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ABSTRACT

Electrocardiogram (ECG) is essential for the clinical diagnosis of arrhythmias and
other heart diseases, but deep learning methods based on ECG often face lim-
itations due to the need for high-quality annotations. Although previous ECG
self-supervised learning (eSSL) methods have made significant progress in repre-
sentation learning from unannotated ECG data, they typically treat ECG signals as
ordinary time-series data, segmenting the signals using fixed-size and fixed-step
time windows, which often ignore the form and rhythm characteristics and latent
semantic relationships in ECG signals. In this work, we introduce a novel perspec-
tive on ECG signals, treating heartbeats as words and rhythms as sentences. Based
on this perspective, we first designed the QRS-Tokenizer, which generates seman-
tically meaningful ECG sentences from the raw ECG signals. Building on these,
we then propose HeartLang, a novel self-supervised learning framework for ECG
language processing, learning general representations at form and rhythm levels.
Additionally, we construct the largest heartbeat-based ECG vocabulary to date,
which will further advance the development of ECG language processing. We
evaluated HeartLang across six public ECG datasets, where it demonstrated ro-
bust competitiveness against other eSSL methods. Our data and code are publicly
available at https://github.com/PKUDigitalHealth/HeartLang.

1 INTRODUCTION

Figure 1: Two perspectives on ECG signals.

Electrocardiogram (ECG) is a common type
of clinical data used to monitor cardiac ac-
tivity, and is frequently employed in diagnos-
ing cardiac diseases or conditions impairing
myocardial function (Hong et al., 2020; Liu
et al., 2021). A primary limitation of us-
ing supervised deep learning methods for ECG
signal analysis is their dependency on large-
scale, expert-reviewed, annotated high-quality
data. Moreover, even with sufficient data, these
methods are often designed to address specific
tasks, which curtails the generalization ability
of the model. To overcome these challenges, ECG self-supervised learning (eSSL) has demonstrated
efficacy by training on vast amounts of unlabeled ECG recordings to learn generic ECG signal rep-
resentations, which are then fine-tuned for specific downstream tasks (Pup & Atzori, 2023).
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Current eSSL methods can be primarily classified into two categories: contrastive-based methods
and reconstruction-based methods. The core principle of contrastive-based methods involves cre-
ating positive and negative sample pairs, aiming to maximize the similarity of positive pairs and
minimize the similarity of negative pairs (Zhang et al., 2023b). Reconstruction-based methods focus
on training a model to reconstruct the original input from partial or transformed data, thus learning
effective data representations (Zhang et al., 2023c). However, almost all methods treat ECG signals
as ordinary time-series data, which have two significant drawbacks:

Ignoring Form and Rhythm Characteristics of ECG. ECG diagnostics from multi-level char-
acteristics are essential Hong et al. (2019). For example, myocardial infarction is diagnosed by
observing ST segment elevation of a single heartbeat (Vogel et al., 2019). Likewise, cardiac rhythm
characteristics are critical, as arrhythmias like atrial fibrillation (AF) are identified based on the
overall cardiac rhythm (Carrington et al., 2022). However, existing eSSL methods typically employ
fixed-size and fixed-step time windows to segment the signal (Song et al., 2024). This perspective
treats ECG signals as ordinary time-series signals, thereby ignoring the unique form and rhythm
characteristics inherent to ECG signals, ultimately leading to a decline in the effectiveness of self-
supervised learning for both.

Ignoring Latent Semantic Relationships of ECG. Due to significant differences in heart rate and
other factors between different subjects, and even among different samples from the same subject
(Lan et al., 2022), using fixed-size and fixed-step time windows to segment data leads to substantial
discrepancies among samples. The differences between samples disrupt the potential semantic rela-
tionships between different heartbeats, which in turn negatively impacts the effectiveness of learning
a generalized representation in self-supervised learning.

To address these challenges, we propose a self-supervised learning framework named HeartLang
for ECG language processing (ELP). A distinguishing feature of ECG signals is the clear visibility
of heart rate patterns, where individual heartbeats are easily identifiable. The core concept of our
framework treats heartbeats as words and rhythms as sentences, enabling self-supervised learning
at both form and rhythm levels to capture multi-level general representations. Our method consists
of four key components: (1) the QRS-Tokenizer, which generates the ECG sentences from the raw
ECG signals; (2) the ST-ECGFormer, which leverages spatio-temporal information to enhance latent
semantic extraction from ECG sentences; (3) the construction of the largest ECG vocabulary to date,
where heartbeat quantization and reconstruction enable form-level representation learning; and (4)
masked ECG sentence pre-training, which facilitates rhythm-level general representation learning.
Through these approaches, our method can learn both form-level and rhythm-level representations
of ECG signals without labels, and extract latent semantic representations in ECG sentences. The
main contributions of this work are summarized in below:

• We propose HeartLang, a novel self-supervised learning framework for ECG language pro-
cessing, designed to learn general representations at form and rhythm levels and extract
latent semantic relationships from unlabeled ECG signals.

• We present a paradigm-shifting perspective of ECG signals, treating them as a language
with distinct words (heartbeats) and sentences (rhythms), and design a QRS-Tokenizer that
generates the ECG sentences from the raw ECG signals based on this perspective.

• We design ST-ECGFormer, a novel transformer-based backbone network for ECG signal
analysis, which leverages the spatio-temporal features in ECG signals to enhance represen-
tation learning and optimize latent semantic relationships extraction for ECG sentences.

• To the best of our knowledge, we have constructed the largest ECG vocabulary based on
heartbeats to date. This ECG vocabulary includes a wide variety of heartbeat morpho-
logical representations across different cardiac conditions, which will further advance the
development of ECG language processing.

2 RELATED WORK

2.1 SELF-SUPERVISED LEARNING FOR ECG SIGNALS

In recent years, ECG self-supervised learning (eSSL) has demonstrated its ability to learn gen-
eral representations from unlabeled ECG signals, significantly improving the performance of down-
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stream tasks (Lai et al., 2023). eSSL methods can be broadly categorized into two types: contrastive-
based methods and reconstruction-based methods. For contrastive-based approaches, CLOCS
(Kiyasseh et al., 2021) enhances contrastive learning by leveraging cross-space, time, and patient-
level relationships in ECG signals, while ASTCL (Wang et al., 2024) employs adversarial learning
to capture spatio-temporal invariances in ECG signals. ISL (Lan et al., 2022) enhances cross-subject
generalization ability through inter-subject and intra-subject contrastive learning, while BTFS (Yang
& Hong, 2022) enhances ECG signal classification performance by combining time-domain and
frequency-domain contrastive learning. On the other hand, reconstruction-based methods like
MaeFE (Zhang et al., 2023a) and ST-MEM (Na et al., 2024) adopt a spatio-temporal approach,
learning general ECG representations by masking and reconstructing temporal or spatial content.
CRT (Zhang et al., 2023c) obtains general representations in ECG signals by mutually reconstruct-
ing the time-domain and frequency-domain data. However, existing eSSL methods predominantly
focus on spatio-temporal or time-frequency domain representation learning of ECG signals, treating
them as ordinary time-series data. This perspective often neglects the morphologically rich semantic
information embedded in individual heartbeats.

2.2 ECG LANGUAGE PROCESSING

ECG language processing (ELP) is an emerging paradigm for handling ECG signals, first proposed
by Mousavi et al. (2021). Since ECG signals inherently possess significant and clear semantic in-
formation in heartbeats, they can be processed using methods similar to natural language processing
(NLP). Both Mousavi et al. (2021) and Choi et al. (2023) employ approaches that segment different
waves within heartbeats to construct vocabularies for modeling. However, when dealing with ECG
signals of varying quality, existing methods struggle to accurately segment fine-grained waveforms.
Moreover, current ELP methods have relatively small vocabularies (no more than 70 clusters), which
limits the richness of the semantic information. In addition, research on ELP remains sparse, high-
lighting it as a field in urgent need of further exploration. To address these limitations, we propose a
new perspective that directly treats heartbeats as words for modeling and have built the largest ECG
vocabulary to date, consisting of 5,394 words, which will significantly advance the development of
the ELP research field.

3 METHOD

In this section, we provide a detailed explanation of the specific structure of the HeartLang frame-
work. We first define multi-lead ECG data as X ∈ RC×T , where C represents the number of ECG
leads (electrodes) and T represents the total timestamps. The configuration of ECG leads follows
the standard 12-lead ECG setup. The overview of the framework is shown in Figure 2. The use
of the framework can be divided into four steps. First, a QRS-Tokenizer is used to generate the
ECG sentences from the raw ECG signals as described in the Section 3.1. Second, constructing
the ECG vocabulary is achieved through the steps in the Section 3.3. Third, masked ECG sentence
pre-training of the framework is performed as described in the Section 3.4. Finally, fine-tuning is
performed for downstream tasks.

3.1 GENERATING ECG SENTENCES USING THE QRS-TOKENIZER

QRS Detection. A key concept of our method is to treat heartbeats as words, thus making the
segmentation of the original ECG signal into semantic heartbeat patches essential. We introduce
QRS-Tokenizer, a tokenizer that generates the ECG sentences from the raw ECG signals based on
QRS waveforms. Initially, the I-lead signal is bandpass filtered between 5 and 20 Hz, followed
by moving wave integration (MWI) using a Ricker wavelet on the filtered signal, and the squared
integration signal is saved. The local maxima of the MWI signal are then traversed, with each
maximum that occurs after the refractory period and exceeds the QRS detection threshold being
classified as a QRS complex. Following detection, we obtain the indices of the detected QRS com-
plexes Q = {qi|i = 1, . . . , N}, where N denotes the number of detected QRS indices per sample,
which varies between ECG recordings.

Assuming the time window size is t. For each lead, we center each index in Q, using the midpoint
between every two indices as the interval boundaries, and independently segment the QRS complex
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Figure 2: Framework of HeartLang.

patches for each lead. If the segmented region is smaller than t, padding it with zeros to match the
required size. We refer to these segmented heartbeat patches as individual ECG words, as they are
independently extracted from each subject and lack cross-subject generalization.

Generating ECG Sentences. After segmentation, we concatenate the individual ECG words of the
12 leads in sequence, forming the overall ECG sentence x ∈ Rl×t, where l represents the sequence
length and t denotes the time window size. Given the variability in heart rates across samples, the
resulting sequence lengths are inconsistent. Similar to natural language processing, we set l to the
maximum length of the ECG sentence. If the length of the ECG sentence is less than l, it will be
padded to l through the zero-filled patches; if the length of the ECG sentence exceeds l, the interval
length will be truncated to l. In this paper, l is set to 256, and t is set to 96.

3.2 ST-ECGFORMER BACKBONE NETWORK

To more effectively capture spatio-temporal features and latent semantic relationships within ECG
sentences, we designed a backbone network called ST-ECGFormer. This backbone network is em-
ployed in various components of the HeartLang, including vector-quantized heartbeat reconstruction
(VQ-HBR) training, masked ECG sentence pre-training, and downstream tasks fine-tuning.

Token Embedding. ECG signals exhibit high temporal resolution, and the QRS complexes that
form ECG sentences contain rich temporal features. These QRS complexes are mapped into a
higher-dimensional token feature space, allowing their distinguishing features to be more effectively
extracted and encoded. We apply a 1-D convolutional layer-based mapping function to transform
each individual ECG word into a corresponding token. After this transformation, the ECG sentence
can be represented as xt ∈ Rl×D , where D denotes the dimension of the token feature space.

Spatio-temporal and Position Embedding. To enable the spatial and temporal information
of the ECG sentence to be better captured by HeartLang, a temporal embedding set TE =
{te0, te1, te2, . . . , te10} and a spatial embedding set SE = {se0, se1, se2, . . . , se12}, both D-
dimensional and learnable during the training process, were initialized. For the spatial embedding,
we divide the original 12-lead ECG signals into 12 segments, with each lead corresponding to a
spatial embedding. The spatial embedding of each individual ECG word is mapped back to the lead
from which it originated. For the temporal embedding, the original 10-second ECG signal is divided
into 10 segments, where each second corresponds to a temporal embedding. We assign the temporal
embedding of each individual ECG word to the time interval of its QRS complex indices Q. Specif-
ically, for zero-filled patches, their spatial and temporal embeddings are set to te0 and se0, respec-
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tively, to ensure feature consistency. Next, a class token is added at the beginning of the sequence to
enhance the representation. Additionally, a position embedding list PE = {pe0, pe1, pe2, . . . , pel}
is introduced to reinforce the sequential relationships between individual ECG words. Thus, the
ECG sentence can be described by the following formula:

x′ = xt + TEu+SEv + PE,

u ∈ {te0, te1, te2, . . . , te10}, v ∈ {se0, se1, se2, . . . , se12}.

Transformer Encoder. Finally, the ECG sentence will be input into the transformer encoder
(Vaswani et al., 2017). To ensure stability during the training process, we employ the pre-layer
normalization strategy (Xiong et al., 2020), which applies layer normalization to the input of the
attention mechanism:

Q = LN(x′)wQ, K = LN(x′)wK , V = LN(x′)wV ,

Attention(Q,K, V ) = softmax
(

QKT

√
dhead

)
V,

where dhead denotes the dimension of each head in the multi-head attention, and LN represents layer
normalization.

3.3 VECTOR-QUANTIZED HEARTBEAT RECONSTRUCTION TRAINING

The individual ECG words segmented by the QRS-Tokenizer lack generalization properties, as each
individual ECG word is independent. We aim for the HeartLang to learn general representations
across subjects during the subsequent pre-training stage. To achieve this, we introduce an ECG vo-
cabulary, a codebook containing collective ECG words that have cross-subject generalization prop-
erties. We believe that the same type of heartbeat across different subjects should be consistent in
semantic level. Similar individual ECG words from different subjects are mapped to the same dis-
crete and compact collective ECG word, allowing physiological differences between subjects to be
overcome and form-level features of heartbeats to be learned. The construction of the ECG vocabu-
lary is jointly optimized by quantization and reconstruction processes, as depicted in the upper half
of Figure 2. This concept is inspired by VQ-NSP (Jiang et al., 2024), which encodes EEG signals
into discrete latent representations and decodes them.

Vector Quantization. We first define an ECG vocabulary V = {vi|i = 1, . . . , k} ∈ Rk×d, where k
is the number of collective ECG words in the vocabulary and d is the dimension of each collective
ECG word. Given an ECG signal sample X ∈ RC×T , it is first generated by the QRS-Tokenizer into
ECG sentence x ∈ Rl×t. After the ECG sentence is input into the ST-ECGFormer, a set of collective
ECG word embeddings P = {pi|i = 1, . . . , l} is obtained. Then, a quantizer is used to convert them
into collective ECG word embeddings. The ECG vocabulary looks up the nearest neighbor of each
interval representation pi in V . We use cosine similarity to find the closest collective ECG word
embedding. This procedure can be formulated as

zi = argmin ∥ℓ2(pi)− ℓ2(vi)∥2,
where vi is the collective ECG word embedding, and ℓ2 represents ℓ2 normalization.

Heartbeat Reconstruction. Due to the high signal-to-noise ratio of ECG signals, reconstructing
the raw signals directly can efficiently train an ECG vocabulary and effectively learn form-level
features of heartbeats. After being labeled by the quantizer, the normalized discrete collective ECG
word embeddings {ℓ2 (zi)|i = 1, . . . , l} are fed into the transformer decoder. This process can be
represented as

x̂ =

l⋃
i=1

fd (ℓ2(vzi)) ,

where x̂ is the reconstructed ECG sentence and fd is the decoder. To make the update of the ECG vo-
cabulary more stable, we adopt an exponential moving average (EMA) strategy. The mean squared
error (MSE) loss is utilized to guide the quantization and reconstruction processes. Finally, the loss
function for training the VQ-HBR process is defined as

LV =
∑
x∈D

l∑
i=1

(
∥x̂i − x∥22 +

∥∥sg(ℓ2(pi))− ℓ2
(
vzi
)∥∥2

2

+
∥∥ℓ2(pi)− sg

(
ℓ2
(
vzi
))∥∥2

2

)
,
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where D represents all the ECG sample data, and sg denotes the stop-gradient operation, which is
defined as the identity function in the forward pass and has zero gradient.

3.4 MASKED ECG SENTENCE PRE-TRAINING

The pre-training process of the HeartLang framework is illustrated in the lower part of Figure 2. In
this stage, HeartLang learns generalized rhythm-level representations by masking parts of individual
ECG words within an ECG sentence and predicting the corresponding collective ECG words based
on the unmasked context. The pre-training stage primarily includes individual ECG words masking
and collective ECG words prediction. This process is inspired by the work of Peng et al. (2022).

Individual ECG Words Masking. To enable the HeartLang to learn the rhythm-level features
of ECG sentences, we perform random masking on the individual ECG words. This allows the
HeartLang to understand the content of the entire ECG sentence based on the unmasked context.
For the ECG sentence x ∈ Rl×t obtained through the QRS-Tokenizer, where individual ECG words
can be represented as: e = {ei|i = 1, . . . , l}. We randomly generate a mask matrix M = {mi|i =
1, . . . , l}, where mi ∈ {0, 1}. Then, a learnable mask token eM ∈ Rt is used to replace the masked
heartbeats. Thus, the entire masked ECG sentence can be represented as xM = {ei : mi = 0|i =
1, . . . , N} ∪ {eM : mi = 1|i = 1, . . . , N}.

Collective ECG Words Prediction. The task of this stage is to predict the collective ECG word
indices of the masked parts based on the unmasked individual ECG words, by minimizing the dis-
crepancy between the predicted word indices and the true word indices. We extract the indices of
the collective ECG words corresponding to the masked segments of the ECG sentence. The output
hidden vectors are then denoted as h = {hi | i = 1, . . . , l}, which are subsequently used to predict
the corresponding collective ECG words via a linear classifier:

p(v′|eM ) = softmax(Linear(h)).

The target loss function for this stage is:

LP = −
∑
x∈D

∑
mi=1

log p(vi|eM ).

4 EXPERIMENTS

We follow the benchmark configuration and results provided by MERL (Liu et al., 2024). It is worth
noting that the baseline methods in the benchmark were pre-trained on MIMIC-IV-ECG (Gow et al.,
2023) dataset. Since MERL is a multimodal method based on ECG-Text, with an additional clinical
report text supervision modality, while HeartLang performs pre-training and downstream fine-tuning
solely on ECG recordings, we do not directly compare the two methods in the result presentation
but instead compare with other eSSL methods.

4.1 VQ-HBR TRAINING AND PRE-TRAINING CONFIGURATION

MIMIC-IV-ECG. This publicly accessible dataset (Gow et al., 2023) contains 800,035 12-lead
ECG recordings from 161,352 subjects. Each ECG recording was sampled at 500 Hz and lasted for
10 seconds. To prepare the pretraining dataset, we replaced the “NaN” and “Inf” values in the ECG
recordings with the average of six neighboring points.

Implementation. Before VQ-HBR training and pre-training stage, we first downsampled all records
in the dataset to 100 Hz and used the QRS-Tokenizer to transform the raw ECG recordings into a
unified ECG sentence. We split the training and validation sets into 9:1, with the validation set data
used for VQ-HBR training. In the VQ-HBR training stage, we set the learning rate to 5 × 10−5

and trained for 100 epochs, with an ECG vocabulary size of 8,192 and a collective ECG word
dimension of 128. In the pre-training stage, we set the learning rate to 5 × 10−4, trained for 200
epochs, and applied a random masking rate of 50%. For both stages, a randomly initialized ST-
ECGFormer was used as the backbone network, the AdamW optimizer was selected, and cosine
annealing was applied for learning rate scheduling. All experiments were conducted on 8 NVIDIA
GeForce RTX 4090 GPUs, with a batch size of 64 per GPU. We set the random seed to 0 to ensure
the reproducibility of all results. More experimental details are provided in the appendix.
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Table 1: Linear probing results of HeartLang and other eSSL methods. The best results are bolded,
with gray indicating the second highest.

Method
PTBXL-Super PTBXL-Sub PTBXL-Form PTBXL-Rhythm CPSC2018 CSN

1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100%

SimCLR (Chen et al., 2020) 63.41 69.77 73.53 60.84 68.27 73.39 54.98 56.97 62.52 51.41 69.44 77.73 59.78 68.52 76.54 59.02 67.26 73.20

BYOL (Grill et al., 2020) 71.70 73.83 76.45 57.16 67.44 71.64 48.73 61.63 70.82 41.99 74.40 77.17 60.88 74.42 78.75 54.20 71.92 74.69

BarlowTwins (Zbontar et al., 2021) 72.87 75.96 78.41 62.57 70.84 74.34 52.12 60.39 66.14 50.12 73.54 77.62 55.12 72.75 78.39 60.72 71.64 77.43

MoCo-v3 (Chen et al., 2021) 73.19 76.65 78.26 55.88 69.21 76.69 50.32 63.71 71.31 51.38 71.66 74.33 62.13 76.74 75.29 54.61 74.26 77.68

SimSiam (Chen & He, 2021) 73.15 72.70 75.63 62.52 69.31 76.38 55.16 62.91 71.31 49.30 69.47 75.92 58.35 72.89 75.31 58.25 68.61 77.41

TS-TCC (Eldele et al., 2021) 70.73 75.88 78.91 53.54 66.98 77.87 48.04 61.79 71.18 43.34 69.48 78.23 57.07 73.62 78.72 55.26 68.48 76.79

CLOCS (Kiyasseh et al., 2021) 68.94 73.36 76.31 57.94 72.55 76.24 51.97 57.96 72.65 47.19 71.88 76.31 59.59 77.78 77.49 54.38 71.93 76.13

ASTCL (Wang et al., 2024) 72.51 77.31 81.02 61.86 68.77 76.51 44.14 60.93 66.99 52.38 71.98 76.05 57.90 77.01 79.51 56.40 70.87 75.79

CRT (Zhang et al., 2023c) 69.68 78.24 77.24 61.98 70.82 78.67 46.41 59.49 68.73 47.44 73.52 74.41 58.01 76.43 82.03 56.21 73.70 78.80

ST-MEM (Na et al., 2024) 61.12 66.87 71.36 54.12 57.86 63.59 55.71 59.99 66.07 51.12 65.44 74.85 56.69 63.32 70.39 59.77 66.87 71.36

HeartLang (Ours) 78.94 85.59 87.52 64.68 79.34 88.91 58.70 63.99 80.23 62.08 76.22 90.34 60.44 66.26 77.87 57.94 68.93 82.49

4.2 DOWNSTREAM TASKS CONFIGURATION

We evaluated our method on the three widely used public datasets listed below, which cover over
100 types of cardiac conditions. Detailed information on the data split can be found in the appendix.

PTB-XL. This publicly accessible dataset (Wagner et al., 2020) contains 21,837 12-lead ECG
recordings collected from 18,885 patients. Each ECG recording was sampled at 500 Hz and lasted
for 10 seconds. Based on the SCP-ECG protocol, the multi-class classification task has four subsets:
Superclass (5 classes), Subclass (23 classes), Form (19 classes), and Rhythm (12 classes). We
followed the official data split (Strodthoff et al., 2021) for training, validation, and testing.

CPSC2018. This publicly accessible dataset (Liu et al., 2018) contains 6,877 12-lead ECG record-
ings. Each recording was sampled at 500 Hz, with durations ranging from 6 to 60 seconds. The
dataset is annotated with 9 different labels. We split the dataset into 70%:10%:20% for training,
validation, and testing.

Chapman-Shaoxing-Ningbo (CSN). This publicly accessible dataset (Zheng et al., 2020; 2022)
contains 45,152 12-lead ECG recordings. Each ECG recording was sampled at 500 Hz and lasted
for 10 seconds. Following the configuration provided by MERL, we removed ECG records with
”unknown” annotations. The refined version of the dataset contains 23,026 ECG recordings with 38
distinct labels. We split the dataset into 70%, 10%, 20% for training, validation, and testing.

Implementation. Before fine-tuning in downstream tasks, we first downsampled all records in the
dataset to 100 Hz and used the QRS-Tokenizer to transform the raw ECG recordings into a unified
ECG sentence. For linear probing, we kept the ST-ECGFormer backbone network frozen and only
trained the randomly initialized parameters of the linear classifier. To explore the performance of our
method under low-resource conditions, we conducted linear probing using 1%, 10%, and 100% of
the training data for each task. We set the learning rate to 5× 10−3 and trained for 100 epochs. For
the CPSC2018 and CSN datasets, we scaled the ECG recordings to the range of [−3, 3] to enhance
QRS detection. All test results were obtained from the best validation model, rather than testing
the model on the test set after each epoch and reporting the highest result. For all downstream
tasks, we used the macro AUC as the evaluation metric. We set the random seed to 0 to ensure the
reproducibility of all results. More experimental details are provided in the appendix.

5 RESULTS AND DISCUSSIONS

5.1 EVALUATION ON LINEAR PROBING

Table 1 presents the linear probing results of HeartLang compared to existing eSSL methods. In the
PTB-XL dataset, HeartLang consistently demonstrated significant advantages across 1% to 100% of
the training data. Specifically, compared to the second-best eSSL method, our method achieved an
average macro AUC improvement of 8.14. Notably, on the Form and Rhythm subsets in PTB-XL
dataset, HeartLang outperformed the second-best eSSL methods by an average of 9.85 in macro
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Figure 3: The validation loss curve during VQ-HBR training (left) and the prediction accuracy curve
during masked ECG sentence pre-training (right), shown from two perspectives.

Table 2: Linear probing results of two signal slicing perspectives. The best results are bolded, while
improved values are marked in green, and decreased values are marked in red.

Perspective PTBXL-Super PTBXL-Sub PTBXL-Form PTBXL-Rhythm
1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100%

Fixed-size and Fixed-step
Time Windows

66.41 77.89 80.51 60.87 70.72 78.32 59.94 65.52 76.03 55.83 74.09 86.05

Heartbeats as Words and
Rhythms as Sentences

78.94 85.59 87.52 64.68 79.34 88.91 58.70 63.99 80.23 62.08 76.22 90.34

Improvement 12.52 7.71 7.01 3.81 8.62 10.58 -1.24 -1.53 4.20 6.26 2.14 4.29

AUC with 100% of the training data, further highlighting significant advantages of HeartLang in
ECG heartbeat and rhythm representation learning. This validates the effectiveness of our proposed
signal slicing perspective of heartbeats as words and rhythms as sentences. For the CPSC2018
and CSN datasets, our method only outperformed others on the CSN dataset with 100% training
data. We speculate that this is due to the significant baseline drift in these datasets, which may
have reduced the performance of the QRS-Tokenizer. Nevertheless, our method remains highly
competitive compared to other eSSL methods.

We attribute the weaker performance of other eSSL methods to their disruption of the semantic
information in ECG signals. For contrastive eSSL methods, data augmentation methods such as ro-
tation, shifting, and adding noise introduce semantic distortion to the positive and negative pairs in
ECG signals, which leads to a decline in representation learning performance. For generative eSSL
methods, treating ECG signals as ordinary time-series data and applying the fixed-size and fixed-
step time windows for slicing cannot accommodate the broad and complex dynamic characteristics
of ECG signals. This results in patches without clear semantic information, ultimately leading to
a decline in representation learning performance. In contrast, our method uses the QRS-Tokenizer
to segment ECG patches with clear semantic meaning and enhances representation learning by re-
constructing both heartbeat form and cardiac rhythms, ultimately achieving superior performance in
downstream tasks.

5.2 EVALUATION ON SIGNAL SLICING PERSPECTIVE

To further validate the effectiveness of our proposed “heartbeats as words, rhythms as sentences”
signal slicing perspective, we compared it with the traditional signal slicing perspective in this ex-
periment, which utilizes the fixed window size and time step. For fixed-size and fixed-step time
windows perspective, we created ECG sentences from the raw ECG recordings in the same manner
but without the QRS detection process, instead slicing based on fixed window sizes and strides. We
then performed VQ-HBR training, pre-training, and linear probing using the same configurations.

Figure 3 presents the VQ-HBR training loss curves and masked ECG sentence pre-training pre-
diction accuracy curves for both perspectives. During the VQ-HBR training stage, our proposed
perspective significantly outperforms the traditional signal slicing perspective. This is because the
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Figure 4: ECG vocabulary visualization.

patches generated by our method carry clear semantic information, which benefits the training of
the ECG vocabulary. However, in the pre-training stage, the traditional slicing perspective shows
higher masked prediction accuracy. We attribute this difference primarily to the number of zero-
filled patches. The ECG sentences generated by the traditional slicing perspective use a fixed 120
patches, resulting in a larger number of zero-filled patches. In contrast, the number of patches used
in our proposed perspective is dynamic and dependent on the heart rate. The larger number of
zero-filled patches in the traditional perspective may improve the performance of masked prediction
during pre-training. Table 2 presents the results of downstream fine-tuning on the PTB-XL dataset
using two different perspectives. In the majority of cases, our perspective resulted in significant im-
provements in macro AUC performance, except for a few low-resource scenarios where there was a
slight performance drop. Specifically, our perspective resulted in an average improvement of 5.36
in macro AUC. Notably, on the Superclass and Subclass subset, our perspective brought an average
improvement of 8.38 in macro AUC.

Despite the fact that masked ECG sentence pre-training prediction accuracy of our perspective was
lower than that of the traditional perspective during the pre-training stage, it achieved better results
in downstream tasks. We attribute this to the higher modeling difficulty in masked ECG sentence
pre-training for our perspective, which helped the model uncover latent semantic relationships be-
tween heartbeats, leading to the learning of more generalized representations. Interestingly, in the
Superclass and Subclass subsets, using the traditional perspective caused our method to degrade
to baseline-like performance. We speculate that if baseline methods adopted our perspective, they
would also see performance improvements. Furthermore, in the Form and Rhythm subsets, even
with the traditional perspective, our method outperformed baseline methods, further demonstrating
the effectiveness of the HeartLang architecture in multi-level representation learning of ECG signals.

5.3 ECG VOCABULARY VISUALIZATION

In this section, we visualize the ECG vocabulary to reflect how the collective ECG words corre-
spond to the original individual ECG words. We trained and validated VQ-HBR on MIMIC-IV-
ECG, where the effective use of collective ECG words in the validation set amounted to 5,394 (dis-
crete words). In Figure 4, the individual ECG words with the same index exhibit similar and clear
semantic information in terms of heartbeat representation. For instance, index 1193 displays the
morphological features of ST-segment depression, while index 5171 shows the characteristics of a
wide QRS complex. We further visualized ECG sentence segments centered around individual ECG

9



Published as a conference paper at ICLR 2025

Table 3: Linear probing results of the ablation study. The best results are bolded, with gray
indicating the second highest.

Method
PTBXL-Super PTBXL-Sub PTBXL-Form PTBXL-Rhythm

1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100%

w/o ECG Vocabulary 59.23 61.51 79.68 49.34 50.55 73.16 49.33 46.88 63.25 42.87 43.87 77.65

w/o Pre-training 70.34 77.82 80.31 55.70 67.64 80.57 53.73 57.67 66.70 65.98 76.49 81.40

w/o Spatio-temporal Embedding 69.78 81.79 85.12 58.06 73.76 87.33 55.09 63.37 73.90 61.79 74.83 84.93

w/o Spatial Embedding 78.74 85.32 86.87 67.82 79.31 88.66 60.76 67.66 79.10 63.54 79.00 89.25

w/o Temporal Embedding 77.87 84.86 85.85 64.56 77.48 87.50 61.41 67.54 77.50 65.44 84.74 87.81

HeartLang (Ours) 78.94 85.59 87.52 64.68 79.34 88.91 58.70 63.99 80.23 62.08 76.22 90.34

words at three distinct indices, each surrounded by six neighboring individual ECG words (three
on each side). In our constructed ECG sentences, the incorporation of spatio-temporal and position
embeddings leads to similar heartbeats (e.g., normal heartbeat) within the same ECG sentence being
mapped to different collective ECG words. This phenomenon suggests that collective ECG words
encapsulate spatio-temporal and positional features, providing richer semantic information. Simi-
larly, in English, the same word can serve different grammatical functions (e.g., ‘run’ can be a verb
or a noun). The same words (similar heartbeat morphology) with identical spellings can assume dif-
ferent parts of speech (different collective ECG words) depending on the context (spatio-temporal
and position embeddings). However, in previous ELP studies, vocabularies were only constructed
by clustering morphologically similar ECG waves for modeling (not heartbeats, no more than 70
clusters), without incorporating spatio-temporal and positional information, which resulted in lim-
ited parts of speech. Expressions of different parts of speech through the context further highlights
the richer semantic representation of our study compared to previous ELP studies.

5.4 ABLATION STUDY

In this section, we present a comprehensive ablation study of HeartLang to illustrate the effectiveness
of each component within the framework, as shown in Table 3. For the experiment without the ECG
vocabulary, we discarded it and applied mean squared error (MSE) loss to reconstruct the masked
segments. This approach did not allow HeartLang to effectively learn general representations during
pre-training, highlighting the role of ECG vocabulary in helping HeartLang capture latent semantic
relationships in ECG sentences. For the experiment without pre-training, we fine-tuned a randomly
initialized ST-ECGFormer on downstream tasks. The results indicated that the pretraining process
effectively learned general representations in ECG sentences, leading to significant improvements in
downstream performance. We also conducted an ablation study on the structure of ST-ECGFormer,
completing all training and fine-tuning procedures. The results showed that, aside from a slight
performance drop under low-resource conditions, HeartLang consistently enhanced performance,
demonstrating that ST-ECGFormer effectively learns spatio-temporal representations of ECG sig-
nals and boosts the performance of HeartLang on downstream tasks.

6 CONCLUSION

In this paper, we propose a novel perspective on ECG signal processing, treating them as a language
with distinct words (heartbeats) and sentences (rhythms). Based on this perspective, we introduce
the QRS-Tokenizer, which generates the ECG sentences from the raw ECG signals. Building upon
these, we propose HeartLang, a novel self-supervised learning framework for ECG language pro-
cessing. HeartLang learns form-level general representations through vector-quantized heartbeat re-
construction training and rhythm-level general representations through masked ECG sentence pre-
training. Additionally, we constructed the largest heartbeat-based ECG vocabulary to date. This
ECG vocabulary includes a wide variety of heartbeat morphological representations across different
cardiac condition, which will further advance the development of ECG language processing. We
evaluated HeartLang across six public ECG datasets, where it demonstrated robust competitiveness
against other eSSL methods. We hope that the ideas presented here can inspire the ECG research
community, particularly in the emerging field of ECG language processing.
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A DETAIL IN EXPERIMENTAL SETTINGS

A.1 HYPERPARAMETER SETTINGS

In this section, we provide detailed hyperparameter settings for HeartLang. Due to computational
resource limitations, the VQ-HBR training and pre-training for the ablation experiments were con-
ducted using four NVIDIA GeForce RTX 4090 GPUs, with a batch size of 64 per GPU.

Table 4: Hyperparameters for vector-quantized heartbeat reconstruction training.

Hyperparameters Values

Transformer encoder layers 4
Transformer decoder layers 2

Hidden size 768
MLP size 2048

Attention head number 2
Vocabulary size 8192

Collective ECG word dimension 128

Batch size 512
Peak learning rate 5e-5

Minimal learning rate 1e-5
Learning rate scheduler Cosine

Optimizer AdamW
Adam β (0.9,0.99)

Weight decay 1e-4
Total epochs 100

Warmup epochs 10

Table 5: Hyperparameters for masked ECG sentence pre-training.

Hyperparameters Values

Transformer encoder layers 12
Hidden size 768
MLP size 1024

Attention head number 8

Batch size 512
Peak learning rate 5e-4

Minimal learning rate 1e-5
Learning rate scheduler Cosine

Optimizer AdamW
Adam β (0.9,0.98)

Weight decay 0.05
Total epochs 200

Warmup epochs 5

Gradient clipping 3.0
Mask ratio 0.5
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Table 6: Hyperparameters for downstream fine-tuning.

Hyperparameters Values

Batch size 256
Peak learning rate 5e-3

Minimal learning rate 1e-5
Learning rate scheduler Cosine

Optimizer AdamW
Weight decay 0.05
Layer decay 0.9
Total epochs 100

Warmup epochs 10

A.2 DATASET SPLIT

We describe the dataset split in Table 7. For the MIMIC-IV-ECG (Gow et al., 2023) dataset, we split
the training and validation sets with a ratio of 9:1. The validation set of this dataset is used during
the VQ-HBR training stage, but not in the pretraining stage. For the four subsets of PTBXL, we
adhere to the official split from the official work (Wagner et al., 2020). For CPSC2018 (Liu et al.,
2018) and CSN (Zheng et al., 2020; 2022), We followed the division method provided by MERL
(Liu et al., 2024) to ensure consistency.

Table 7: Details on dataset split.

Dataset Number of Categories Train Valid Test
MIMIC-IV-ECG (Gow et al., 2023) - 720,031 80,004 -

PTBXL-Super (Wagner et al., 2020) 5 17,084 2,146 2,158
PTBXL-Sub (Wagner et al., 2020) 23 17,084 2,146 2,158
PTBXL-Form (Wagner et al., 2020) 19 7,197 901 880
PTBXL-Rhythm (Wagner et al., 2020) 12 16,832 2,100 2,098

CPSC2018 (Liu et al., 2018) 9 4,950 551 1,376
CSN (Zheng et al., 2020; 2022) 38 16,546 1,860 4,620
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B MORE RESULTS AND DISCUSSIONS

B.1 EVALUATION ON DIFFERENT VOCABULARY SIZES

We present the performance of downstream tasks under different vocabulary sizes in Table 8. We
reduced the vocabulary size to 64, similar to the vocabulary size used in previous ECG language
processing studies, thereby limiting its semantic expressions. The results show that a larger vo-
cabulary size leads to significant performance improvements. A larger vocabulary provides richer
semantic representations and increases the complexity of pre-training, enabling the model to learn
more generalized representations and improve the performance of downstream tasks.

Table 8: Linear probing results of two different vocabulary sizes. The best results are bolded, while
improved values are marked in green.

Vocabulary Size PTBXL-Super PTBXL-Sub PTBXL-Form PTBXL-Rhythm
1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100%

64 75.89 83.72 86.23 60.97 75.95 86.88 57.10 62.99 75.69 58.41 75.31 88.51
8192 78.94 85.59 87.52 64.68 79.34 88.91 58.70 63.99 80.23 62.08 76.22 90.34

Improvement 3.05 1.87 1.29 3.71 3.39 2.03 1.60 1.00 4.54 3.67 0.91 1.83

B.2 EVALUATION ON FEWER LEAD CONFIGURATION

Based on the fewer lead configuration recommended by Oh et al. (2022), the configuration is shown
in Table 9, and the downstream task validation results are presented in Table 10. In most cases, the
downstream performance improves significantly with the increase in the number of leads, especially
in the Superclass and Subclass subsets for disease diagnosis. Notably, even under the single-lead
condition, the downstream task performance of HeartLang surpasses that of most baseline methods
in Table 1. This demonstrates that HeartLang is well-adapted to the special case of single-lead
configurations, highlighting its strong generalization capability.

Table 9: Fewer lead configuration and selected leads.

Number of Leads Selected Leads

1 I
2 I, II
3 I, II, V2
6 I, II, III, aVR, aVL, aVF

12 I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6

Table 10: Linear probing results of five different lead combinations. The best results are bolded,
with gray indicating the second highest.

Number of Leads PTBXL-Super PTBXL-Sub PTBXL-Form PTBXL-Rhythm
1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100%

1 73.97 79.74 81.02 66.91 77.04 83.11 58.66 66.06 70.98 55.28 74.53 84.53
2 76.81 83.70 85.14 69.63 79.12 85.89 59.42 68.27 77.16 61.57 81.60 86.98
3 76.55 84.12 85.97 66.61 78.26 87.68 55.47 67.76 70.46 68.19 83.47 86.27
6 76.45 83.72 85.66 62.59 77.52 85.92 59.74 68.03 79.46 63.60 83.80 91.44

12 78.94 85.59 87.52 64.68 79.34 88.91 58.70 63.99 80.23 62.08 76.22 90.34
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B.3 LIMITATIONS AND FUTURE WORKS

Our proposed QRS-Tokenizer relies on the QRS complex features of heartbeats, which are a critical
component of its functionality. However, for certain diseases or conditions characterized by irregular
QRS complexes, the tokenizer may struggle to accurately represent these atypical patterns, leading
to performance degradation. Additionally, when segmenting heartbeats, the QRS-Tokenizer pads
intervals smaller than 96 with zeros. While this approach is simple and effective for most high-
quality datasets, it can partially disrupt the characteristics of heartbeats in datasets with significant
baseline drift, as their baselines may deviate substantially from zero. These challenges highlight
the need for future improvements to the QRS-Tokenizer, with a focus on enhancing its robustness to
handle both irregular QRS complexes and baseline drift effectively, paving the way for more reliable
ECG language processing across diverse cardiac conditions.
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C MORE VISUALIZATION RESULTS

C.1 INDIVIDUAL ECG WORDS AND COLLECTIVE ECG WORDS VISUALIZATION

We further visualized additional individual ECG words and collective ECG words to demonstrate
the semantic richness of our constructed ECG vocabulary, as shown in Figure 5.

C.2 ECG SENTENCE VISUALIZATION

We visualize the constructed ECG Sentences, as illustrated in Figures 6, 7, and 8. In these figures,
the blue lines correspond to the original signals, while the red lines denote the reconstructed signals.
As shown in Figure 6, the reconstructed signal demonstrates a notably smoother profile, suggesting
that the collective ECG word has effectively captured the morphological characteristics of the heart-
beat and exhibits strong generalization capabilities. One notable feature of the QRS-Tokenizer we
designed is its ability to adaptively segment individual ECG words based on heart rate, as demon-
strated in Figures 7 and 8. In Figure 7, due to the relatively fast heart rate, the individual ECG
words within the ECG Sentence utilize the full sentence length of 256. In contrast, Figure 8 shows a
relatively slower heart rate, resulting in the use of only a smaller portion of the ECG Sentence, with
the remaining sections zero-filled.

Figure 5: More ECG Words Visualization.
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Figure 6: ECG Sentence Visualization.
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Figure 7: Visualization of the ECG Sentence with Fast Heart Rate.
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Figure 8: Visualization of the ECG Sentence with Slow Heart Rate.
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