Supplementary Materials: Generating Prompts in Latent Space
for Rehearsal-free Continual Learning

A THEORETICAL PROOF

A.1 Proof of ELBO

ProrosITION A.1. Suppose that P, X, Y are the prompt, input
data and its label respectively. The logarithmic likelihood function of
classification results can be decomposed into two parts:

log p(Y|X) = ELBO(q) + KL(q(P)|p(P|X.Y)). 1

Proof. By expanding the logarithmic likelihood and using the
conditional probability formula, we can obtain
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Where Eq.(3) holds because p(P,Y|X) = p(P|X,Y)p(Y|X).

A.2 Proof of Variational Loss

PROPOSITION A.2. Suppose that variational distribution q(P) is a
Gaussian distribution N'(p, X) with mean p and covariance matrix
X, namely
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Then, the expection of logarithmic variational distribution can
be expressed as
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Proof. We expand the expectation into an integral form, and
obtain that

By (p) llog q(P)] = / 4(P)log g(P)dP (10)
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We analyze the logarithmic terms of the normal distribution sepa-
rately
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Combing Eq.(15) and Eq.(11), we have
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A.3 Independent Situation

ProrosITION A.3. If prompt P is assumed to be independent on
each prompt length, namely the covariance matrix X of the varia-
tional distribution q(P) is a diagonal matrix. Then, the expection of
logarithmic variational distribution is

k 1 1
Eq(p) [logq(P)] = -3 log(27) — 3 log|Z| - 51. (21)

proof. If the covariance matrix 3. is diagonal, then X ™!
are commutable. Thus, we have

Bponus) | (P =7 (P = )] (22
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Since Ep. n(p,x) [(P - (P- p)] is another form of covariance
matrix, thus

Ep-n(p3) [(P -pT= (P - u)] =3z =1 (24)
Combining Eq.(9) and Eq.(24), we can obtain that

and (P—p)

k 1 1
Eq(p) [logq(P)] = -3 log(27) — 3 log|Z| - 51. (25)
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B INFORMATION FOR BENCHMARKS

In this paper, We conducted experiments on 5 datasets, including Split CIFAR-100 [3], Split DomainNet [6], Split Pets [5], Split EuroSAT [4]
and Split CropDisease [1]. Table 1 summarizes detailed information of these datasets.

Table 1: Specifications of the various CL benchmarks evaluated in the main paper.

Dataset Classes Tasks Training Set Validation Set Testing Set
Split CIFAR-100 100 10 4000 1000 1000
Split DomainNet 345 15 96724 24182 52041
Split Pets 35 7 2774 706 3469
Split EuroSAT 10 5 16200 5400 5400
Split CropDisease 35 7 34260 8566 10692

C ADDITIONAL EXPERIMENTS
C.1 Ablation Studies on Split DomainNet

In the main paper, we only provide the ablation experimental results on Split CIFAR-100 due to limited space. Here we provide additional
results of ablation experiments on Split DomainNet in Table 2 and 3. When it comes to Split DomainNet, it is evident that removing
Liexp_Mah and Lyjog cop results in the reductions of 0.97% and 0.66% on average accuracy, respectively. More importantly, the Avg Acc will
decrease by 15.48% and 5.69% when ¥ and € are removed respectively.

Table 2: Ablation results (%) of Lycxp man and Lyjog cop on Split CIFAR-100 and Split DomainNet.

Method Split CIFAR-100 Split DomainNet

Method Avg Acc(T) L Acc(T) Forgetting (|) AvgAcc(T) LrnAcc(T) Forgetting (|)
GPLS 96.22 +0.43 97.12+0.51 1.12+0.32 90.13 + 1.01 93.44+0.63 3.56 + 0.49
w/o Lngxp_Mah 95.07 £ 1.23  96.51 + 0.81 1.89 £ 0.72 89.16 + 1.21 92.54 £ 0.72 3.86 + 0.54
w/o 'Lnlog_cul) 95.56 £ 1.08  96.83 + 0.62 1.67 £ 0.63 89.47 + 1.08  92.89 + 0.64 3.62 + 0.50

W/0 Lnexp Mah & Lnlog cop 9498126 9632225 211102 8856+ 131 9212083  4.02 %062

Table 3: Ablation results (%) of variables for prompt generation on Split CIFAR-100 and Split DomainNet.

Method Split CIFAR-100 Split DomainNet
Method  Avg Acc (T) Lrn Acc (T)  Forgetting (|])  Avg Acc (T) Lrn Acc (1)  Forgetting (|)

GPLS 96.22 + 0.43 97.12 £ 0.51 1.12 +0.32  90.13 + 1.01 93.44+0.63  3.56 + 0.49
Ablate g 95.29 £0.63  96.73 £ 0.42 1.62 + 0.28 89.82 £ 0.57  92.75 £ 0.68 3.81 + 0.63
Ablate X 68.02 £4.15  81.93 +3.37 15.58 + 2.03 74.65 +3.24  85.69 + 2.28 11.86 + 1.89
Ablate e  90.49 +1.21 9555 +0.98 5.63 +£0.74 84.44 £ 2.02  90.65 + 2.12 6.66 = 0.82

C.2 Analysis on the number of Encoder Layers

In the main paper, we adopted the one layer MLP encoder [2], which is a simple and lightweight structure. To explore the impact of encoder
layers on overall performance, we also increase the number of encoder layers and the results are presented in Table 4. Experimental results
show that increasing the number of layers in the encoder cannot further improve the generated prompts. On the contrary, increasing an
arbitrary number of layers will result in a slight decrease in the final classification accuracy.

C.3 Analysis on Training Time

The training durations on a single-card A100 GPU for L2P, DualPrompt, S-Prompt++, CODA-Prompt, HiDe-Prompt, DAP and GPLS on Split
CIFAR-100 dataset are 0.55, 2.00, 2.01, 2.08, 2.80, 2.14 and 2.23, respectively.
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Table 4: Experimental results (%) on GPLS when adopting different encoder layers.

Method Avg Acc(T)  LrnAcc(T) Forgetting ()

GPLS 96.22 + 0.43 97.12 £ 0.51 1.12 + 0.32
GPLS (2 layer Encoder)  95.89 + 0.63 96.95 + 0.63 1.31 + 0.34
GPLS (3 layer Encoder)  95.75 £ 0.60  96.72 £+ 0.72 1.45 + 0.39
GPLS (4 layer Encoder)  95.58 £ 0.57  96.64 + 0.68 1.63 £ 0.55

D DETAILED ACCURACY FOR EACH TASK
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(a) Split CIFAR-100 (b) Split DomainNet
Figure 1: Detailed accuracy on Split CIFAR-100 and Split DomainNet.
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Figure 2: Detailed accuracy on Split Pets, Split EuroSAT and Split CropDiseases.

E T-SNE VISUALIZATION OF PROMPT FOR EACH TRANSFORMER LAYER

In the main paper, we present T-SNE visualization for the prompts on the first layer generated by GPLS and DAP. To comprehensively observe
the differences between prompts generated by our GPLS and DAP, we provide the T-SNE visualization of prompts for all the transformer
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layers (blocks) in Table 3. We have the following key observations. (1) The prompts generated by GPLS roughly converge to a straight
line and exhibit approximate continuity when projected onto a low dimensional manifold. (2) The geometric characteristics of the prompt
visualization under DAP closely resemble those of GPLS in the initial two layers. However, from the third layer onwards, the projection
points of DAP under various tasks demonstrate a clustered distribution in the manifold space. (3) The visualization of DAP prompts reveals a
disordered distribution pattern in layers 5, 7, 9, and 10.

The above observations indicate that we can obtain prompts with manifold features and better domain adaptability by utilizing the
variational encoder and customized objective function .
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Figure 3: T-SNE visualizations of generated prompts for 10 tasks on Split CIFAR-100 for each layer.
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F IMPLEMENTATION DETAILS

For Split CIFAR-100, Split Pets, Split EuroSAT and Split CropDisease, we run the experiments on one NVIDIA A100 GPU. When it comes to
Split DomainNet, we run the experiments on one NVIDIA A800 GPU.
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