
Supplementary material

A Auxilary proofs for DAVI’s theoretical results

This section shows the proof of the supporting lemmas required in the proof of DAVI’s convergence
and convergence rate. We also include here a more general proof of the convergence of DAVI and
each of the corollaries. The numbering of each lemma, corollary, and theorem corresponds to the
main paper’s numbering.

Definition 4 Recall Tn : RS → RS . For a given An ∼ q̃, πn ∈ Π, sn ∈ S, and for all s ∈ S and
v ∈ RS ,

Tnv(s)
.
=

{
maxa∈An∪{πn(s)} L

v(s, a) if s = sn
v(s) otherwise.

(19)

Define Tπ,sn : RS → RS . For a given π ∈ Π, sn ∈ S, and for all s ∈ S and v ∈ RS ,

Tπ,snv(s)
.
=

{
Lv(s, π(s)) if s = sn
v(s) otherwise.

(20)

Then, the value iterates of DAVI evolves according to vn+1 = Tnvn for all n ∈ N0. Alternatively,
vn+1 = Tπn+1,snvn with πn+1(s) being the the action that satisfies maxa∈An∪{πn(s)} L

vn(s, a) for
s = sn and πn+1(s) = πn(s) for s ̸= sn. (i.e., Tπn+1,snvn = Tnvn).

Definition 5 (Optimality capture region (Williams and Baird III, 1993)) Define

∆v(s) = min

[{
max
a′∈A

Lv(s, a′)− Lv(s, a)
∣∣∣a ∈ A}− {0}] (21)

as the difference between the look-ahead value with respect to v of the greedy action and a second-
best action for state s. Let ∆v∗ .

= mins∈S ∆v∗
(s). Then, the optimality capture region is defined to

be {
v : ∥v∗ − v∥ < ∆v∗

2γ
, v ∈ RS

}
. (22)

Lemma 4 DAVI operators Tn and Tπ,s′ are monotone operators. That is given v, u ∈ RS if v ≤ u,
then Tnv ≤ Tnu and Tπ,s′v ≤ Tπ,s′u.

Proof: Given any v, u ∈ RS s.t. v ≤ u, then

Tnv(s) =

{
maxa∈An∪{πn(s)} r(s, a) + γ

∑
s′ p(s

′|s, a)v(s′) if s = sn
v(s) otherwise

(23)

≤
{
maxa∈An∪{πn(s)} r(s, a) + γ

∑
s′ p(s

′|s, a)u(s′) if s = sn
u(s) otherwise

(24)

= Tnu(s). (25)

Given any v, u ∈ RS s.t. v ≤ u, then

Tπ,snv(s)
.
=

{
r(s, π(s)) + γ

∑
s′ p(s

′|s, π(s))v(s′) for s = sn
v(s) otherwise

(26)

≤
{
r(s, π(s)) + γ

∑
s′ p(s

′|s, π(s))u(s′) for s = sn
u(s) otherwise

(27)

= Tπ,snu(s). (28)

■

Lemma 1 (Monotonicity) The iterates of DAVI, (vn)n≥0 is a monotonically increasing sequence:
vn ≤ vn+1 for all n ∈ N0, if r(s, a) ∈ [0, 1] for any s, a ∈ S×A and if DAVI is initialized according
to (i),(ii), or (iii) of Assumption 1.

12

Proof: We show (vn)n≥0 is a monotonically increasing sequence by induction. All inequalities
between vectors henceforth are element-wise. Let (s0, s1, ..., sn, sn+1) be the sequence of states
sampled for update from iteration 1 to n+ 1. By straight-forward calculation, we show v1 ≥ v0. For
all rewards in [0, 1] and for any s ∈ S,

case i : v1(s) = max
a∈A0∪{π0(s)}

{
r(s, a) + γ

∑
s′

p(s′|s, a)0

}
(29)

≥ r(s, π0(s)) + γ
∑
s′

p(s′|s, π0(s))0 (30)

= Lv0(s, π0(s)) ≥ 0 = v0(s) (31)

case ii : v1(s) = max
a∈A0∪{π0(s)}

{
r(s, a) + γ

∑
s′

p(s′|s, a)(−c)

}
(32)

≥ r(s, π0(s)) + γ
∑
s′

p(s′|s, π0(s)))(−c) = Lv0(s, π0(s)) (33)

= −γc+ r(s, π0(s)) ≥ −c = v0(s) (34)

case iii : v1(s) = max
a∈A0∪{π0(s)}

{
r(s, a) + γ

∑
s′

p(s′|s, a)v0(s′)

}
(35)

≥ r(s, π0(s)) + γ
∑
s′

p(s′|s, π0(s))v0(s
′) = Lv0(s, π0(s)) (36)

≥ v0(s) by assumption. (37)
Thus, v1(s0) ≥ v1(s0). For all other states s ̸= s0, v0(s) = v1(s). Therefore, v1 ≥ v0. Now, assume
vn ≥ · · · ≥ v0 with n ≥ 1, then for any s ∈ S,

vn+1(s) = Tnvn(s) (38)

=

{
maxa∈An∪{πn(s)} L

vn(s, a) if s = sn
vn(s) otherwise

(39)

≥
{
Lvn(s, πn(s)) if s = sn
vn(s) otherwise

(40)

≥
{
Lvn−1(s, πn(s)) if s = sn by assumption vn ≥ vn−1

vn−1(s) otherwise .
(41)

If sn = sn−1, then (41) is Tπn,sn−1vn−1. By Definition 4, Tπn,sn−1vn−1 = vn. Hence, vn+1 ≥ vn.
However, if sn ̸= sn−1, we have to do more work. There are two possible cases. The first case is that
sn has been sampled for update before. That is, let 1 < j ≤ n s.t. sn−j is the last time that sn is
sampled for update. Then sn = sn−j , and vn(sn) = vn−j+1(sn) and πn(sn) = πn−j+1(sn). By
assumption, vn ≥ ... ≥ vn−j ≥ ... ≥ v0, then

vn+1(sn) = max
a∈An∪{πn(sn)}

Lvn(sn, a) ≥ Lvn(sn, πn(sn)) (42)

≥ Lvn−j (sn, πn(sn)) by assumption vn ≥ vn−j (43)
= Lvn−j (sn, πn−j+1(sn)) (44)
= Tπn−j+1,sn−j

vn−j(sn) by (20) (45)

= vn−j+1(sn) by Definition 4 (46)
= vn(sn). (47)

We have just showed that vn+1(sn) ≥ vn(sn), and for all other state s ̸= sn, vn+1(s) = vn(s).
For the second case, sn has not been sampled for updated before n, then vn(sn) = v0(sn) and
πn(sn) = π0(sn). By assumption, vn ≥ ... ≥ v0, then

vn+1(sn) = max
a∈An∪{πn(sn)}

Lvn(sn, a) ≥ Lvn(sn, πn(sn)) (48)

≥ Lv0(sn, πn(sn)) (49)
= Lv0(sn, π0(sn)) ≥ v0(sn) shown in base case (50)
= vn(sn). (51)

13

For all other state s ̸= sn, vn+1(s) = vn(s). Altogether, vn+1 ≥ vn for all n ∈ N0. ■

Corollary 1 (Computational complexity of obtaining an ϵ-optimal policy) Fix an ϵ ∈ (0, ∥v∗ −
v0∥), and assume DAVI initializes according to (i), (ii), or (iii) of Assumption 1. Define

Hγ,ϵ
.
= ln

(
∥v∗ − v0∥

ϵ

)
/1− γ (52)

as a horizon term. Then, DAVI runs for at least

τ = Hγ,ϵ

(
ln

(
SHγ,ϵ

δ

)
/ ln

(
1

1− qmin

))
(53)

iterations, returns an ϵ-optimal policy πn : vπn ≥ v∗ − ϵ1 with probability at least 1 − δ using
O (mSτ) elementary arithmetic and logical operations. Note that ∥v∗ − v0∥ is unknown but it can
be upper bounded by 1

1−γ + ∥v0∥ given rewards are in [0, 1].

Proof: Recall from Lemma 1, DAVI’s value iterates, vn → v∗ monotonically from below (i.e.,
vn ≥ vn−1 ≥ · · · ≥ v0). Using this result, one can show Lvn(s, πn(s)) ≥ vn(s) for all s ∈ S
and n ∈ N0 following an induction process. We have already shown in the proof Lemma 1 that
Lv0(s, π0(s)) ≥ v0(s) for any s ∈ S in the base case. Assume that Lvn(s, πn(s)) ≥ vn(s) for
any s ∈ S, we will show that Lvn+1(s, πn+1(s)) ≥ vn+1(s). For any n ∈ N0 and sn ∈ S, let
πn+1(sn) = argmaxa∈An∪{πn(sn)} L

vn(sn, a) with πn+1(s̄) = πn(s̄) for all other s̄ ̸= sn.

For the case when s = sn,
vn+1(s) = Tπn+1,snvn(s) = Lvn(s, πn+1(s)) (54)

≤ Lvn+1(s, πn+1(s)) by vn ≤ vn+1. (55)
For the case when s ̸= sn, then vn+1(s) = vn(s) and πn+1(s) = πn(s), and thus

vn+1(s) = Tπn+1,snvn(s) = vn(s) ≤ Lvn(s, πn(s)) by assumption (56)
= Lvn+1(s, πn+1(s)). (57)

Altogether, we get Lvn+1(s, πn+1(s)) ≥ vn+1(s) for any s ∈ S, which concludes the induction.

Now, we show that vπn
≥ vn for any n ∈ N0 using the result Lvn(s, πn(s)) ≥ vn(s) for any s ∈ S

and n ∈ N0. Fix n and if we are to apply the policy evaluation operator Tπn
that satisfy Lemma 3(1)

to every state s ∈ S, then we obtain
Tπn

vn(s) = Lvn(s, πn(s)) ≥ vn(s). (58)
Therefore, Tπn

vn ≥ vn. By applying the Tπn
operator to Tπn

vn ≥ vn repeatedly and by using the
monotonicity of Tπn

, we have for any k ≥ 0,

T k
πn

vn ≥ T k−1
πn

vn ≥ · · · ≥ vn. (59)

By taking limits of both sides of T k
πn

vn ≥ vn as k →∞, we get vπn
≥ vn. Therefore,

0 ≤ v∗ − vπn
≤ v∗ − vn =⇒ ∥v∗ − vπn

∥ ≤ ∥v∗ − vn∥. (60)

Next, recall from the proof of Theorem 2 that for a given l ∈ N, and with probability 1 − δ,
vn of DAVI would have γ-contracted at least l times: ∥v∗ − vn∥ ≤ γl∥v∗ − v0∥, with n ≥
l
⌈
ln
(
Sl
δ

)/
ln
(

1
1−qmin

)⌉
. Following from (60), with probability 1− δ,

∥v∗ − vπn∥ ≤ ∥v∗ − vn∥ ≤ γl∥v∗ − v0∥. (61)

By setting γl∥v∗ − v0∥ = ϵ and solve for l, we get:

l = ln
∥v∗ − v0∥

ϵ
/ ln

(
1

γ

)
. (62)

We observe that ln
(

∥v∗−v0∥
ϵ

)
/ ln

(
1
γ

)
≤ ln

(
∥v∗−v0∥

ϵ

)
/(1 − γ)

.
= Hγ,ϵ. To compute vn, DAVI

takes O(mS) elementary arithmetic operations. With probability 1− δ, DAVI obtains an ϵ-optimal
policy with

O(mSn) = O

(
mSHγ,ϵ ln

(
SHγ,ϵ

δ

)
/ ln

(
1

1− qmin

))
(63)

arithmetic and logical operations. ■

14

Corollary 2 (Computational complexity of obtaining an optimal policy) Assume DAVI initial-
izes according to (i), (ii), or (iii) of Assumption 1. Define the horizon term

Hγ,∆v∗
.
= ln

(
∥v∗ − v0∥

∆v∗

)
/(1− γ), (64)

where ∆v∗
is the optimality capture region defined in Definition 5. Then, DAVI returns an optimal

policy π∗ ∈ Π∗ with probability 1− δ, requiring

O

(
mSHγ,∆v∗ ln

(
SHγ,∆v∗

δ

)
/ ln

(
1

1− qmin

))
(65)

elementary arithmetic operations. Note that ∥v∗ − v0∥ is unknown but it can be upper bounded by
1

1−γ + ∥v0∥ given rewards are in [0, 1].

Proof: We first show that any πn such that vπn > v∗ −∆v∗
1 is an optimal policy. We prove this by

contradiction. Assume πn is not optimal but satisfies vπn
> v∗ −∆v∗

1, then for any s ∈ S

Lv∗
(s, πn(s)) < Lv∗

(s, π∗(s)) (66)

=⇒ Lv∗
(s, π∗(s))− Lv∗

(s, πn(s)) > 0 (67)

=⇒ Lv∗
(s, π∗(s))− Lv∗

(s, πn(s)) ≥ ∆v∗
by Definition 5 (68)

=⇒ Lv∗
(s, π∗(s))− Lvπn (s, πn(s)) ≥ ∆v∗

(69)

=⇒ v∗(s)− vπn
(s) ≥ ∆v∗

(70)

=⇒ vπn
(s) ≤ v∗(s)−∆v∗

. (71)

This contradicts the assumption and πn must be optimal. It is straight-forward to show that the result
of Corollary 1 still holds if we require πn : vπn

> v∗ − ϵ1 instead of πn : vπn
≥ v∗ − ϵ1. We can

then apply this result to show that DAVI returns policy πn such that πn : vπn > v∗ −∆v∗
1, and thus

an optimal policy, with probability 1− δ within

O

(
mSHγ,∆v∗

(
ln

(
SHγ,∆v∗

δ

)
/ ln

(
1

1− qmin

)))
(72)

arithmetic and logical operations. ■

Now we show an alternative proof to the convergence of DAVI with any initialization. Before we
prove the main result, we define the following supporting lemmas.

Lemma 5 (Williams and Baird III (1993)) Let v, u ∈ RS , s ∈ S.

Let π(s) = argmaxa∈A Lv(s, a) and an a ∈ A satisfies Lu(s, a) ≥ Lu(s, π(s)). Then

∥v − u∥ < ∆v

2γ
(73)

implies that Lv(s, π(s)) = Lv(s, a).

Lemma 6 Given v ∈ RS which satisfies ∥v∗ − v∥ < ∆v∗

2γ (i.e., v is inside the optimality capture
region), if an action a satisfies Lv(s, a) = maxa′∈A Lv(s, a′), then a is an optimal action at s.

Proof: For any s ∈ S, let the optimal policy at s be π∗(s) = argmaxa∈A Lv∗(s, a) and π(s) =
argmaxa∈A Lv(s, a), then

Lv(s, π(s)) ≥ Lv(s, π∗(s)). (74)

Since ∥v∗ − v∥ < ∆v∗

2γ and by Lemma 5, Lv∗
(s, π∗(s)) = Lv∗

(s, π(s)). ■

Lemma 7 (Stochastically always (Williams and Baird III, 1993)) Let X be a set of finite opera-
tors on AS × RS . We say a stochastic process is stochastic always if every operator in X has a
non-zero probability of being drawn. Let Σ be an infinite sequence operator from X generated by a
stochastic always stochastic process. Let Σ′ be a given finite sequence of operators from X , then

15

1. Σ′ appears as a contiguous subsequence of Σ with probability 1, and

2. Σ′ appears infinitely often as a contiguous subsequence of Σ with probability 1.

Theorem 3 (Convergence of DAVI with any initialisation) Let Ã be some arbitrary action subset
of A, and let X = {IÃ,s, Ts|s ∈ S} be a set of DAVI operators that operate on AS × RS that is the
joint space of policy and value function, where

πn+1(s) = IÃ,sn
πn(s) =

{
argmaxa∈Ã∪{πn(s)} L

vn(s, a) if s = sn
πn(s) otherwise,

(75)

and

vn+1(s) = Tsnvn(s) =

{
Lvn(s, πn+1(s)) if s = sn
vn(s) otherwise.

(76)

Recall Π is a set of deterministic policies defined in Section 2 and π∗ ∈ Π. Without loss of generality,
we write S = 1, ..., S. If DAVI performs the following sequence of operations in some fixed order,

IÃ1,1
T1IÃ2,2

T2...IÃS ,STS , (77)

where Ãi contains the optimal action π∗(i) for state i, then vn would have γ-contracted at least
once by the same argument as in the proof of Theorem 2. Let Σ′ be a concatenation of l copies of a
sequence (77). Then, after having performed all the operations in Σ′, vn would have γ-contracted l
times. If l satisfies:

γl∥v∗ − vn∥ <
∆v∗

2γ
, (78)

then vn is inside the optimality capture region defined in Definition 5. Once inside the optimality
capture region, by Lemma 6, all policies πn are optimal thereafer. We know from Lemma 3 (1),
limn→∞ Tπ∗v = v∗ and by Lemma 2 (Boundedness), all vn’s are bounded. Then, the convergence
of DAVI with any initialization is ensured as long as all of the states are sampled for update infinitely
often.

The only question is whether if Σ′ would ever exist in an infinite sequence Σ that is generated by
running DAVI forever. To show that such event happens with probability 1, we apply Lemma 7. To
apply Lemma 7 (Stochastically always), X must be finite, which indeed it is since the state and action
space are finite. Ensuring that the q̃(s, a) > 0 guarantees every operator in X is drawn with a
non-zero probability. Therefore, the stochastic process generated by running DAVI would satisfy
all the properties of Lemma 7. By Lemma 7, running DAVI forever will generate any contiguous
subsequence Σ′ infinitely often with probability 1.

B Theoretical analysis of Asynchronous VI

Bertsekas and Tsitsiklis (1996) and Williams and Baird III (1993) have shown Asynchronous VI
converges. We can view Asynchronous VI as a special case of DAVI if the subset of actions
sampled in each iteration is the entire action space. That is for any s ∈ S, v ∈ RS and π ∈ Π,
maxa∈A∪{π(s)} L

v(s, a) = maxa∈A Lv(s, a). We can follow similar reasoning to the proof of the
convergence rate of DAVI (Theorem 2)and show the convergence rate of Asynchronous VI with the T
operator defined in Definition 6. However, the sequence of increasing indices (nk)

∞
k=0, where n0 = 0

in Theorem 2 takes on a slightly different meaning. In particular, between the nk-th and nk+1-th
iteration, all s ∈ S have been updated at least once. Finally, the computational complexity bound of
Asynchronous VI is similar to the computational complexity bound of DAVI with pmin = mins p(s)
instead of qmin. The computational complexity result is proven similarly to the proof of Corollary 1
found in Appendix A.

Definition 6 (Asynchronous VI operator) Recall Tsn : RS → RS . For a given sn ∈ S , and for all
s ∈ S and v ∈ RS ,

Tsnv(s)
.
=

{
maxa∈A Lv(s, a) if s = sn
v(s) otherwise.

(79)

Then the iterates of Asynchronous VI evolves according to vn+1 = Tsnvn for all n ∈ N0.

16

Lemma 8 (Asynchronous VI Monotonicity) The iterates of Asynchronous VI, (vn)n≥0 is a mono-
tonically increasing sequence: vn ≤ vn+1 for all n ∈ N0, if r(s, a) ∈ [0, 1] for any s, a ∈ S × A
and if Asynchronous VI is initialized according to (i) or (ii) of Assumption 1.

Proof: We show (vn)n≥0 is a monotonically increasing sequence by induction. All inequalities
between vectors henceforth are element-wise. Let (s0, s1, ..., sn, sn+1) be the sequence of states
sampled for update from iteration 1 to n+ 1. By straight-forward calculation, we show v1 ≥ v0. For
all rewards in [0, 1] and any s ∈ S,

case i : v1(s) = max
a∈A

{
r(s, a) + γ

∑
s′

p(s′|s, a)0

}
≥ v0(s) (80)

case ii : v1(s) = max
a∈A

{
r(s, a) + γ

∑
s′

p(s′|s, a)(−c)

}
(81)

= max
a∈A
{−γc+ r(s, a)} ≥ v0(s). (82)

Thus, v1(s0) ≥ v0(s0). For all other states s ̸= s0, v0(s) = v1(s). Therefore, v1 ≥ v0. Now, assume
vn ≥ · · · ≥ v0 with n ≥ 1, then for any s ∈ S,

vn+1(s) = Tsnvn(s) (83)

=

{
maxa∈A Lvn(s, a) if s = sn
vn(s) otherwise

(84)

≥
{
maxa∈A Lvn−1(s, a) if s = sn by assumption vn ≥ vn−1

vn−1(s) otherwise .
(85)

If sn = sn−1, then (85) is Tsn−1
vn−1. By Definition 6, Tsn−1

vn−1 = vn. Hence, vn+1 ≥ vn.
However, if sn ̸= sn−1, we have to do more work. There are two possible cases. The first case is that
sn has been sampled before. That is, let 1 < j ≤ n s.t. sn−j is the last time that sn is sampled for
update. Then sn = sn−j , and vn(sn) = vn−j+1(sn). By assumption, vn ≥ ... ≥ vn−j ≥ ... ≥ v0,
then

vn+1(sn) = max
a∈A

Lvn(sn, a) (86)

≥ max
a∈A

Lvn−j (sn−j , a) by assumption vn ≥ vn−j (87)

= Tsn−jvn−j(sn−j) = vn−j+1(sn−j) = vn(sn). (88)

We have just showed that vn+1(sn) ≥ vn(sn), and for all other state s ̸= sn, vn+1(s) = vn(s).
For the second case, sn has not been sampled before n, then vn(sn) = v0(sn). By assumption,
vn ≥ ... ≥ v0, then

vn+1(sn) = max
a∈A

Lvn(sn, a) (89)

≥ max
a∈A

Lv0(sn, a) by assumption vn ≥ v0 (90)

≥ v0(sn) shown in base case. (91)

For all other state s ̸= sn, vn+1(s) = vn(s). Altogether, vn+1 ≥ vn for all n ∈ N0. ■

Theorem 4 (Convergence rate of Asynchronous VI) Assume p(s) > 0 and r(s, a) ∈ [0, 1] for
any s, a ∈ S ×A, and also assume Asynchronous VI initialises according to (i), (ii) of Assumption 1.
With γ ∈ [0, 1) and probability 1− δ, the iterates of Asynchronous VI, (vn)n≥0 converges to v∗ at a
near-geometric rate. In particular, with probability 1− δ, for a given l ∈ N,

∥v∗ − vn∥ ≤ γl∥v∗ − v0∥, (92)

for any n satisfying

n ≥ l

⌈
ln

(
Sl

δ

)/
ln

(
1

1− pmin

)⌉
, (93)

where pmin = mins p(s).

17

Proof: Recall from Lemma 8, we have shown the iterates of Asynchronous VI, vn → v∗ monotoni-
cally from below. We define (nk)

∞
k=0 to be a sequence of increasing indices, where n0 = 0, such

that between the nk-th and nk+1-th iteration, all state s ∈ S have been updated at least once. At
the nk+1-th iteration, vnk+1

≥ Tπ∗vnk
. This implies that at the nk+1-th iteration, Asynchronous VI

would have γ-contracted at least once:

0 ≤ v∗ − vnk+1
≤ v∗ − Tπ∗vnk

, =⇒ ∥v∗ − vnk+1
∥ ≤ ∥v∗ − Tπ∗vnk

∥, (94)
∥v∗ − Tπ∗vnk

∥ = ∥Tπ∗v∗ − Tπ∗vnk
)∥ ≤ γ∥v∗ − vnk

∥ (95)
=⇒ ∥v∗ − vnk+1

∥ ≤ γ∥v∗ − vnk
∥. (96)

The probability of the failure event

P(Ec) ≤
l∑

i=1

∑
s∈S

P(Eci) (97)

≤ Sl(1− pmin)
N (98)

with pmin = mins∈S p(s) instead of qmin. The rest follows similar reasoning to the proof of
Theorem 2 and obtain the result. ■

Corollary 3 (Computational complexity of Asynchronous VI) Fix an ϵ ∈ (0, ∥v∗ − v0∥), and
assume Asynchronous VI initialises according to (i) or (ii) of Assumption 1. Define

Hγ,ϵ
.
= ln

(
∥v∗ − v0∥

ϵ

)
/1− γ (99)

as a horizon term. Then, Asynchronous VI returns an ϵ-optimal policy πn : vπn
≥ v∗ − ϵ1 with

probability at least 1− δ using

O

(
ASHγ,ϵ

(
ln

(
SHγ,ϵ

δ

)
/ ln

(
1

1− pmin

)))
(100)

elementary arithmetic and logical operations. Note that ∥v∗ − v0∥ is unknown but it can be upper
bounded by 1

1−γ + ∥v0∥ given rewards are in [0, 1].

Proof: Recall from Lemma 8, the iterates of Asynchronous VI, vn → v∗ monotonically from below
(i.e., vn ≥ vn−1 ≥ · · · ≥ v0). For any n ∈ N0 and sn ∈ S , let πn+1(sn) = argmaxa∈A Lvn(sn, a)
with πn+1(s̄) = πn(s̄) for all other s̄ ̸= sn. One can show Lvn(s, πn(s)) ≥ vn(s) for any s ∈ S and
n ∈ N0 following a similar argument as in the proof of Corollary 1. Now, we show vπn

≥ vn for any
n ∈ N0. Fix n and if we are to apply the policy evaluation operator Tπn

that satisfy Lemma 3(1) to
every state s ∈ S, then we obtain

Tπn
vn(s) = Lvn(s, πn(s)) ≥ vn(s). (101)

Therefore, Tπnvn ≥ vn. By applying the Tπn operator to Tπnvn ≥ vn repeatedly, and by using the
monotonicity of Tπn

, we have for any k ≥ 0,

T k
πn

vn ≥ T k−1
πn

vn ≥ · · · ≥ vn. (102)

By taking limits of both sides of T k
πn

vn ≥ vn as k →∞, we get vπn
≥ vn. Therefore,

0 ≤ v∗ − vπn
≤ v∗ − vn =⇒ ∥v∗ − vπn

∥ ≤ ∥v∗ − vn∥. (103)

Next, recall from the proof of Theorem 4 that for a given l ∈ N, and with probability 1− δ, vn of
Asynchronous VI would have γ-contracted at least l times (i.e., ∥v∗ − vn∥ ≤ γl∥v∗ − v0∥) with
n ≥ l

⌈
ln
(
Sl
δ

)/
ln
(

1
1−pmin

)⌉
. Following from (103), with probability 1− δ,

∥v∗ − vπn∥ ≤ ∥v∗ − vn∥ ≤ γl∥v∗ − v0∥. (104)

By setting γl∥v∗ − v0∥ = ϵ and solve for l, we get:

l = ln
∥v∗ − v0∥

ϵ
/ ln

(
1

γ

)
. (105)

18

We observe that ln
(

∥v∗−v0∥
ϵ

)
/ ln

(
1
γ

)
≤ ln

(
∥v∗−v0∥

ϵ

)
/(1 − γ)

.
= Hγ,ϵ. To compute vn, Asyn-

chronous VI takes O(AS) elementary arithmetic operations. With probability 1− δ, Asynchronous
VI obtains an ϵ-optimal policy within

O(ASn) = O

(
ASHγ,ϵ

(
ln

(
SHγ,ϵ

δ

)
/ ln

(
1

1− pmin

)))
(106)

arithmetic and logical operations. ■

C More experiments

In this section, we show additional experiments with the MDPs described in Section 6 with rewards
generated via a standard normal and a Pareto distribution.

Recall that the experiments were set up to see how DAVI’s performance is affected by the sparsity
of rewards. Pareto distribution with a shape of 2.5 is a “heavy-tail" distribution, and the rewards
sampled from this distribution could result in a few large values. On the other hand, the rewards
sampled via the standard Normal distribution could result in many similar values. We hypothesize that
DAVI would converge faster than Asynchronous VI in domains with multiple optimal or near-optimal
policies, which could be the case in the normal-distributed reward setting.

The algorithms that will be compared in the experiments are VI, Asynchronous VI, and DAVI. We
implement Asynchronous VI and DAVI using uniform sampling to obtain the states. DAVI samples a
new set of actions via uniform sampling without replacement in each iteration.

C.1 Single-state experiment

This experiment consists of a single-state MDP with 10000 actions, and all terminate immediately. We
experiment with two reward distributions: Pareto-reward and Normal-reward. For Pareto-reward, all
actions have rewards generated according to a Pareto distribution with shape 2.5. For Normal-reward,
all actions have rewards generated according to the standard normal distribution.

C.2 Multi-reward experiment

This experiment consists of two MDPs. The first set consists of a tree with a depth of 2. Each state
has 50 actions, where each action leads to 2 other distinct next states. All actions terminate at the leaf
states. In one setting, the rewards are distributed according to the Pareto distribution with a shape of
2.5. In the other setting, the rewards are distributed according to the normal distribution.

The second set of MDPs consists of a random MDP with 100 states, where each state has 1000 actions.
Each action leads to 10 next states randomly selected from the 100 states with equal probability. All
transitions have a 0.1 probability of terminating. In one setting, the rewards are distributed according
to the Pareto distribution with a shape of 2.5. In the other setting, the rewards are distributed according
to the standard normal distribution. The γ in all of the MDPs are 1.

C.3 Discussion

Figure 3 and Figure 4 show the performance of the algorithms. All graphs included error bars showing
the standard error of the mean. All graphs smoothly increased towards the asymptote except for
Asynchronous VI in Figure 3 and VI in Figure 4, whose performances were step-functions 2. The
y-axis of each graph showed a state value averaged over 200 runs. The x-axes showed run-times,
which have been adjusted for computations.

In Figure 3, DAVI with m = 1 was significantly different from that of DAVI with m = 10, 100, 1000.
However, in the Normal-reward setting, the performance of DAVI with m = 1 was much closer to
the performance of DAVI with m = 10, 100, 1000. In the Pareto-reward setting, where there could
only be a few large rewards, the results were similar to that of the needle-in-the-haystack setting of
Figure 1. In the Normal-reward setting, where most of the rewards were similar and concentrated
around 0, the results were similar to that of the multi-reward setting of Figure 1.

2Asynchronous VI is equivalent to VI in the single-state experiment since there is only one state.

19

st
at

e
va

lu
e

av
er

ag
ed

 o
ve

r 2
00

 ru
ns

10,0000 100,000
run-time in #operations

60

0

Pareto

4

0
10,0000 50,000

run-time in #operations

Normal

Asynchronous VI
DAVI m=1
DAVI m =10
DAVI m=100
DAVI m=1000

Figure 3: Single-state experiment with 10000 actions: (a) rewards are Pareto distributed with shape
2.5 (b) rewards are standard normal distributed. The Asynchronous VI in this experiment is equivalent
to VI since there is only one state. We run each instance 200 times with a new MDP generated each
time. In each run, each algorithm is initialized to 0.

In Figure 4 in both tree Pareto-reward and Normal-reward settings (top row), DAVI with m = 1 was
significantly different from that of DAVI m = 10. In the tree setting, with normal-distributed rewards,
where there may be multiple actions with similarly large rewards, DAVI m = 10 converged faster
than VI and Asynchronous VI.

Tree

Random
MDP

NormalPareto

0 0

50 2.5

0 015
run-time in #operations / 109

50
run-time in #operations / 109

15 50

90

0
0 7 50 0 7 50

10

0

run-time in #operations / 107 run-time in #operations / 107

VI
Asynchronous VI
DAVI m=1
DAVI m =10

VI
Asynchronous VI
DAVI m =1
DAVI m =10
DAVI m =100

ro
ot

 s
ta

te
 v

al
ue

 a
ve

ra
ge

d
ov

er
 2

00
 ru

ns
st

at
e

0
va

lu
e

av
er

ag
ed

 o
ve

r 2
00

 ru
ns

Figure 4: Multi-state experiment: (top row) MDP with a tree structure with Pareto and normal
distributed rewards (bottom row) random MDP with Pareto and normal distributed rewards. We
run each instance 200 times with a new MDP generated each time. In each run, all algorithms are
initialized to 0.

20

In the random-MDP setting, DAVI, for all values of m, converged faster than VI and Asynchronous
VI in both the Pareto-reward and Normal-reward settings, as evident in the bottom row of Figure 4. As
expected, DAVI converged faster than Asynchronous VI and VI in the case of multiple near-optimal
policies. Note, DAVI m = 100 was the slowest to converge, a case where the action subset size is
large. This result makes sense as Asynchronous VI with the full action space did not converge as fast
as DAVI with smaller action subsets.

21

	Introduction
	Background
	Making value iteration asynchronous in actions
	Convergence
	Convergence rate
	Experiments
	Single-state experiment
	Multi-state experiment
	Discussion

	Conclusion
	Auxilary proofs for DAVI's theoretical results
	Theoretical analysis of Asynchronous VI
	More experiments
	Single-state experiment
	Multi-reward experiment
	Discussion

