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• Section E: Additional discussion.

B RELATED WORK

Foundation Models. With powerful generalization capacity, pre-trained foundation models can be
adapted for various downstream scenarios and attain promising performance. In natural language
processing, BERT (Devlin et al., 2018; Lu et al., 2019), GPT series (Brown et al., 2020; OpenAI,
2023; Radford & Narasimhan, 2018; Radford et al., 2019), and LLaMA (Zhang et al., 2023c) have
demonstrated remarkable in-context learning abilities, and can be transferred to new tasks by domain-
specific prompts. Similarly, CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021), which conduct
contrastive learning on image-text pairs, exhibit exceptional accuracy in zero-shot visual recognition.
Painter (Wang et al., 2022) introduces a vision model that unifies network architectures and in-context
prompts to accomplish diverse vision tasks, without downstream fine-tuning. CaFo (Zhang et al.,
2023d) cascades different foundation models and collaborates their pre-trained knowledge for robust
low-data image classification. SAM (Kirillov et al., 2023) presents a foundation model for image
segmentation, which is pre-trained by 1 billion masks and conducts prompt-based segmentation.
There are some concurrent works extending SAM for high-quality segmentation (Ke et al., 2023),
faster inference speed (Zhao et al., 2023; Zhang et al., 2023a), all-purpose matching (Liu et al.,
2023b), 3D reconstruction (Cen et al., 2023), object tracking (Yang et al., 2023), medical (Ma
& Wang, 2023; Huang et al., 2023) image processing. From another perspective, we propose to
personalize the segmentation foundation model, i.e., SAM, for specific visual concepts, which adapts
a generalist into a specialist with only one shot. Our method can also assist the personalization of
text-to-image foundation models, i.e., Stable Diffusion (Rombach et al., 2022) and Imagen (Saharia
et al., 2022), which improves the generation quality by segmenting the foreground target objects from
the background disturbance.

Large Models in Segmentation. As a fundamental task in computer vision, segmentation (Long
et al., 2015; Jiang et al., 2022; Zhao et al., 2017; Xu et al., 2021; Jiang et al., 2023; Lin et al., 2022)
requires a pixel-level comprehension of a image. Various segmentation-related tasks have been
explored, such as semantic segmentation, classifying each pixel into a predefined set of classes (Badri-
narayanan et al., 2017; Chen et al., 2017; Zheng et al., 2021; Cheng et al., 2022; Xie et al., 2021; Song
et al., 2020b); instance segmentation, focusing on the identification of individual object instances (He
et al., 2017; Wang et al., 2020; Tian et al., 2020a); panoptic segmentation, assigning both class
labels and instance identification (Kirillov et al., 2019; Li et al., 2019); and interactive segmentation,
involving human intervention for refinement (Hao et al., 2021; Chen et al., 2021). Recently, inspired
by language foundation models (Zhang et al., 2023c; Brown et al., 2020), several concurrent works
have proposed large-scale vision models for image segmentation. They are pre-trained by extensive
mask data and exhibit strong generalization capabilities on numerous image distributions. Segment
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Table 1: Personalized Object Segmentation on the PerSeg Dataset. We report the mIoU scores of
30 objects in addition to the 10 objects in Table 1 of the main paper. ‘*’ denotes works concurrent to
ours.

Method Dog Dog2 Dog3 Dog4 Dog5 Dog6 Tortoise
Plushy

Round
Bird

Colorful
Sneaker

Colorful
Teapot

Painter (Wang et al., 2022) 80.41 73.77 46.98 22.39 82.03 76.16 55.31 39.83 0.00 13.69
VP (Bar et al., 2022) 6.80 12.26 23.84 20.61 21.44 32.05 24.42 34.09 30.32 34.89
SEEM* (Zou et al., 2023) 71.04 35.35 67.02 81.87 75.02 72.99 78.75 38.74 20.08 44.44
SegGPT* (Wang et al., 2023) 73.82 65.07 61.11 81.66 82.94 76.44 77.85 82.89 72,24 80.44

PerSAM 96.79 95.66 88.85 95.22 97.10 94.66 93.06 96.79 94.48 96.27
PerSAM-F 96.81 95.79 88.67 95.18 97.22 94.85 97.09 96.85 95.13 84.41

Method Dog7 Dog8 Candle Fancy
Boot

Sloth
Plushie

Poop
Emoji

Rc
Car

Shiny
Sneaker

Wolf
Plushie

Wooden
Pot

Painter (Wang et al., 2022) 40.97 57.15 24.36 49.06 45.78 23.42 23.69 0.00 38.97 57.61
VP (Bar et al., 2022) 17.67 12.24 12.71 39.13 29.31 37.55 29.98 30.88 28.86 34.30
SEEM* (Zou et al., 2023) 63.77 70.34 26.99 34.90 81.46 45.55 34.94 82.30 76.27 74.81
SegGPT* (Wang et al., 2023) 66.20 82.21 81.60 76.06 80.54 81.32 79.26 85.26 72.48 78.00

PerSAM 93.69 95.34 74.16 95.87 96.37 96.01 39.30 97.00 94.34 97.42
PerSAM-F 93.77 95.61 96.75 95.96 96.64 96.43 96.12 96.87 94.32 97.43

Method Table Teapot Chair Elephant Duck
Toy

Monster
Toy

Dog
Pack

Bear
Plushie

Berry
Bowl

Cat
Statue

Painter (Wang et al., 2022) 16.92 7.00 50.09 40.80 29.24 34.80 40.73 81.30 45.98 19.96
VP (Bar et al., 2022) 16.00 10.00 27.20 22.01 52.14 30.92 22.80 23.95 11.32 27.54
SEEM* (Zou et al., 2023) 30.15 12.30 66.15 46.64 89.92 41.49 66.83 61.27 38.29 24.27
SegGPT* (Wang et al., 2023) 81.95 89.89 78.97 80.38 84.48 83.33 77.53 75.54 73.00 76.54

PerSAM 94.68 40.02 92.22 96.05 97.31 93.75 95.85 89.28 91.81 95.42
PerSAM-F 94.66 96.93 92.14 96.07 97.31 94.21 95.76 95.32 91.27 95.46

Anything Model (SAM) (Kirillov et al., 2023) utilizes a data engine with model-in-the-loop anno-
tation to learn a promptable segmentation framework, which generalizes to downstream scenarios
in a zero-shot manner. Painter (Wang et al., 2022) and SegGPT (Wang et al., 2023) introduce a
robust in-context learning paradigm and can segment any images by a given image-mask prompt.
SEEM (Zou et al., 2023) further presents a general segmentation model prompted by multi-modal
references, e.g., language and audio, incorporating versatile semantic knowledge. In this study, we
introduce a new task termed personalized object segmentation, and annotate a new dataset PerSeg
for evaluation. Instead of developing large segmentation models, our goal is to personalize them to
segment user-provided objects in any poses or scenes. We propose two approaches, PerSAM and
PerSAM-F, which efficiently customize SAM for personalized segmentation.

Parameter-efficient Fine-tuning. Directly tuning the entire foundation models on downstream
tasks can be computationally expensive and memory-intensive, posing challenges for resource-
constrained applications. To address this issue, recent works have focused on developing parameter-
efficient methods (Sung et al., 2022; He et al., 2022; Rebuffi et al., 2017; Qin & Eisner, 2021) to
freeze the weights of foundation models and append small-scale modules for fine-tuning. Prompt
tuning (Lester et al., 2021; Zhou et al., 2022; Jia et al., 2022; Liu et al., 2021) suggests using
learnable soft prompts alongside frozen models to perform specific downstream tasks, achieving
more competitive performance with scale and robust domain transfer compared to full model tuning.
Low-Rank Adaption (LoRA) (Hu et al., 2021; Cuenca & Paul, 2023; Zhang et al., 2023b; Hedegaard
et al., 2022) injects trainable rank decomposition matrices concurrently to each pre-trained weight,
which significantly reduces the number of learnable parameters required for downstream tasks.
Adapters (Houlsby et al., 2019; Pfeiffer et al., 2020; Lin et al., 2020; Chen et al., 2022) are designed
to be inserted between layers of the original transformer, introducing lightweight MLPs for feature
transformation. Different from existing works, we adopt a more efficient adaption method delicately
designed for SAM, i.e., the scale-aware fine-tuning of PerSAM-F with only 2 parameters and 10
seconds. This effectively avoids the over-fitting issue on one-shot data, and alleviates the ambiguity
of segmentation scale with superior performance.
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C EXPERIMENTAL DETAILS AND VISUALIZATION

C.1 PERSONALIZED EVALUATION

Implementation Details. We adopt a pre-trained SAM (Kirillov et al., 2023) with a ViT-H (Doso-
vitskiy et al., 2020) backbone as the foundation model, and utilize SAM’s encoder to calculate the
location confidence map. For PerSAM, we apply the target-guided attention and target-semantic
prompting to all three blocks in the decoder. The balance factor α in Equation 8 of the main paper is
set as 1. For PerSAM-F, we conduct one-shot training for 1,000 epochs with a batch size 1, supervised
by the dice loss (Milletari et al., 2016) and focal loss (Lin et al., 2017). We set the initial learning rate
as 10−3, and adopt an AdamW (Loshchilov & Hutter, 2017) optimizer with a cosine scheduler.

Complete Results on the PerSeg Dataset. In Table 1, we report the mIoU scores of the other 30
objects in the PerSeg dataset, except for the 10 objects in Table (1) of the main paper. As compared,
our PerSAM without any training can achieve superior segmentation results to Painter (Wang et al.,
2022), Visual Prompting (VP) (Bar et al., 2022), and SEEM (Zou et al., 2023) on most objects. Note
that, we here compare the results of SEEM with the Focal-L (Yang et al., 2022) vision backbone,
its best-performing variant. Aided by the 2-parameter fine-tuning, PerSAM-F further performs
comparably with SegGPT (Wang et al., 2023), a powerful in-context segmentation framework.
Therefore, our approach exhibits a high performance-efficiency trade-off by efficiently customizing
the off-the-shelf SAM (Kirillov et al., 2023) for personalized object segmentation.

Visualization. In Figure 1, we visualize the location confidence maps, segmentation results of
PerSAM with positive-negative location prior, and the bounding boxes from the cascaded post-
refinement. As shown, the confidence map (hotter colors indicate higher scores) can clearly indicate
the rough region of the target object in the image, which contributes to precise foreground (green
pentagram) and background (red pentagram) point prompts selection. The bounding boxes in green
also well enclose the targets and prompt SAM’s decoder for accurate post-refinement.

C.2 EXISTING SEGMENTATION BENCHMARKS

Implementation Details. For experiments in existing segmentation datasets, we utilize DI-
NOv2 (Oquab et al., 2023) as the image encoder to calculate the location confidence map, which
produces a more accurate location prior. Note that, the generality and extensibility of our approach
enable us to apply any vision backbones for location confidence map calculation. For video ob-
ject segmentation, different from PerSeg, where one image contains only one object, DAVIS 2017
dataset (Pont-Tuset et al., 2017) requires to personalize SAM to track and segment multiple different
objects across the video frames. In PerSAM, we regard the top-2 highest-confidence points as the
positive location prior, and additionally utilize the bounding boxes from the last frame to prompt
the decoder. This provides more sufficient temporal cues for object tracking and segmentation. In
PerSAM-F, we conduct one-shot fine-tuning on the first frame for 800 epochs with a learning rate
4−4. As discussed in Section 2.5 of the main paper, for N objects, we only need to run SAM’s
large-scale encoder (2s) once to encode the visual feature of the new frame, while running the
lightweight decoder for N times to segment different objects, which takes marginal 50Nms. For
one-shot semantic segmentation, we evaluate our method on FSS-1000 (Li et al., 2020) following
HSNet (Min et al., 2021) and LVIS-92i (Gupta et al., 2019) pre-processed by (Liu et al., 2023b). The
benchmark contains objects in a wide range of semantic categories within various backgrounds. For
one-shot part segmentation, we utilize the part-level benchmarks of PASCAL VOC (Morabia et al.,
2020) and PACO (Ramanathan et al., 2023) built by (Liu et al., 2023b), requiring to segment partial
objects with challenging scenarios.

Visualization. In Figure 2, we visualize more results of PerSAM-F for multi-object tracking and
segmentation in consecutive frames of the DAVIS 2017 dataset. We utilize different colors to denote
different objects, along with the additional prompts for SAM’s decoder, including a bounding box
from the last frame and its center point. Aided by our techniques and the last-frame temporal cues,
PerSAM-F exhibits favorable video segmentation performance and tracking consistency, even for
objects occluded by others or objects of the same category with similar appearances. In Figure 3,
we also visualize the results of PerSAM-F for one-shot semantic and part segmentation on four
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Figure 1: Visualization of Location Confidence Maps and PerSAM’s Segmentation Results.
We represent the positive (foreground) and negative (background) location prior by green and red
pentagrams. The green bounding boxes denote the box prompts in the cascaded post-refinement.

datasets. The satisfactory performance illustrates that our approach is not limited to object-level
personalization, but also part- and category-wise segmentation with good generalization capability.

C.3 PERSAM-ASSISTED DREAMBOOTH

Implementation Details. We follow most model hyperparameters and training configurations in
DreamBooth (Ruiz et al., 2022), including a 10−6 learning rate and a batch size 1. We generate a
200-image regularization dataset by the pre-trained Stable Diffusion (Rombach et al., 2022) using the
textual prompt: “photo of a [CLASS]”. We fine-tune DreamBooth and our approach both for 1,000
iterations on a single A100 GPU, and adopt ‘t@y’ as the word identifier [V] for the personal visual
concepts. We utilize DDIM (Song et al., 2020a) sampling with 100 steps and a 10-scale classifier-free
guidance for generation.
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Figure 2: Visualization of PerSAM-F for Video Object Segmentation on the DAVIS 2017 (Pont-
Tuset et al., 2017) dataset. We represent different objects in different colors, and visualize the input
prompts for SAM’s decoder: a positive location prior (pentagram), an enclosing bounding box from
the last frame, and its center point (dot).

Reference Image Test ImagesReference Image Test Images

One-shot Semantic Segmentation on FSS-1000

Reference Image Test Images

One-shot Object Part Segmentation on PASCAL-Part

Reference Image Test Images Reference Image Test ImagesReference Image Test Images

Figure 3: Visualization of PerSAM-F for One-shot Semantic and Part Segmentation on FSS-
1000 (Li et al., 2020) and PASCAL-Part (Morabia et al., 2020) datasets. Our approach exhibits
superior generalization capabilities for diverse segmentation scenarios.

Quantitative Evaluation. Besides visualization, we also evaluate the PerSAM-assisted Dream-
Booth by three quantitative metrics in Table 13. We leverage CLIP (Radford et al., 2021) to calculate
the feature similarity of generated images with textual prompts (‘Text-Align’) and reference images
(‘Image-Align’) (Kumari et al., 2022), along with KID (Bińkowski et al., 2018) (the smaller, the
better). ‘Text-Align’ (Gal et al., 2022) and ‘Image-Align’ (Hessel et al., 2021) indicate the semantic
correspondence of the synthesized images with the textual prompt and few-shot reference images,
respectively. KID (Bińkowski et al., 2018) measures how much the fine-tuned models over-fit the
specific visual concepts in few-shot images, for which we utilize Stable Diffusion to generate 500
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DreamBooth

“A [V] dog in a jungle”

Assisted by PerSAM

“A [V] dog in snow”

User provides

A photo of a dog

“A [V] barn with a forest in the background”

“A [V] barn with blue sky in the background”

A photo of a barn

“A [V] table in the garden”

“A [V] table and an orange sofa”

A photo of a table

“A [V] plushy tortoise on the grass”

“A [V] plushy tortoise swimming in a pool”

A photo of a plushy tortoise

Figure 4: Visualization of PerSAM-assisted DreamBooth. Our approach can alleviate the back-
ground disturbance, and boost DreamBooth (Ruiz et al., 2022) for better personalized synthesis.

images as the validation set. These quantitative results demonstrate our effectiveness in generating
better visual correspondence with the target objects and input prompts.

Visualization. In Figure 4, we visualize more examples that demonstrate our effectiveness to
enhance DreamBooth for higher-fidelity personalized synthesis. We utilize PerSAM-F to decouple
the table and plushy tortoise from their backgrounds in the few-shot images, i.e., the couch and
carpet. In this way, the PerSAM-assisted DreamBooth generates new backgrounds corresponding
to the textual prompts of “in the garden”, “and an orange sofa”, “on the grass”, and “swimming in
a pool”. In addition, our approach can boost the appearance generation of target objects with high
text-image correspondence, while the vanilla DreamBooth might be interfered by textual prompts,
e.g., the orange on the table and the blue on the turtle shell. The experiments fully verify our efficacy
for better personalizing text-to-image models.
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Table 2: One-shot segmentation on COCO-
20i (Nguyen & Todorovic, 2019).

Method In-domain Train mIoU

FPTrans ✓ 47.0
SCCAN ✓ 48.2
HDMNet ✓ 50.0
PerSAM - 47.9
PerSAM-F - 50.6

Table 3: One-shot segmentation on Tokyo
Multi-Spectral-4i (Bao et al., 2021).

Method In-domain Train mIoU

PFENet ✓ 14.0
PGNet ✓ 17.5
V-TFSS ✓ 26.1
PerSAM - 18.4
PerSAM-F - 25.6

Table 4: Comparison with two text-guided models: OVSeg (Liang
et al., 2023) and Grounded-SAM (gro, 2023).

Method Prompt PerSeg COCO-20i

OVSeg Category Name 76.5 37.8
Grounded-SAM Category Name 93.2 51.3
PerSAM One-shot Data 89.3 47.9
PerSAM-F One-shot Data 95.3 50.6

Table 5: Running Efficiency compared
to SAM (Kirillov et al., 2023).

Method FPS↑ Memory (MB)↓
SAM 2.16 5731
PerSAM 2.08 5788
PerSAM-F 1.98 5832

Table 6: Comparison with SAM-PT (Rajič et al.,
2023) on DAVIS 2017 (Pont-Tuset et al., 2017).

Method Propagation J&F

SAM-PT Point Tracking 76.6
PerSAM Feature Matching 66.9
PerSAM +Point Tracking 68.2
PerSAM-F Feature Matching 76.1
PerSAM-F +Point Tracking 77.2

D ADDITIONAL EXPERIMENTS AND ANALYSIS

D.1 EVALUATION ON ADDITIONAL BENCHMARKS

COCO-20i (Nguyen & Todorovic, 2019). Constructed from MSCOCO (Lin et al., 2014), COCO-
20i divides the diverse 80 classes evenly into 4 folds for one-shot semantic segmentation. We directly
test our method on the validation set without specific in-domain training. As shown in Table 2, our
PerSAM(-F) achieves favorable segmentation performance over a wide range of object categories,
comparable to previous in-domain methods, i.e., FPTrans (Zhang et al., 2022), SCCAN (Xu et al.,
2023), and HDMNet (Peng et al., 2023).

Tokyo Multi-Spectral-4i (Bao et al., 2021). Sampled from Tokyo Multi-Spectral (Ha et al., 2017),
Tokyo Multi-Spectral-4i contains 16 classes within outdoor city scenes, similar to CityScapes (Cordts
et al., 2016). Different from existing methods, we only take as input the RGB images without the
paired thermal data, and do not conduct in-domain training. As shown in Table 3, our approach
still exhibits good generalization capacity in street scenarios, compared to the specialist models:
PFENet (Tian et al., 2020b), PGNet (Zhang et al., 2019), and V-TFSS (Bao et al., 2021).
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Table 7: Few-shot segmentation on the
PerSeg dataset.

Method Shot mIoU bIoU

SegGPT 1-shot 94.3 76.5
SegGPT 3-shot 96.7 78.4
PerSAM 1-shot 89.3 71.7
PerSAM 3-shot 90.2 73.6
PerSAM-F 1-shot 95.3 77.9
PerSAM-F 3-shot 97.4 79.1

Table 8: Few-shot segmentation on
FSS-1000 (Li et al., 2020) benchmark.

Method Shot mIoU

SegGPT 1-shot 85.6
SegGPT 5-shot 89.3
PerSAM 1-shot 81.6
PerSAM 5-shot 82.3
PerSAM-F 1-shot 86.3
PerSAM-F 5-shot 89.8

D.2 COMPARISON TO ADDITIONAL METHODS

Text-guided Segmenters. Recently, open-world segmentation models guided by text prompts have
driven increasing attention. To compare our approach with them, we select two popular methods:
OVSeg (Liang et al., 2023) and Grounded-SAM (gro, 2023). OVSeg leverages MaskFormer (Cheng
et al., 2021) to first generate class-agnostic mask proposals, and then adopts a fine-tuned CLIP
for zero-shot classification. Grounded-SAM utilizes a powerful text-guided detector, Grounding
DINO (Liu et al., 2023a), to generate object bounding boxes, and then utilize them to prompt SAM
for segmentation. Instead of giving a one-shot reference, we directly prompt them by the category
name of the target object for text-guided segmentation, e.g., “cat”, “dog”, or “chair”. As shown in
Table 4, our PerSAM-F consistently achieves competitive results on two different datasets: PerSeg
and COCO-20i. This indicates that, utilizing PerSAM with a class-agnostic one-shot reference is on
par with recognizing the category and then segmenting it with text-guided methods.

SAM-PT (Rajič et al., 2023). Although both our PerSAM(-F) and the concurrent SAM-PT are
developed based on SAM, our approach can be generalized to most one-shot segmentation tasks
(personalized/video/semantic/part segmentation), while SAM-PT specifically aims at video object
segmentation. One key difference between our approach and SAM-PT is how to locate and associate
objects from the previous to the current frame, i.e., propagating the location prompt for SAM across
frames. In detail, our PerSAM(-F) simply calculates a location confidence map by feature matching,
while SAM-PT relies on an external point tracking network, PIPS (Harley et al., 2022). As shown
in Table 6, on DAVIS 2017 dataset (Pont-Tuset et al., 2017), SAM-PT performs slightly better than
the original PerSAM-F. However, inspired by SAM-PT, we can also incorporate its point tracking
strategy (the PIPS tracker) with PerSAM(-F) to propagate the positive-negative point prompt, which
effectively enhances the segmentation performance. This demonstrates the flexible extensibility of
our approach for applying more advanced trackers in a plug-and-play way.

D.3 FEW-SHOT SEGMENTATION BY PERSAM

Our approach is not limited to one-shot segmentation, and can accept few-shot references for improved
results. As an example, given 3-shot references, we independently calculate 3 location confidence
maps for the test image, and adopt a pixel-wise max pooling to obtain the overall location estimation.
For PerSAM-F, we regard all 3-shot data as the training set to conduct the scale-aware fine-tuning.

We respectively conduct experiments for 3-shot segmentation on PerSeg dataset and 5-shot segmenta-
tion on FSS-1000 dataset (Li et al., 2020). The results are respectively shown in Tables 7 and 8. By
providing more visual semantics in few-shot data, both our training-free PerSAM and the fine-tuned
PerSAM-F can be further enhanced.
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Table 9: Different pre-trained encoders for obtaining the positive-negative location prior.

Method Encoder DAVIS 2017 FSS-1000 LVIS-92i PASCAL-Part PACO-Part

Painter - 34.6 61.7 10.5 30.4 14.1
SegGPT - 75.6 85.6 18.6 - -
PerSAM SAM 62.8 74.9 12.9 31.3 21.2
PerSAM DINOv2 66.9 81.6 15.6 32.5 22.5
PerSAM-F SAM 73.4 79.4 16.2 32.0 21.3
PerSAM-F DINOv2 76.1 86.3 18.4 32.9 22.7

Table 10: Different Image Encoders of
SAM for PerSAM and PerSAM-F.

Method Encoder mIoU bIoU

PerSAM
ViT-B 63.98 49.30
ViT-L 86.61 69.86
ViT-H 89.32 71.67

PerSAM-F
ViT-B 87.24 69.36
ViT-L 92.24 75.36
ViT-H 95.33 77.92

Table 11: Robustness to Mask Reference. We resize
the reference mask by ‘erode’ and ‘dilate’ functions in
OpenCV (Bradski, 2000).

Method Shrink↑↑ Shrink↑ Enlarge↑ Enlarge↑↑

SegGPT 80.39 81.79 83.22 76.43
PerSAM 78.48 81.10 89.32 88.92
PerSAM-F 85.16 88.28 83.19 81.19

D.4 ABLATION STUDY

Different Pre-trained Encoders. For video object segmentation in Table 2 and other one-shot
segmentation in Table 3 of the main paper, we adopt the DINOv2 (Oquab et al., 2023) encoder
to obtain the positive-negative location prior by default. In Table 9, we show the results by using
SAM’s original image encoder. As DINOv2 is particularly pre-trained by large-scale contrastive
data, it produces more discriminative image features than SAM’s encoder. This contributes to a more
precise positive-negative location prior for better segmentation results, especially on the challenging
FSS-1000 dataset (Li et al., 2020). Despite this, with SAM’s original encoder, our PerSAM-F and the
training-free PerSAM still obtain better segmentation accuracy than Painter (Wang et al., 2022) or
SEEM (Zou et al., 2023) on different datasets, demonstrating the effectiveness of our approach.

Image Encoders of SAM. By default, we adopt a pre-trained ViT-H (Dosovitskiy et al., 2020) in
SAM as the image encoder for PerSAM and PerSAM-F. In Table 10, we investigate the performance
of other vision backbones for our models, i.e., ViT-B and ViT-L. As shown, stronger image encoders
lead to higher segmentation mIoU and bIoU scores. When using ViT-B as the encoder, the accuracy
of training-free PerSAM is largely harmed, due to weaker feature encoding ability, while the one-shot
training of PerSAM-F can effectively mitigate the gap by +23.26% mIoU and +20.06% bIoU scores,
which demonstrates the significance of our fine-tuning on top of a weak training-free baseline.

Robustness to the Quality of Mask Reference. For more robust interactivity with humans, we
explore how our approach performs if the given mask is of low quality. In Table 11, we respectively
shrink and enlarge the area of the reference mask, and compare the results on PerSeg dataset. When
the mask is smaller than the target object (shrink), PerSAM-F, aided by one-shot fine-tuning, exhibits
the best robustness. In this case, the target embedding cannot incorporate complete visual appearances
from the reference image, which largely harms the training-free techniques in PerSAM. When the
mask becomes larger (enlarge), the oversize mask would mislead the scale-aware training of PerSAM-
F. In contrast, despite some background noises, the target embedding can include all the visual
semantics of objects, which, thereby, brings little influence to PerSAM.
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One-shot Data Test Images

One-shot Segmentation in Outdoor Street Scenes

Figure 5: One-shot segmentation of PerSAM-F in outdoor street scenes.

E DISCUSSION

E.1 WHAT’S THE ADDITIONAL RUNNING SPEED/MEMORY COMPARED TO SAM?

We test the additional running consumption of PerSAM and PerSAM-F on a single NVIDIA A100
GPU with batch size 1. As shown in Table 5, our PerSAM and PerSAM-F bring marginal latency and
GPU memory consumption over SAM, indicating superior running efficiency.

E.2 HOW TO DIFFERENTIATE SIMILAR OBJECTS IN VIDEO OBJECT SEGMENTATION?

For video object segmentation, our approach tries to accurately locate the target object among similar
ones by the following three aspects.

Discriminative Features from the Encoder. Due to large-scale pre-training, the SAM’s image
encoder, or the more powerful DINOv2, can already produce discriminative visual features for
different similar objects, which is fundamental to the calculation of location confidence map.

Comprehensive Location Confidence Map. We calculate a set of confidence maps for all fore-
ground pixels within the target object, such as the head, the body, or the paws of a dog, and then
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One-shot Data Test Images

(a)

(b)

(c)

Failure Cases of PerSAM-F

Figure 6: Three types of failure cases of PerSAM-F.

aggregate them to obtain an overall location estimation. This strategy can comprehensively consider
the slight differences in any local parts between similar objects.

Temporal Cues between Adjacent Frames. To better leverage the temporal consistency along the
video, we prompt SAM’s decoder additionally with the object bounding box from the last frame. As
different objects have different trajectories, such temporal constraints can better differentiate similar
objects by spatial locations.

As visualized in Figures 2, our method can precisely segment the dancing man in front of a crowd
(the 2nd row) and differentiate different fishes within a group (the last row).

E.3 CAN PERSAM ALSO WORK ON SELF-DRIVING SCENARIOS?

Yes. In most cases, our model can segment the designated cars with distinctive appearances in dense
traffic. As visualized in Figure 5, for the user-provided target (e.g., a red car, a truck, and a bus), our
PerSAM-F can well locate and segment them under severe occlusion or surrounded by similar cars.

E.4 FAILURE CASES OF PERSAM-F

After solving the scale ambiguity issue, the three types of failure cases of PerSAM-F are shown in
Figure 6: (a) different people with the same clothes, indicating our approach is not very sensitive to
fine-grained human faces; (b) the key appearance of the target object is occluded by in test images
(the red chest of the bird), indicating that we still need to improve our robustness when there is too
large appearance change in test images; (c) discontinuous objects that SAM cannot tackle, for which
we can replace SAM with stronger segmentation foundation model for assistance.

E.5 CAN PERSAM SEGMENT MULTIPLE IDENTICAL OBJECTS IN AN IMAGE?

Yes. As shown in Figure 7, given the one-shot image of a reference cat, if the test image contains two
similar cats that are expected to be both segmented, we propose two simple strategies for PerSAM:

Iterative Masking. For two similar cats, we first calculate the location confidence map S1, and
utilize PerSAM to segment one of the cats, denoting the obtained mask prediction as M1. Then, we
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Table 12: Statistic of Location Confi-
dence Scores for Different Objects in
the PerSeg dataset.
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Table 13: DreamBooth Assisted by PerSAM with
quantitative results. We adopt CLIP (Radford et al.,
2021) to calculate the image-text and -image similarity.

Method Text-Align Image-Align KID (×103)

DreamBooth 0.812 0.793 29.7
+ PerSAM 0.830 0.814 29.2
+ PerSAM-F 0.834 0.818 28.9
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Test	Image Confidence	Map:	𝑆! 𝑀! of	the	First	Cat Confidence	Map:	𝑆" 𝑀" of	the	Second	Cat
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Figure 7: Segmenting Multiple Similar Objects in an Image. We adopt two strategies for PerSAM
to simultaneously segment multiple similar objects: iterative masking and confidence thresholding.
We denote the positive and negative location prior by green and red pentagrams, respectively.

reweigh the confidence map S1 by assigning zeros to the area within M1. We denote the masked
confidence map as S2. After this, we enable PerSAM’s decoder to subsequently segment the second
cat and acquire M2. In this way, our approach can iteratively mask the already segmented objects
and segment all the expected similar objects, until there is no target in the image.

Confidence Thresholding. How to stop the iteration when there is no other expected object in
the image? We introduce a thresholding strategy for adaptive control. As shown by the statistics
in Table 12, we count the confidence scores of the positive location prior (the maximum score on
the confidence map) for two groups of objects in the PerSeg dataset: ’Same’ and ’Different’, where
we utilize DINOv2 (Oquab et al., 2023) as the image encoder. ‘Same’ utilizes the same object for
reference and test, just like the normal evaluation. ‘Different’ utilizes one object for reference, but
tests on all other 39 objects. We observe the scores in ‘Same’ are almost all larger than 0.5, while
those in ‘Different’ are lower than 0.4. Therefore, we adopt a simple thresholding strategy to stop
the iterative segmentation based on the confidence map with a threshold of 0.45, which can well
discriminate different objects or categories for most cases, e.g., segmenting all the cats or dogs in the
image shown in Figure 8. In this way, for a test image, if the maximum score in the confidence map
is lower than 0.45, there is no more target object in the image and we would stop the iteration.

E.6 IS PERSAM-F GENERALIZED ONLY TO A SPECIFIC OBJECT?

Our PerSAM-F can not only be personalized by a specific object, but also generalize to a cer-
tain category with the same amount of parameters. As visualized in Figure 3, given a reference
cone/armour/crocodile in FSS-1000 dataset (Li et al., 2020), our PerSAM-F can well segment other
similar cones/armours/crocodiles in test images. This is because objects of the same category can
contain similar hierarchical structures, so the learned scale weights of PerSAM-F by one sample can
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Figure 8: Segmenting Objects of the Same Category. Besides specific visual concepts, our approach
can also be personalized by a category, cat or dog, with a confidence thresholding strategy.

Figure 9: Visualization of the Enlarged PerSeg Dataset generated by a fine-tuned Dream-
Booth (Ruiz et al., 2022). We show the examples of four objects with three different text prompts: ‘A
photo of an [OBJECT] in a swimming pool/in Times Square/in front of Eiffel Tower.’

also be applicable to different objects within the same category. In contrast, for different categories,
one needs to fine-tune two sets of scale weights to respectively fit their scale information.

E.7 WILL PERSAM BE CONSTRAINED BY SAM’S LIMITED SEMANTICS BY
CLASS-AGNOSTIC TRAINING?

Yes, due to SAM’s inherent class-agnostic training, the visual features extracted by SAM’s encoder
contain limited category-level semantics. This might constrain the category-level discriminative
capability for complex multi-object scenes. Observing this limitation, we locate the target object
among other objects in test images entirely by feature matching, i.e., the location confidence map.
Such a matching strategy only considers the appearance-based class-agnostic similarity, without
category semantics. To this end, we can leverage other semantically rich image encoders, e.g.,
CLIP (Radford et al., 2021) and DINOv2 (Oquab et al., 2023), for PerSAM(-F) to improve the
multi-object performance. We conduct an ablation study of different image encoders on DAVIS 2017
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Assisted by PerSAMDreamBooth

A photo of a cat

A photo of a backpack

Figure 10: Multi-object text-to-image generation of PerSAM-assisted DreamBooth (Ruiz et al.,
2022).

Table 14: Personalized Object Segmentation on the Enlarged PerSeg Dataset with 5x largaer in
size. We compare the overall mIoU and bIoU for different methods (Bar et al., 2022; Wang et al.,
2022; 2023; Zou et al., 2023).

Method Painter SEEM SegGPT PerSAM PerSAM-F

mIoU 43.6 82.8 87.8 85.9 89.6
bIoU 37.5 51.3 69.7 66.2 72.4

dataset (Pont-Tuset et al., 2017) for video object segmentation, which contains multiple similar objects
within a video. As shown in Table 9, applying CLIP and DINOv2 with more sufficient semantic
knowledge can improve the results of PerSAM-F for more challenging multi-object segmentation.

E.8 CAN PERSAM HELP DREAMBOOTH ACHIEVE BETTER MULTI-OBJECT CUSTOMIZATION?

Yes. Similar to single-object personalization, we only calculate the loss within foreground regions for
DreamBooth (Ruiz et al., 2022) with multi-object training samples. As visualized in Figure 10, we
show the improvement for two-object customization assisted by our PerSAM. The backgrounds within
images generated by DreamBooth are severely disturbed by those within few-shot training images,
while the PerSAM-assisted DreamBooth can accurately synthesize new backgrounds according to
the input language prompts.

E.9 SCALING PERSEG DATASET

Although our newly constructed PerSeg dataset contains different objects in various contexts, it is
relatively small in scale compared to existing segmentation benchmarks. For a more robust evaluation,
we enlarge the PerSeg dataset (40 objects with 5∼7 images per object) to 30 images per object, 5x
larger in scale. We leverage the existing few-shot images to fine-tune DreamBooth (Ruiz et al.,
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2022) respectively for each object, and then generate new images with diverse backgrounds or poses
(swimming pool, Times Square, Eiffel Tower, etc. . . . ), including richer data examples as shown in
Figure 9. We report the segmentation results in Table 14, the scale-aware fine-tuned PerSAM-F still
achieves the best performance, and the training-free PerSAM can also surpass Painter and SEEM,
demonstrating the superior robustness of our approach.

E.10 ANY OTHER APPLICATIONS FOR PERSAM?

Besides improving the generation of DreamBooth (Ruiz et al., 2022), our PerSAM and PerSAM-F
can also be utilized to assist other models and applications, such as CLIP (Radford et al., 2021)
and NeRF (Mildenhall et al., 2021). For CLIP-based few-shot image classification, a series of
works (Zhang et al., 2021; 2023d; Udandarao et al., 2022) extract the visual features of few-shot
images by CLIP, and cache them as category prototypes for downstream adaption of CLIP. However,
such prototypes contain the visual noises of the backgrounds that disturb the category semantics.
Therefore, via the category-wise personalization approach, our PerSAM is helpful in segmenting
the objects of the same category in few-shot images, and enables the CLIP-based methods to cache
only foreground informative features. For 3D reconstruction by NeRF, existing approaches can only
lift the objects, which are annotated with multi-view masks, into 3D space. Considering that the
multi-view annotation is labor-intensive, our approach provides a solution for NeRF to lift any object
in a scene, simply by prompting SAM to segment the object in one view. On top of that, PerSAM can
be personalized to generate the masks in all multi-view images, allowing for efficient and flexible 3D
reconstruction. We leave these applications as future works.
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Luc Van Gool. The 2017 davis challenge on video object segmentation. arXiv preprint
arXiv:1704.00675, 2017.

Guanghui Qin and Jason Eisner. Learning how to ask: Querying lms with mixtures of soft prompts.
arXiv preprint arXiv:2104.06599, 2021.

Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-training.
2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.
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