A Analysis: Proof of Theorem 4

Throughout this section, let OPT denote the number of disagreements made by the optimal offline
algorithm on GG and ALG denote the cost of semi-online Pivot. Note that OPT is a fixed quantity,
while ALG depends on the random choice of S and its order. Further, all probabilities are taken with
respect to the e-random sample with c-corruption model.

By Equation (1), we can write our cost as:

E[ALG] = > P(Ay).

teT

Previously, we split this sum into the contributions by S and V' \ S. Now, we consider a slightly

different partition. To this end, we define the (random) ordered set S’ C S of the first “5%n arrivals in

S. Recall that A7 "= {one vertex of ¢ is chosen as pivot in S’ while all three are unclustered } and

analogously for AY\S. Then we can re-write:
E[Alg] = cost(S’) + cost(V \ S'),

where cost(S") =, r P(A5") and cost(V '\ S') = Y ier IP’(AX\S,). Thus, now our offline phase
corresponds to S, and our online phase to V'\ S’. We will show that cost(S") = O(—1-)OPT and
cost(V\ ") = O(ﬁ)OPT. Combining these two bounds with the above expression for E[ALG]
completes the proof of Theorem 4.

A.0.1 Bounding Cost of S’

We show that cost(S’) = O(—-)OPT. Recall that S’ is part of the offline phase which arrives in

random order. For any vertex i € V, we define the event A7 l analogously as AY " for triangle ¢. That

is, AY "= {i is chosen as pivot in S’}. We begin with a technical lemma that analogous to the dual
fitting analysis of Pivot in random order.

Lemma 4. Let ¢ > 0. Suppose for allt € T and i € t, we have P(AS" | AS") > c. Then
> ier P(47") < LOPT.

Proof. Consider the primal-dual pair of linear programs P and D:

P= min{z Te | Tij + i + x> 1Vijk € T, 2 > 0}.
ecE

D:max{zyt | Z yr <1Ve € E, y > 0}.
Y teT  teTlect

We observe that . = 10pt makes a disagreement on e £OT all € is feasible for P with objective value OPT.
Thus, OPT(P) < OPT. Further, by strong duality OpT(D) = OpPT(P) < OPT.

We now exhibit a feasible solution to D. For all t € T, take y; = cP(AS"). It suffices to show that

this setting of y is feasible for D, because then ¢ ZteT ]P’(Af l) < OPT. It is immediate that y > 0,
so we check for each ij € E:

Z CP(A;SJ’/I@) < Z P(Afl | A;Sjlk)P(A;Sjlk) = Z ]P)(Afl N A;Sj,k)a

keV|ijkeT kEV|ijkeT k|ijkeT

where we observe that the events A} N Afj/k are disjoint for all £ with 75k € T, and each such event
implies that Pivot makes 75 a disagreement. We conclude:

Z CP(A;:S;',IQ) < IP(Pivot makes 4j a disagreement) < 1.
keV||ijkeT

Thus, y is feasible for D. O
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Note that we can recover the proof of Theorem 3 using the above lemma. Take all probabilities with
respect to the random order model, and S’ = V. Then P(AY | AY) > 1 forallt € T and i € .
This is because each vertex of ¢ has equal probability of arriving first among the three in the random
order model. This implies the expected cost of Pivot in the random order model is at most 30PT.

In light of the above lemma, we study the probabilities P(A?" | A%") fort € T',i € t. Roughly, we
want to show that the probability of each vertex of ¢ arriving first among the three is not too small.
The case to keep in mind is if some vertices of a bad triangle are adversarial and others are not. The
next lemma shows that the probability than the next arrival in S is a particular vertex does not vary
much between adversarial and random vertices.

Lemma 5. Letr < |S’|. Fix an ordered prefix p = (p1,...,pr—1) of the first r — 1 arrivals in S'.
Then for any i ¢ p, we have:

— 1 1
€ . « T < P(rth arrival is i | first v — 1 arrivals are p) < ey PV

Proof. Fix ¢ ¢ p and let P be the event P = {first 7 — 1 arrivals are p}. Noting that ¢ € S is
necessary for ¢ to be the rth arrival, we have:

P(rth arrival is i | P) = P(rth arrival is i | P,i € S)P(i € S | P).
Conditioned on P and i € S, the rth arrival is a uniform random vertex from S \ P, so:

1 1
CASI=IP e —(r—1)

P(rth arrivalis i | P,z € S)

To analyze the second term, P(i € S | P), we consider two cases. In the first case ¢ € A,
soP(i € S| P) = 1. Otherwise, i € V \ A, so conditioned on P, i € S if and only if
i € R\ {p1,...,pr_1}. Thus we can lower-bound P(; € S | P) > % > £59, where we
recall r < |S'| = @ We conclude, <S¢ < P(; € S| P) < 1. Combining our expressions for

2
both terms gives the desired result. O

Now we are ready to lower bound P(A5" | AS") by considering the prefixes of arrivals where A"
occurs.

Lemma 6. Foranyt € T andi € t, P(AY" | AS") > e,

Proof. Fix t € T and i € t. For 1 < r < |5, we define the event A} =
{one vertex of ¢ is chosen as pivot in the rth arrival while all three are unclustered}. Note that the

events A7 for all 1 < r < |S’| partition AY ". Then by the law of total probability:

Ed Ed
P(AT | A7) = P(AT | A7 ADP(AY | A7) = P(rtharrival is i | A7)P(A] | A7),

r=1 r=1

Because Z‘Ti‘l P(A7 | AS") = 1, it suffices to lower bound P(rth arrival is i | A7) > =< for all
1<r<|5.

To this end, we fix any 1 < r < |5’|, and let t = ijk. Noting that the events that the rth arrival is 4, j,
or k partition A}, we have:

P(rth arrival is i | A]) + P(rth arrival is j | A}) + P(rth arrivalis k | A}) =1

P(rth arrival is j | A7) P(rtharrival is k | A7)\ "
P(rtharrival is i | A7)~ P(rth arrival is i | A7) '

P(rth arrival is ¢ | A}) = (1 +

It remains to upper bound the ratio % for u,v € t. To this end, we define the set P
5 t
of all ordered prefixes p of » — 1 arrivals such that after running Pivot on p, all vertices in ¢ are

uncovered. In particular, A} occurs if any only if the first  — 1 arrivals is some p € P and the rth
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arrival is in ¢. Then for any u € ¢:
P(rth arrival is u, A})

P(rth arrival is u | A}) =

P(AT)
> pep P(rtharrival is u, first 7 — 1 arrivals are p)
B P(AT)
> pep P(rtharrival is u | first 7 — 1 arrivals are p)P(first r — 1 arrivals are p)

P(A7)
Now consider u, v € t. Applying the upper- and lower bounds given by Lemma 5, respectively, we
have:

P(rth arrival is u | A}) <

1 Z P(first r — 1 arrivals are p)
—1)

en — (r ey P(AY) ’
. €—« 1 P(first r — 1 arrivals are p)
P(rth arrival is v | A}) > - )
¢ 2 en—(r—l)pezp P(AY)
Wthh taken together 1mply W S =a
® t
€e—« €—«

2 2 \7'
P(rth arrival is i | A7) > (1 T ) —
€

— €E—Q

Composing Lemma 4 and Lemma 6 gives cost(S") = >, . P(A") < 2-0pT = O(—L)OPT.

A.0.2 Bounding Cost of V' \ S’

Here we show that cost(V \ S’) = O((E_;QV)OPT. Our strategy again is to show that Pivot on S’
sparsifies the remaining graph, so every arrival in V' \ S’ has a small number of positive unclustered
neighbors. Then we apply Lemma 2. The next lemma is analogous to Lemma 3, but the estimates are
slightly more involved due to the more complex arrival distribution.

Lemma 7. For any v € V, define the random variable N, to be 0 if v is clustered by
running Pivor on S' (ie. v € S’ or v has a positive edge to a pivor in S') or N, =
[{unclustered positive neighbors of v in V' \ S’}| otherwise. Then EN,, = O( = a)2)

Proof. Fix v € V and £k > 0. We first upper bound P(N, > k). Define the event
C; = {visunclustered and has at least k posmve unclustered neighbors after ith arrival in S'}.
Then P(N, > k) = P(C|s/ | Cs/|-1,...,C1)...P(Cy). For all 4, we have:

P(C; | Ci—1,...,C1) <1 —TP(vclustered by ith arrival | C;_q,...,C4).

It is convenient to describe the distribution of the ith arrival in S’ as follows: Suppose the first
i — 1 arrivals consist of random arrivals R" C V \ A and adversarial arrivals A’ C A. First, we
decide whether the ith arrival will be random (from \%4 \ A) or adversarial (from A.) It is random

with probability <= a) | <18 = (e — a)n/2.

Similarly, the ith arrlval 1s adversanal w1th probablhty lil‘ > an— IA |, After deciding whether

the 4th arrival will be random or adversarial, then we choose the arrival by drawing a uniform random
vertex from (V' '\ A) \ R’ or A\ A’, respectively.

Now we lower bound P(v clustered by ith arrival | C;_1, ..., C7). Conditioned on C;_1, v has at
least k£ unclustered positive neighbors before the ith arrival. Let r and a denote the number of
unclustered positive neighbors in V' \ A and A, respectively. Note that 4+ a > k. Then we compute:

— A
P(v clustered by ith arrival | C;_1,...,Cy) > ccor,o 4] a

2¢ n en  an— |A/|
e—ar la

26 n en
e—ak
> i

2 n’
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Recalling |S’| = (e — a)n/2, we have:

(e—a)n/2 2
e—ak (e — )’k
> < — — < A .
P(N, > k) < <1 — n) < exp( " )

Using this tail bound, we can bound the expectation of N,:

ENU_ZPN > k) gi <—)2k> O(/Oooexp<—%>dx>—0<ﬁ).
O

Composing Lemma 2 and Lemma 7, we can bound cost(V \ S”). Let G’ denote the subgraph of G
induced by all vertices in V' \ S’ that are not clustered by the pivots chosen in S’. Then we have the
same three properties as in the proof of Theorem 4, which we repeat for convenience:

* Let 7" be the set of all bad triangles in G'. We have 3 ;.71 ,v\sr < [T"].

* The positive degree in G’ of a vertex v is exactly N, (as defined in Lemma 7.)
* Let E’ denote the edge set of G’ and E* the disagreements made by OPT. Then OPT induces
a clustering of G’ that makes disagreements E' N E*.

Using Lemma 2 and Lemma 7 and the above three properties, we conclude:

. o €
cost(V\S') <E|T'| <E | > dh()+dh ()| < > ENAEN; =0 (W) OPT.
ijeEE'NE* ije B+

B Omitted Proofs

Proof of Lemma 3. Fix v € V and k > 0. We first upper bound P(N, > k). Define the event
C; = {visunclustered and has at least k posmve unclustered neighbors after ith arrival in S}.
Then P(N, > k) = P(Cyg | Cis|-1,---,C1)...P(Cy). For all 4, we have:

k+1 k

P(C; | Ci—1,...,C1) < 1—P(v clustered by ith arrival | C;_1,...,C;) < 1—% <1l--—,
n—(i— n

where in the second inequality, we use the fact that conditioned on C;_1, v has at least k£ unclustered
neighbors before the ith arrival. Recalling |S| = en, we have P(N, > k) < (1 — &) <

exp(—ek). Usmg this tail bound, we can bound the expectation of N,: EN, = >~ /P(N, > k) ;
S exp(—ck) = O( [, exp(—ck)dk) = O(2). O

Proof of Theorem 5. Tt suffices to consider € — o < % Then € € (0, %) Consider any sufficiently

large n such that ﬁ + en < n. Then we define the graph on n vertices. All edges are negative

except those on a set L of ﬁ vertices. The edges on L are a lower bound instance of size ﬁ

guaranteed by Lemma 1.

The adversary chooses the corrupted nodes of the sample to be those not in L. Let R be the corrupted
random sample given to the algorithm. Then the probability that R contains no vertex from L is:

1/(e —a) 1/(e—a) ) (1_1_/(5_“))&—&)” = Q(1).

Pr(RﬁLZ(Z)):(l—(l_a)n)~-~( _(1—a)n—(€—a)n+1 - n—en

\%

Further, conditioned on this event, the cost of any algorithm is ( 6_1a )-competitive, because L arrives
in adversarial order. O

C Experiments

This section contains the numerical results omitted in Section 5.
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Table 4: Degradation in Pivot’s performance on different sequences, € = 0.1, 30 trials, data source
FACEBOOK

(# Nodes, # Edges) | Random Degree Degree w. Advice Bad Triangles Ba\‘:} T;(llavlilfées
(168,3312) | 0£15.09% 57.72 % -0.16 £ 11.28 % 5772 % 1.67 £ 1445 %
(333,5038) | 0£12.10% 40.73 % 1.90+11.23 % 41.59 % 1.59 £ 10.16 %
(534,9626) | 0£11.21% 108.61 % 4.33 £ 12.68 % 108.54 % 353 £ 1346 %

(747,60050) | 0£13.28% 99.45 % 095+ 11.09 % 101.65 % -0.29 £ 11.39 %
(1034, 53498) | 0+ 6.00 % 63.19 % 0.19 +5.49 % 63.72 % 1.48 £ 6.63 %

Table 5: Degradation in Pivot’s performance on different sequences, ¢ = 0.1, 30 trials, data source
GPLUS

(# Nodes, # Edges) | Random Degree Degree w. Advice Bad Triangles Bil;l 'll(;rée:/r;gles
(638,16043) | 0£12.13% 95.67 % -3.40£12.12 % 95.09 % -1.78 £ 843 %
(780,26552) | 0£20.27% 160.87 % 1.89 +20.37 % 160.98 % -7.01 £8.92 %

(1650, 166292) | 0£20.79 % 13346 % 9.90 &+ 23.30 % 133.46 % -0.80 £ 17.03 %
(2213,93510) | 01483 % 144.08% 0.24 +13.29 % 144.13 % -1.39£9.40 %
(3455,435569) | 0£1535% 22937% -3.95+16.03 % 229.38 % -3.91+£12.78 %
(4586, 352373) | 0£19.89% 27507 % 1.41 +23.09 % 275.07 % -7.79 £ 12.12 %

Table 6: Mean degradation and standard deviation in Pivot’s performance on different sequences,
€ = 0.1, 30 trials, data source REDDIT

(# Nodes, # Edges) Random Degree Degree w. Advice Bad Triangles Bi‘i ’Zr‘ljz:;ies Time w. Rgl:ice
(2502, 4101) 04 1838 % 1006.24 % 11.56 4 20.60 % 1006.23 % 9.11 £ 1215 % 111.40 % 3.66 + 15.76 %
(4277, 9524) 0+42.79 % 610.64 % 399+ 831 % 610.97 % 571 +£849 % 139.26 % -4.88 + 10.43%

(7019, 20724) 0+11.36% 690.05 % 21.28 + 28.61 % 690.27 % 18.40 + 11.74 % 79.89% 4.59 + 8.65 %
(10772, 39042) 0 £ 8.90 % 762.12 % 22.57 + 40.03 % 762.29 % 15.23 + 13.68 % 90.54 % 6.21 £ 1349 %
(14042, 56567) 0£20.23 % 822.60 % 11.09 £ 42.99 % 822.64 % 259+ 1224 % 50.24 % -1.01 £ 14.11 %

Table 7: Mean degradation and standard deviation in Pivot’s performance on different sequences,
€ = 0.1, 30 trials, BITCOIN

. . Bad Triangles . Time
(#Nodes, # Edges) Random Degree Degree w. Advice Bad Triangles w. Advice Time w. Advice
(330, 964) 0+21.57% 256.19 % 2029 + 1742 % 256.19 % 13.29 4+ 20.86 % 170.34 % 4.01 £22.11 %
(781, 3119) 0+ 6501 % 423.84 % -0.95+41.17 % 426.73 % 3.34 £2555% 309.53 % 5.04 £ 69.28 %
(1262, 5337) 0+ 1412 % 468.27 % 18.55 + 17.00 % 468.13 % 10.61 £ 7.04 % 46.25 % 12.60 = 41.11 %
(1822, 8624) 0+ 20.24 % 914.77 % 12.09 = 39.00 % 914.77 % 3.65 £ 14.49 % 500.53 % 4.40 2294 %
(2979, 14695) 0+21.83% 1070.07 % 9.75 £ 2432 % 1066.81 % 11.70 + 25.48 % 579.06 % 8.50 £ 40.54 %

Power of Advice: Here we show the degradation in Pivot’s average performance in adversarial order
with and without advice. We consider more sub-samples from all four data sources. See Tables 4, 5,
6 and 7.

Robustness: Here we show robustness results for the other three data sources: FACEBOOK, GPLUS
and BITCOIN. Notice that adversarial order in time does not apply to the non-temporal data sources
FACEBOOK and GPLUS, so the plots for these two datasets have two lines corresponding to ordering
according to degree and bad triangles.

In general, the conclusions are similar to those in Section 5. For robustness in the e-random sample
model, once ¢ is sufficiently large (this value is usually about 0.1 for the datasets), the performance
of Pivot with advice stays relatively constant, and it is only slightly worse than random Pivot. When
there are corruptions, Pivot’s performance can go up and down as we fix the value of € and increase
«. For example, one might see the degradation increase by 50% as we change « from 0 to 0.5¢.
However, compared with Pivot without advice, in all three adversarial orders we still see significant
improvement when we use the corrupted advice regardless, even when « is close to €. See Figures 2,
3, and 4.

Temporal Advice: Similar to Table 3 in Section 5, we show the results for BITCOIN. The test dataset
has the time interval of 2 years, whereas the historical data is taken from a time interval of length
[20, 40, 60, 80, 100] days prior to the time interval of the test dataset. See Table 8.
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Figure 2:
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(i) Degradation v.s. € values, FACEBOOK, (# nodes, # edges) = (747, 60050). (ii)

Figure 3: (i) Degradation v.s. ¢ values, GPLUS, (# nodes, # edges) = (4586, 352373). (ii) Degradation
v.s. « values, when € = 0.2.
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Figure 4: (i) Degradation v.s. € values, BITCOIN, (# nodes, # edges) = (2979, 14695). (ii) Degradation
v.s. o values, when € = (.2.

Table 8: Degradation of semi-online Pivot when using advice from historical data, BITCOIN, 100
trials, test dataset has the duration of 2 years.

Days e-value Random Degree Degree w. Advice Bad Triangles Bad Triangles w. Advice Time Time w. Advice
20 0.07 0+ 1797 % 1069.47 % 103.11 + 155.48 % 1066.21 % 90.50 + 134.53 % 578.71 % 103.27 £ 187.77 %
40 0.11 0+ 1797 % 1069.47 % 65.71 = 129.07 % 1066.21 % 56.87 £ 113.97 % 578.71 % 49.55 £ 125.00 %
60 0.12 0+ 1797 % 1069.47 % 51.60 = 11525 % 1066.21 % 67.62 £ 146.98 % 578.71 % 28.75£91.84 %
80 0.13 0+ 1797 % 1069.47 % 61.90 & 140.26 % 1066.21 % 61.98 + 143.11 % 578.71 % 26.94 £ 8191 %
100 0.14 0+ 1797 % 1069.47 % 59.97 + 132.61 % 1066.21 % 32.51 +79.97 % 578.71 % 46.28 £ 124.02 %
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