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Abstract—While foundation AI models excel at tasks like
classification and decision-making, their high energy consump-
tion makes them unsuitable for energy-constrained applications.
Inspired by the brain’s efficiency, spiking neural networks (SNNs)
have emerged as a viable alternative due to their event-driven
nature and compatibility with neuromorphic chips. This work
introduces a novel system that combines knowledge distillation
and ensemble learning to bridge the performance gap between
artificial neural networks (ANNs) and SNNs. A foundation AI
model acts as a teacher network, guiding smaller student SNNs
organized into an ensemble, called Spiking Neural Ensemble
(SNE). SNE enables the disentanglement of the teacher’s knowl-
edge, allowing each student to specialize in predicting a distinct
aspect of it, while processing the same input. The core innovation
of SNE is the adaptive activation of a subset of SNN models of
an ensemble, leveraging knowledge-distillation, enhanced with an
informed-partitioning (disentanglement) of the teacher’s feature
space. By dynamically activating only a subset of these student
SNNs, the system balances accuracy and energy efficiency,
achieving substantial energy savings with minimal accuracy loss.
Moreover, SNE is significantly more efficient than the teacher
network, reducing computational requirements by up to 20x with
only a 2% drop in accuracy on the CIFAR-10 dataset. This
disentanglement procedure achieves an accuracy improvement
of up to 2.4% on the CIFAR-10 dataset compared to other
partitioning schemes. Finally, we comparatively analyze SNE
performance under noisy conditions, demonstrating enhanced
robustness compared to its ANN teacher. In summary, SNE offers
a promising new direction for energy-constrained applications
[1].

Index Terms—Spiking Neural Networks, Dynamic Neural Net-
works, Vision and Learning

I. INTRODUCTION

Foundation AI is repeatedly breaking ground in computer
vision and machine learning [2], [3], with advancements at
dramatic speed across various domains, including image and
video classification, semantic segmentation, depth estimation,
image captioning, and decision-making. However, training
and deploying foundation AI models demands extraordinary
amounts of energy and data [4]. Even with efforts to reduce
model sizes, inference still requires hundreds of Watts, making
these models impractical for deployment at the edge, where
energy efficiency is crucial. On the other hand, the human
brain is remarkably energy-efficient, consuming about 20 watts
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of power, impressive given its computational capabilities,
involving billions of neurons firing in complex patterns to
process sensory input, control movement, and enable cogni-
tion. Spiking neural networks (SNNs), inspired by biologi-
cal neuronal networks, provide a promising alternative for
achieving energy-efficient intelligence [5]. They use binary
spiking signals (0 for no activity and 1 for a spiking event) to
facilitate communication between neurons. SNNs can operate
efficiently on neuromorphic chips by performing spike-based
accumulate (AC) operations, eliminating the need to process
zero values in inputs or activations (i.e., they are event-driven).
This enables SNNs to consume significantly less power com-
pared to artificial neural networks (ANNs), which rely on
energy-intensive multiply-and-accumulate (MAC) operations
typically performed on dense computing hardware like GPUs.
With the advent of neuromorphic chips [6] the integration of
neuromorphic processors into everyday devices is becoming
increasingly plausible.

In our research, we envision a system that harnesses the
transferability and generalization capabilities of state-of-the-art
AI foundation models to enhance neuromorphic architectures
that combine energy efficiency with high accuracy. To achieve
this, we adopt a knowledge distillation approach, where the
knowledge from foundation AI models is transferred to neu-
romorphic architectures. In this framework, large-scale foun-
dation AI architectures serve as teachers that guide smaller,
neuromorphic, or more broadly neuroscience-inspired, student
architectures enabling them to emulate teacher’s performance.
Specifically, we propose an innovative neuromorphic archi-
tecture trained using knowledge-distillation: a powerful ANN
acts as a single-teacher model distilling its knowledge to
an ensemble of small student SNNs, called Spiking Neural
Ensemble (SNE). This combination of knowledge distillation
and ensemble learning can significantly improve the energy
efficiency and accuracy of SNNs, aiming to reduce the perfor-
mance gap between ANNs and SNNs. Our approach leverages
the Single-Teacher, Multiple-Student paradigm, where each
student learns to mimic a distinct subset of features from the
teacher network. Specifically, the teacher’s feature space—the
final layer just before the classification head—is partitioned
into distinct subsets, with each student responsible for repli-
cating one of them.

Each student processes the same input image, generating a



feature vector. These feature vectors are concatenated to form
the ensemble’s full feature representation. During training,
this concatenated vector is compared against the teacher’s
full feature vector to ensure alignment with the teacher’s
performance and then it is passed through a classification
head. In testing, the ensemble utilizes its collective feature
representation for classification.

Innovation To the best of our knowledge, it is the first study
of knowledge-distillation on an ensemble of SNN students. We
propose a set of techniques that improve the single-teacher,
multiple-student knowledge-distillation paradigm. Specifically,
we introduce a novel fine-tuning procedure for the teacher to
disentangle its feature space, ensuring that each student learns
a distinct part of the teacher’s information. Inspired by the
brain’s sparsity and modularity, SNE is enabled to dynamically
determine the ensemble’s size based on the accuracy-energy
trade-off. Since each student is assigned a distinct sub-task,
not all student SNNs need to be active to accomplish a
task effectively. By organizing the students into an ensemble,
SNE can dynamically select the subset of students to activate,
thereby improving energy efficiency.

We demonstrate that our method achieves remarkable en-
ergy efficiency without compromising performance. For ex-
ample, SNE reduces computational requirements from 398M
FLOPS in the teacher network to just 18.4M FLOPS (a 20x
reduction) with only a 2% drop in accuracy on the CIFAR-
10 dataset. Additionally, by selecting the appropriate number
of active students in the student ensemble, SNE can achieve
up to a 65% decrease in energy consumption with a mere
2.07% drop in accuracy. In case of low-noise input, the
ensemble demonstrates consistent performance and exhibits
enhanced robustness in high-noise conditions. Furthermore,
the proposed disentanglement procedure achieves an accu-
racy improvement of up to 2.4% on the CIFAR-10 dataset
compared to other partitioning schemes. The remainder of
this paper is structured as follows: Section II reviews the
main paradigms and approaches in training efficient SNNs and
knowledge distillation from (teacher) ANNs to SNNs students.
Section III presents the proposed architecture while Section IV
evaluates its performance. Finally, Section V summarizes the
main contributions and future work plans.

II. BACKGROUND

A. Training Efficient Spiking Neural Networks

Training SNNs is challenging due to the non-differentiable
nature of spikes. Current mainstream approaches to SNN
training can be classified into two broad categories, namely
ANN-to-SNN conversion and direct SNN training, described
below. A common approach for training SNNs is to leverage
the well-established techniques used in ANNs by converting a
high-performing ANN into an equivalent SNN with similar ac-
curacy [7, 8, 9, 10, 11, 12, 13]. This process typically involves
replacing the ANN’s ReLU activation functions with spiking
neurons and fine-tuning the SNN to approximate the ANN’s
outputs. Although this approach can achieve high accuracy,
it often requires a large number of time steps for the SNN

to replicate the ANN’s outputs effectively [8, 10, 11]. This
reliance on extended simulation time limits its applicability
in energy-constrained environments or latency-critical appli-
cations, such as real-time inference. The direct SNN training
using surrogate gradients (SG) [14, 15, 16, 17, 18, 19, 20]
addresses the non-differentiability of spikes by approximating
the gradient of the spiking function with a smooth surrogate
function during the backward pass. Combined with back-
propagation through time (BPTT), it enables weight updates
across multiple time steps. While direct training provides more
freedom in the design of SNNs, it often leads to worse perfor-
mance compared to ANNs, due to the intrinsic complexity of
spiking dynamics and limitations of surrogate approximations.

B. Knowledge Distillation from ANN Teachers to SNN Stu-
dents

Although knowledge distillation (KD), a powerful frame-
work for transferring the knowledge of a large, complex
network (teacher) to a smaller, more efficient network (student)
[21], was originally developed for ANN-to-ANN compression,
variants have recently been proposed for SNNs, demonstrating
improved SNN training [22, 23, 24].

Feature-based distillation matches the intermediate repre-
sentations of the teacher with the intermediate representations
of the student. In contrast, output-based distillation aligns
the final output of the two models. The alignment is usually
performed by incorporating a distance term in the loss function
which is minimized. These methods have demonstrated that
knowledge transfer is possible, despite the differences between
ANNs and SNNs, and can greatly improve SNN performance.
More specifically, by using feature distillation in every single
layer of an SNN student network and aligning them with repre-
sentations of an ANN teacher, the SNN student achieved 93%
accuracy on CIFAR-10 with only 4 timesteps per example,
setting a new state-of-the-art for spiking convolutional models
[23].

C. Ensemble Learning in SNNs

Ensemble-training methods, typically used in ANNs, have
also been applied to SNNs to enhance performance and
robustness [25, 26]. Most methods aggregate the predictions of
multiple models with the same architecture but different initial
weights and leverage a majority voting algorithm to make the
final prediction and improve overall accuracy. In the context
of SNNs, ensemble techniques are often used to increase the
accuracy of a model without taking into consideration the
increased computational costs of training its multiple instances
[27]. In this work, we aim to develop models that achieve
comparable accuracy and computational cost to single-model
architectures, while providing the added flexibility to balance
accuracy and energy consumption.

In traditional ANNs, ensemble techniques, like the Teacher-
Class Network (TCN) [28], where a set of smaller feature-
specific networks are trained under the guidance of a teacher
model, have been proposed. Such techniques offer modularity,
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Fig. 1: Training a Student Ensemble. The input image is fed into
the teacher network and into each student network. Each network
computes a vector of features. The features of the students are con-
catenated and the Mean Square Error (MSE) is computed between the
teacher’s feature vector and the concatenated feature vector (obtained
from the student ensemble). The concatenated feature vector of the
ensemble is fed into a Linear classification head which produces an
output vector that is used to calculate the Cross Entropy Loss from
the ground truth vector for the example.

enabling the use of the necessary modules, without degrading
the performance compared to a single-student architecture.

We aim to adapt this technique to SNNs, where multiple
spiking models are trained in conjunction with a teacher
network to optimize performance. This combination of knowl-
edge distillation and ensemble learning can significantly im-
prove the energy efficiency and accuracy of SNNs, aiming to
reduce the gap between ANN and SNN performance.

III. SINGLE-TEACHER MULTIPLE-STUDENT SNN
ENSEMBLE (SNE)

We introduce a novel training framework that combines re-
cent advancements in Spiking Neural Network (SNN) training
with the knowledge distillation paradigm, employing a single-
teacher model and multiple student models. The teacher model
is a standard deep convolutional neural network (CNN), while
the student models are SNNs, with shallower architectures
than the teacher, trained to mimic the feature representations
generated by the teacher. Each student learns a distinct subset
of the features produced by the teacher’s final layer, just before
the classification head. The partitioning of the feature set,
and thus its allocation to students, could be performed using
different techniques, as discussed in Section III-C.

The features extracted by the student SNNs are then con-
catenated and fed into a classification head for downstream
tasks. This ensemble-based approach achieves comparable
performance to a single-student SNN with the same total
computational cost. Furthermore, the method offers flexibility
in balancing computational cost and model performance by
selecting the number and depth of the used student models.

A. Knowledge Distillation for SNN Models

The neurons of the student SNNs follow the Leaky Integrate
and Fire (LIF) model [29, 30]. Each neuron has a state
divided into three processes, namely, charging, discharging,

Fig. 2: Fine-tuning of the Teacher Network. The teacher network is
fine-tuned to naturally partition its feature space: in an online iterative
manner, for each batch, the feature matrix is divided into N clusters:
a cluster includes a number of feature columns. After normalizing
each cluster row, to increase the separability between clusters, we
employ a loss metric based on the mean distances of each feature
row of a cluster from the corresponding feature rows of all other
clusters Lsim. The loss function in the fine-tuning of the teacher’s
network combines the loss for the primary classification task LCE

and a negatively weighted Lsim, promoting better feature clustering
while maintaining classification accuracy.

and resetting. The charging process can be expressed as in Eq.
1, where V [t] denotes the membrane potential of the neuron
model at time t, τm is the membrane time constant, while
X[t] indicates the external input current, which corresponds
to the weighted sum of the spikes fired by the neurons in the
previous layer. Here, H[t] represents the membrane potential
after charging but before firing. The process of firing binary
spikes S[t] in the neuron model is represented by a Heaviside
step function Θ (the value of which is zero for negative
arguments and one for positive arguments), as described in Eq.
2, where Vth represents the fired threshold of the membrane
potential. The discharging process is expressed in Eq. 3, where
Vreset represents the value to which the membrane potential
resets after firing.

H[t] = V [t− 1] +
1

τm
(X[t]− V [t− 1]) (1)

S[t] = Θ(H[t]− Vth) (2)

V [t] = H[t] · (1− S[t]) + Vreset · S[t] (3)

To train SNNs using gradient descent algorithms similar
to those in ANNs, we must address the non-differentiable
nature of the Heaviside step function Θ used in the neuronal
model of SNNs. During the backward pass of backpropagation
(BP), we employ a surrogate gradient approach, approximating
Θ(x) with a similar yet differentiable function σ(x), such as
a sigmoid function. In BP, the undefined gradient of Θ(x) is
replaced by the gradient of σ(x), allowing effective weight
updates.



The student SNNs are trained using a dual-loss function L
to optimize their performance.

L = LCE + α ∗ LKD (4)

The first loss term LCE is the standard cross-entropy loss,
which directly addresses the primary classification task, as-
sessing the difference between the output of the model and
the ground truth label, so that the model learns to classify the
correct class.

The second loss term LKD inspired by [23] leverages the
knowledge distillation paradigm, where the ensemble aims
to approximate the feature representations extracted from the
teacher model. Specifically, for each example, the feature ex-
traction from the teacher is performed by conducting a forward
pass of the example through the teacher model up to its
designated feature layer. The distillation task is implemented
using a mean squared error (MSE) loss between the teacher’s
feature vector and the ensemble’s feature vector, encouraging
the ensemble to regress toward the teacher’s feature space
(e.g., Eq. 5).

LKD =

D∑
i=1

(vi − ki)
2, (5)

where D is the number of dimensions of the feature vector,
v is the feature vector of the teacher network, and k is the
feature vector of the student network. The hyperparameter α
controls the impact of the teacher on the student; The special
case of α = 0 corresponds to training a traditional SNN without
knowledge distillation. The specific loss LKD used in our case
is discussed in Section III-B.

To utilize the teacher’s knowledge and have increased
performance when compared to traditional SNN training, we
observed that high α values are required so that the LCE

term does not dominate the total loss and the students regress
towards the teacher’s feature space and then learn to classify.
The results presented here are based on α = 2.

B. Student Ensemble

Rather than distilling knowledge from the teacher model
into a single-student network, our proposed method employs
an ensemble of student models. Each student is assigned the
task of learning a specific subset of the teacher’s feature vector,
which is partitioned into N distinct (non-overlapping) sub-
vectors, where N corresponds to the number of students. For
instance, in the case of two students and a feature vector of
size 100, the first student processes features corresponding to
indexes [1, 50], while the second processes indexes [51, 100].

The teacher’s feature space S = {1, .., D} is partitioned
into N distinct subsets Si and each subset is assigned to a
different student, in an ensemble of N students. We will name
the partitioning of random equal-sized subsets fixed (with no
feature disentanglement).

During the inference phase, the teacher generates feature
vector v and each student generates a predicted feature sub-
vector si. The Mean Square Error (MSE) is calculated between
these predicted sub-vectors and their corresponding teacher

sub-vectors vi = {vk : k ∈ Si}. The outputs of all students
are subsequently concatenated to form a comprehensive repre-
sentation, which is then input into a linear classification head
CH to produce the final prediction: s = s1 ⊕ s2 ⊕ ... ⊕ sN ;
ensemble’s output: eo = CH(s). The student ensemble is
trained concurrently using the loss function defined in Eq. 4,
where now

LKD =

N∑
i=1

|Si|∑
k=1

(vik − sik)
2 (6)

and LCE is the cross-entropy loss assessing the difference
between the eo and the ground truth label. Backpropagation is
performed using a Heaviside step function as a surrogate for
spikes.

The features dimensions Si assigned to each student are
determined based on indexing. However, a more “strategic”
grouping of feature dimensions could improve students’ ability
to learn the assigned feature vector vi, as discussed below (in
Section III-C).

C. Feature Disentanglement

This section introduces one of the core ideas of this work,
based on the assumption that higher-order representations
of input data can form (ideally well-separated) clusters of
features, which will then be assigned to different students.
We demonstrate how the assignment of feature dimensions to
students can be adaptive and data-driven. Rather than arbitrar-
ily dividing the teacher’s feature dimensions, we propose two
techniques for feature partitioning aimed at improving student
training, namely, the frozen teacher and the fine-tuned teacher.

In the frozen-teacher approach, we apply clustering algo-
rithms in order to optimally divide the frozen teacher’s feature
dimensions. Specifically, we generate a feature matrix by
passing the entire training dataset through the teacher network.
Clustering algorithms, such as K-means or agglomerative
clustering, are then applied to the columns of this matrix based
on the cosine similarity. Each cluster corresponds to a subset
of feature dimensions (i.e., columns of the feature matrix),
which will be assigned to student models. Agglomerative and
k-means clustering may produce clusters of varying sizes, an
imbalance that will lead to unequal workloads among students.
To address load-balancing requirements, we can enforce equal-
sized clusters employing a variation of k-means clustering
based on a greedy heuristic.

The second approach assumes that assigning correlated
feature dimensions to students enhances their ability to learn.
To this end, we propose fine-tuning the teacher network to
refine the partitioning of its feature space, forming sub-features
that: i) contain more correlated feature dimensions and ii)
are more separable from other sub-features. To achieve this,
we introduce an additional loss term during the fine-tuning
process to “guide” the teacher to produce features explicitly
partitioned for the desired number of students N . At each
fine-tuning iteration, the feature space is evenly divided into
N clusters Vi. For example, cluster i includes columns D/N∗i
to D/N ∗ (i+ 1) of the feature matrix V .



Fig. 3: Overview of the Spiking ResNet architecture.

To ensure that the feature subspaces are distinct and well-
separated, we apply a similarity loss. This loss penalizes the
k-th feature row of the cluster i based on its proximity to
the k-th feature rows of all other clusters j, i ̸= j using the
Euclidean distance metric:

Lsim =

N∑
i=1

N∑
j>i

B∑
k=1

MSE(Vik, Vjk) (7)

where Vik is the k-th row of cluster i and B is the size of each
batch. The total loss of the teacher’s fine-tuning procedure
combines the classification loss LCE and the similarity loss
as Loss = LCE + λLsim, where λ is negative and controls
the contribution of the similarity term.

Figure 2 illustrates the process, where N represents the
number of students and D the dimensionality of the teacher’s
feature space. After this fine-tuning process, SNE is trained as
described in Section III-B.

IV. PERFORMANCE ANALYSIS

This section evaluates SNE using the CIFAR-101 dataset.
For the teacher architecture, we employ the ResNet and
VGG architectures. All SNN student networks utilize Leaky
Integrate and Fire nodes which serve as a replacement for
the ReLU activation function in their corresponding ANN
architecture. To quantify the computational demands of the
different models, we measure two fundamentally different ap-
proaches to processing neural activations, namely the Multiply-
Accumulate (MAC) and Accumulate (AC) operations during
inference. MAC operations, prevalent in traditional ANNs, in-
volve both multiplication and addition steps, where each input
is multiplied by its corresponding weight before being accu-
mulated into the running sum. In contrast, AC operations, used
in SNNs, primarily rely on simple accumulation of incoming
spikes without multiplication, making them computationally
more efficient but potentially less expressive. Both metrics
count the number of floating point operations (FLOPs) that
are performed. The tracking of the MAC and AC operations
is done with the help of the SyOPs [31] library. Across our

1CIFAR-10 consists of color images in 10 different classes. The dataset has
50,000 training images and 10,000 test images. The pixel values of images
are scaled to be in the interval [0, 1].

Fig. 4: Overview of the Spiking VGG architecture.

experiments, we utilize the PyTorch and the SpikingJelly [30]
framework to evaluate our proposed methods. The raw pixel
values are used as input for the SNN models. We repeat
the input for T = 4 timesteps. After the processing of the
SNNs, the firing rate of the final layer neurons, defined as
their mean activation over T timesteps, is used as input for
the classification head.

A. On the Number of Students

We will first consider fixed feature partitioning (no feature
disentanglement), and assess the performance of the SNE
in terms of accuracy and number of FLOPs, for different
numbers of students, compared to a teacher model, a single,
two- or four-student SNN ensemble for both VGG and ResNet
architectures (Tables I II).

To accommodate for a fair comparison, we develop an
ensemble with the same computational cost as a single stu-
dent architecture by forming students of the ensemble with
reduced width, depth, or both. For an ensemble with only
two students, we reduce the depth of the ResNet and VGG
architectures from depths of 11 and 18 layers to 5 and 10,
respectively. Given that CNNs with two to four layers have
degraded performance, we reduce the number of channels of
the CNNs of ResNet10 and VGG5, forming the ResNet10mini
and VGG5mini architectures, respectively, as follows: Both
“mini” versions have the same depth as their corresponding
(original) architectures. In addition, the last two CNN layers of
VGG5mini are of half the width, while the number of channels
of the first CNN layer of ResNet10mini is reduced from 64
channels to 54, and thus, its subsequent layers, which have the
base width multiplied by an expansion index, are also reduced.

Both architectures are built upon fundamental blocks that
consist of convolutional layers followed by a batch normaliza-
tion layer. However, instead of employing traditional activation
functions, like ReLU, which are commonly used in ANNs,
these blocks utilize Leaky Integrate-and-Fire (LIF) nodes. The
LIF nodes generate spike trains for each feature, across all
time steps. The primary distinctions between the two archi-
tectures lie in their structural design: ResNet incorporates skip
connections to facilitate gradient flow and mitigate vanishing
gradients, while VGG employs maxpooling layers between its
blocks to down-sample feature maps. In VGG, the maxpooling



layers process one timestep at a time, generating smaller-
dimensional kernels for each convolutional channel as the data
propagates through the network.

The performances of the VGG and ResNet architectures
with 2- and 4-student ensembles without disentanglement
showcase a minor reduction in the accuracy compared to a
single-student approach (Tables II and I and II). An ANN
VGG19 teacher and an ANN ResNet18 teacher are employed
for the SNN VGG and the ResNet architectures, respectively.
It is evident that the use of Knowledge Distillation increases
the performance of the Single Student by 0.5-1.0%, consistent
with [23], and the two- and four-student ensembles can have
comparable evaluation accuracy using fixed partitioning.

B. Benefits of Disentanglement

To assess the effectiveness of the feature partitioning tech-
niques proposed in Section III-C, we re-evaluate the ensembles
described in Section IV-A. Our primary objective is to reduce
the performance gap between the ANN teacher model and
our Spiking Neural Ensembles. When the teacher model is
frozen we employ agglomerative clustering for feature-space
partitioning, assigning feature subsets to student models with
different capacities. Agglomerative Clustering outperforms
both k-means clustering and fixed partitioning (see Table III).
For this, we utilize the implementation in the scikit-learn
library with complete linkage [32].

In case that students with equal capacity are required, we
employ a variation of the k-means clustering. After the initial
k-means clustering, we apply a greedy “reallocation” heuristic
to balance cluster sizes. Specifically, for each cluster c with
a size deficit, we identify the number of elements required
to achieve the target size and reassign elements from clusters
of excess size. Elements to be reassigned are selected based
on their proximity to c’s centroid. This way we balance the
clusters, ensuring equal capacity across students. While the
performance in this setup is slightly lower than the unequal-
capacity case, it still demonstrates improvement over fixed
feature partitioning.

The teacher fine-tuning method (as illustrated in Fig. 2)
achieves the best results, improving accuracy by 2.4% in
a four-student ensemble compared to fixed partitioning (see
Table III). While this approach introduces a computational
overhead, requiring an additional 10 to 20 epochs of teacher
training, the teacher effectively optimizes the additional loss
term without compromising its classification accuracy. No-
tably, the introduced loss function 7 has a global optimum
which the teacher successfully reaches. The teacher, through
the disentanglement process, aims to position the points (nor-
malized subvectors of each feature) as far apart as possible
on the surface of a unit sphere in RD/N . For instance, when
N = 4, geometrically, the optimal arrangement occurs when
these 4 points form the vertices of a regular tetrahedron,
maximizing pairwise distances to

√
8/3, which is the global

optimum of 7 for N = 4. Similarly, when N = 2, the optimal
arrangement occurs when the two subvectors are anti-parallel
resulting in a maximum distance and global optimum value of

2. This fine-tuning procedure disentangles the information in
the teacher’s features, making each assigned sub-feature more
compact and easier for students to replicate. This improved
feature separation likely explains the observed increase in
accuracy.

C. Computation-Performance Trade-off Using Dropout

The student ensemble offers the advantage of dynamically
adjusting the number of students active depending on the
need for more accuracy or less energy consumption. In order
to utilize the flexibility of the ensemble we propose two
methodologies.

The first methodology utilizes the complete ensemble
throughout the training process. During the evaluation phase,
we employ a stochastic selection mechanism that operates
by randomly sampling K indexes from the range [1, N]
without replacement, where N represents the total number
of student models in the ensemble and K the target number
of active models. These sampled indexes determine which
student models will be activated for the current batch, while
the remaining N-K models remain dormant. The input is
fed only into the selected students, generating their respec-
tive output features, while zero vectors are assigned to the
output feature spaces of the inactive models. This dynamic
activation pattern is regenerated for each subsequent batch,
ensuring a diverse mix of active student models throughout
the evaluation process. This stochastic approach provides a key
advantage: by randomly selecting subsets from the full-range
of possible student-model combinations, it generally produces
performance levels that approximate the mean of all possible
combinations.

The second methodology utilizes the dropout technique for
both the evaluation phase and the training phase. Its key
difference from the first is that for this methodology we
determine before training the number of students that will
be active. Here the ensemble learns to utilize a subset of
students during training. This results to an improvement of
the ensemble’s accuracy but at the cost of an increase in
the number of AC operations of each student (see Table
VI). We observe that, in response to the reduced number of
students, the ensemble compensates by increasing the neuronal
firing rates, which in turn increases the AC operations of the
ensemble.

The second methodology is advantageous when the number
of active students during evaluation/testing is expected to
remain relatively stable and is known in advance. As shown in
Tables V VI, our SNEs demonstrate robustness to the number
of students activated during evaluation. As the number of
active students and consequently the number of operations
needed decreases the accuracy decreases only slightly. This
offers flexibility in the performance vs. accuracy trade-off. In
the case of one active student, we observe a 65% decrease in
energy consumption with only 2.07% degradation in accuracy.
The experiments performed to examine the impact of the
dropout consider a fixed feature-to-students partitioning.



Type Architecture Accuracy Parameters FLOPS
ANN ResNet18 94.27% 11.3M 555M MACs
SNN 1xResNet18 (without KD) 92.85% 11.3M 165M ACs
SNN 1xResNet18 93.86% 11.3M 165M ACs
SNN 2xResNet10 93.03% 9.9M 107M ACs
SNN 4xResNet10mini 93.22% 11.9M 154M ACs

TABLE I: Validation accuracy, total parameter count and estimated
FLOPs for a single forward pass of ResNet-based architectures,
comparing ANNs and SNNs, with and without knowledge-distillation
(KD).

Type Architecture Accuracy Parameters FLOPS
ANN VGG19 92.22% 20M 398M MACs
SNN 1xVGG11 (without KD) 87.7% 9.3M 22.5M ACs
SNN 1xVGG11 88.21% 9.3M 22.5M ACs
SNN 2xVGG5 87.54% 3.6M 17.6M ACs
SNN 4xVGG5mini 87.94% 3.2M 18.4M ACs

TABLE II: Validation accuracy, total parameter count and estimated
FLOPs for a single forward pass of VGG-based architectures, com-
paring ANNs and SNNs, with and without knowledge-distillation
(KD).

Fig. 5: Performance of VGG and ResNet Architectures on CIFAR-10. Architectures of two- and four-student ensembles achieve comparable
performance to the single-student SNN with only a minor reduction in accuracy. The total AC operations, considering the entire ensemble,
and evaluation accuracy of the two architectures using several students active during inference. The notation “X/Y” indicates the number of
active students in an ensemble of Y students.

Architecture Fixed Agglomerative K-means Teacher Fine-tuning

2xVGG5 87.54% 88.21% 88.12% 89.01%

4xVGG5mini 87.94% 89.11% 88.42% 90.38%

2xResNet10 93.03% 93.18% 93.57% 93.83%

4xResNet10mini 93.22% 93.49% 93.32% 93.66%

TABLE III: Comparison of Accuracy Across Different Architectures
and Clustering Methods. Compared to SNE with fixed, k-means or
agglomerative clustering, SNE with fine-tuned teacher achieves an
improved accuracy.

Fig. 6: CIFAR-10 dataset with different amounts of Gaussian Noise
(µ = 0, σ).

D. Performance Under Noise

We examine the performance of the SNE in the presence
of noise added in the input dataset, during the testing phase.
During training, the input dataset CIFAR-10 was without any
noise. We tested various VGG and ResNet architectures with
input under different levels of noise. Specifically, we add to
each pixel of each image in the testing dataset, Gaussian noise
with µ = 0 and σ (see Figure 6). We then pass the noisy
images through the network to produce predictions. We ran
each experiment 10 times and calculated the mean accuracy
in each setting along with Standard Error of the Mean (SEM).
We repeat these experiments for different levels of noise (σ =
0.01, 0.03, 0.05, 0.07) Table IV).

As expected, the higher the noise, the lower the accuracy, for
each architecture. However, the SNE with four-student SNNs
manifests a higher robustness compared to the original ANN
VGG19 or ResNet18 architecture or the corresponding SNN
architectures with one- or two-student ensemble. In accor-
dance with [23], the single-student SNN model demonstrates
comparable performance to the ANN teacher under noisy
data, suggesting that the single-student model retains much
of the teacher’s robustness. Interestingly, there is a significant
difference between the single-student case and the ensemble of
4-students, especially for high levels of noise. We hypothesize
that the reduced number of parameters in each student in
the 4-student ensemble, compared to the teacher ANN and to
the single-student, could help mitigate overfitting and thereby
enhance the robustness to noise.



ANN SNN
Type of Noise VGG19 ResNet18 VGG11 2xVGG5 4xVGG5mini ResNet18 2xResNet10 4xResNet10mini
No noise 92.2 94.26 87.78 87.56 87.94 93.86 93.05 93.29
Gaussian (σ = 0.01) 91.9 ± 0.03 93.60 ± 0.02 87.64 ± 0.06 87.32 ± 0.03 87.74 ± 0.04 93.42 ± 0.05 92.74 ± 0.04 92.6 ± 0.03
Gaussian (σ = 0.03) 85.92 ± 0.05 85.77 ± 0.05 85.41 ± 0.05 83.96 ± 0.04 85.12 ± 0.06 87.62 ± 0.04 84.89 ± 0.09 85.27 ± 0.05
Gaussian (σ = 0.05) 70.89 ± 0.01 68.44 ± 0.08 73.88 ± 0.1 70.17 ± 0.06 74.13 ± 0.06 73.79 ± 0.08 69.48 ± 0.1 70.69 ± 0.06
Gaussian (σ = 0.07) 52.57 ± 0.11 47.14 ± 0.11 49.56 ± 0.11 48.25 ± 0.09 58.92 ± 0.1 54.22 ± 0.11 53.10 ± 0.06 55.08 ± 0.07

TABLE IV: Accuracy (%) of VGG and ResNet architectures with different amounts of Gaussian noise (µ = 0) added in the input dataset.
Values are reported as Mean ± Standard Error of the Mean.

4xVGG5mini 4xResNet10mini
Active Students Accuracy AC Ops. Accuracy AC Ops.

4 87.94% 18.5M 93.23% 154.8M

3 86.57% 13.7M 92.07% 116.2M

2 82.67% 9.2M 90.00% 79.7M

1 75.71% 4.6M 84.27% 37.4M

TABLE V: Dropout tradeoff for 4xVGG5mini and 4xResNet10mini
architectures. This table shows the accuracy and approximate AC op-
erations as the number of active students decreases. All Architectures
are trained with all of the students active and only evaluation utilizes
a subset.

4xVGG5mini 4xResNet10mini
Active Students Accuracy AC Ops. Accuracy AC Ops.

4 87.94% 18.5M 93.23% 154.8M

3 87.69% 15.9M 92.79% 129.5M

2 86.91% 12.2M 92.51% 87.6M

1 85.39% 7.8M 91.16% 52.6M

TABLE VI: Dropout tradeoff for 4xVGG5mini and 4xResNet10mini
architectures. Both training and evaluation is performed with a
random subset of students active.

V. CONCLUSIONS AND FUTURE WORK

We developed SNE, an innovative ensemble of spiking
neural networks trained using knowledge distillation guided
by a pre-trained artificial neural network. SNE can be an
order of magnitude less computationally expensive than the
teacher network (e.g. 18.4M vs. 398M FLOPS, under VGG-
based models), while maintaining comparable performance
on classification tasks, such as CIFAR-10 (e.g., 90.39% vs.
92.2%, respectively). It shows encouraging performance in
addressing effectively the trade-off between computational
efficiency and accuracy, by dynamically adjusting the number
of active students in the ensemble, as well as improved
robustness under noise.

The informed partitioning (disentanglement) of the teacher’s
feature space has an impact on the knowledge distillation
process. While clustering algorithms in the frozen teacher’s
feature space may yield modest gains, our results suggest
that further exploration on the teacher fine-tuning procedure
could further reduce the performance gap between ANN and
SNN networks. Notably, the loss function introduced in Eq.
7, despite being sample-specific, without explicitly enforcing
compact sub-features across samples, still yields superior
results compared to alternative loss functions that take also
into consideration the sub-feature proximity within the same

cluster.
This work primarily considers SNN students that operate in

parallel, concurrently processing the input image. An increased
energy efficiency can be achieved by enabling students to share
the first layers of their architecture and only differentiate at the
top layers. Additionally, exploring hierarchical or sequential
processing among students may further optimize performance.
We also plan to develop auxiliary networks to make sample-
specific decisions about which students should remain active
during inference.

In summary, SNE introduces a novel approach that ad-
dresses effectively the energy efficiency and accuracy trade-
off compared to traditional foundation AI models. By dy-
namically activating a subset of shallow SNN models and
leveraging knowledge distillation, enhanced with an informed-
partitioning (disentanglement) of the teacher’s feature space,
SNE offers a promising solution for energy-constrained appli-
cations.
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