, ω)∥
2
dτ

]
≤ KL(⃗ptn∥q̂tn) + 3Eω∼ ⃗p|Ftn

[Atn(ω) +Btn(ω)] + 3L2
shnEJ

n .

Combining Lemma A.6, Corollary C.10, and Eq. equation 33, we have

KL(⃗ptn+1
∥q̂tn+1)

≤ KL(⃗p0∥q̂0) + 3

N−1∑
n=0

(
Eω∼ ⃗p|Ftn

[Atn(ω) +Btn(ω)] + L2
shnEJ

n

)
≲ de−T + ϵd(T + log η−1) + δ22 + ε2,

with parameters J − 45N ≥ O(log Nd
ε2), h = Θ(1), N = O(log d

ε2), T = O(log d
ε2)

ϵ = Θ(d−1ε2 log−1 d
ε2), M = O(dε−2 log d

ε2).

37

	Introduction
	Problem set-up
	Sampling under isoperimetry
	Score-based diffusion models
	Picard iterations

	Technical overview
	Parallel Picard method for sampling under isoperimetry
	Algorithm
	Theoretical Guarantees
	Proof sketch of Theorem 4.3: Performance analysis of Algorithm 1

	Parallel Picard method for sampling of diffusion models
	Algorithm
	Assumptions
	Theoretical Guarantees

	Discussion and Conclusion
	Useful tools
	Girsanov’s Theorem
	Comparison inequalities
	Help Lemmas for diffusion models

	Missing proof for sampling under isoperimetry
	One step analysis of KLnj: from KL's convergence to Picard convergence
	One step analysis of nj
	One step analysis of Enj
	Proof of Theorem 4.3

	Missing details for sampling for diffusion models
	Algorithm
	Interpolation Processes
	Decomposition of KL divergence

	Discretization error and estimation error of score function in every time slice
	Analysis for initialization
	Convergence of Picard iteration
	Overall Error Bound

