
A VBLRL algorithm

Algorithm 1 Variational Bayesian Lifelong RL
Input: Initialize general knowledge(world) model pwm(·|s, a;!wm), planning horizon T
for each task mi from i = 1, 2, 3, · · · ,M do

Initialize task-specific model pmi(·|s, a;!i) with parameters of general knowledge model pwm

for each episode do
for Time t = 0 to TaskHorizon do

Sample Actions at:t+T ⇠ CEM(·)
Propagate state particles sp

⌧
with pmi(s

0|s, a;!i)

Evaluate actions as
P

t+T

⌧=t

1
P

P
P

p=1 pmi(r|s, a;!i)
Update CEM(·) distribution.
Execute optimal actions a⇤

t:t+T

end for
Add transitions to replay buffer Dmi

Update task-specific model according to Equation (9) given replay buffer Dmi

Update general knowledge model according to Equation (9) given replay buffers
{Dm1 , · · · , Dmi}

end for
end for

Note that in pmi(·|s, a;!i) and pmwm(·|s, a;!wm), p stands for the task-specific/world probabilistic
model we are using. In sp

⌧
and

P
t+T

⌧=t

1
P

P
P

p=1 r
p

⌧
, p denotes one of the state particles p 2 {1, · · · , P}.

At the beginning of training (before encountering any tasks), the agent first randomly initialize
the weights and bias of the world-model BNN pwm(·|s, a;!wm). Then each time when the agent
encounters a new task, the task-specific model pmi(·|s, a;!i) for that task will be initialized by
copying network parameters from the world-model BNN. Then for planning, at each step we begin
by creating P particles from the current state sp

⌧=t
= st8p. Then, we sample N candidate action

sequences at:t+T from a learnable distribution. These two steps are the same as PETS [8]. Then we
propagate the state–action pairs using the learned task-specific model pmi(·|s, a) (BNN) and use the
cross entropy method [4] to update the sampling distribution to make the sampled action sequences
close to previous action sequences that achieved high reward. We further calculate the cumulative
reward estimated (via the learned model) for previously sampled sequences and select the current
action based on the mean of that distribution. Then we can add the new transitions to the replay buffer.
We update the task specific model according to Equation (9) by sampling from the replay buffer of
the current task, and update the world model with samples from all previous tasks’ replay buffers.

Algorithm 2 Variational Bayesian Lifelong RL (Backward transfer)
Input: Test task mi, planning horizon T , task-specific model pmi(s

0, r|s, a;!i), general-
knowledge model pwm(s0, r|s, a;!wm)
for Time t = 0 to TaskHorizon do

for Trial k = 1 to K do
Sample Actions at:t+T ⇠ CEM(·)
for each action do

Propagate state particles sp
⌧

with pmi(s
0, r|s, a)

Propagate state particles sp
⌧

with pwm(s0, r|s, a)
Compute confidence level cmi for task-specific model and cwm for general-knowledge
model (Definition 4.5)
Choose the propagation results from the model with higher confidence level c

end for
Evaluate actions as

P
t+T

⌧=t

1
P

P
P

p=1 r
p

⌧

Update CEM(·) distribution.
end for
Execute optimal actions a⇤

t:t+T

end for

15

For backward transfer, given a previously encountered task mi, at each planning step we predict
the next state and reward with both task-specific model and world model. Then we compare the
confidence level of these two predictions and choose to use the prediction results that have higher
confidence level. The other planning procedures are the same as in forward training.

B BNN model

The form of the BNN we used is the same as in VIME [23]. We model the transition models as
Gaussian distributions:

T (·|s, a) = N (fµ

!
(s, a), f�

!
(s, a)) (11)

The function f✓ is represented as a Bayesian neural network parameterized by ✓, which is further
modeled as the posterior distribution parameterized by �, predicts the mean µs, µr and variance
�s,�r given current state and action s, a. We can view the BNN model in VBLRL as an infinite
neural network ensemble by integrating out its parameters:

T (s0, r|s, a) =
Z

⌦
T (s0, r|s, a;!)q(!;�)d! (12)

Compared to previous model-based algorithms that use finite number of neural network ensembles
(e.g. PETS), our choice of BNN is more suitable for lifelong RL as we only need to maintain one
neural network for each task, and we can sample an unlimited number of predictions from it which
better estimates the uncertainty and is essential in our setting where both dynamic function and
reward function are not given unlike prior model-based RL methods.

C BLRL algorithm

Note that the single-task baseline that BLRL is built upon is BOSS, and could be replaced by
other Bayesian-exploration RL algorithm. We use a hierarchical Bayesian model to represent the
distribution over MDPs. Figure 5 shows our generative model in plate notation. is the parameter
set that represents distribution P⌦. It functions as the world-model posterior that aims to capture the
common structure across different tasks. The resulting MDP mi is created based on !i, which is one
hidden parameter sampled from . We can sample from our approximation of to create and solve
possible MDPs.

߱ Ȳ
݉

߬

݅� ൌ ͳܭڮ�
݆ ൌ ͳܴڮ�

Figure 5: Plate representation for the BLRL approach. ⌧j denotes trajectory {s, a, r, s0}j . There are
K different tasks and the agent samples R trajectories from each task.

The full algorithm is shown in Algorithm 3. Each time the agent encounters a new task mi, it
first initializes the task-specific posterior pmi(·|st, at) with the parameter values from the current
world-model posterior pwm, and then, for each timestep, selects actions following sampling-based
Bayesian exploration procedures from this posterior [44; 2]. A set of sampled MDPs drawn from
pmi is a concrete representation of the uncertainty within the current task.

Concretely, BLRL samples K models from the task-specific posterior whenever the number of
transitions from a state–action pair has reached threshold B. Analogously to RMAX [6], we call a
state–action pair known whenever it has been observed Nst,at = B times. For each state–action pair,
if it is known, we use the task-specific posterior to sample the model. If it is unknown, we instead
sample from the world-model posterior. These models are combined into a merged MDP m#

i
and

BLRL solves m#
i

with value iteration to get a policy ⇡⇤
m

#
i

. Intuitively, this approach creates optimism

16

in the face of uncertainty as the agent can choose actions based on the highest performing transition
of the K models sampled, which drives exploration. The new policy ⇡⇤

m
#
i

will be used to interact
with the environment until a new state–action pair reaches the sampling threshold. The collected
transitions from the current task will be used to update the task-specific posterior immediately, while
the world-model posterior will be updated using transitions from all the previous tasks at a slower
pace. For simple finite MDP problems in practice, we use the Dirichlet distribution (the conjugate for
the multinomial) to represent the Bayesian posterior. Thus, the updating process for the posterior
is straightforward to compute. Intuitively, BLRL rapidly adapts to new tasks as long as the prior of
the task-specific model (that is, the world-model posterior) is close to the true underlying model and
captures the uncertainty of the common structure of a set of tasks. Empirical evaluations of BLRL on
gridworlds are given in the appendix.

Algorithm 3 Lifelong Bayesian Sampling Approach Algorithm
Input: K, B
initialize MDP set, the world-model posterior pwm(st+1, rt|st, at)
for each MDP mi do
Ns,a 0, 8s, a
do_sample TRUE
initialize the task-specific posterior pmi(st+1, rt|st, at) pwm(st+1, rt|st, at)
for all timesteps t = 1, 2, 3, ... do

if do_sample then
Sample K models mi1 , mi2 ,···,miK from the task-specific posterior pmi(st+1, rt|st, at).
Merge the models into the mixed MDP m#

i

Solve m#
i

to obtain ⇡⇤
m

#
i

do_sample FALSE
end if
Use ⇡⇤

m
#
i

for action selection: at ⇡
m

#
i
(st) and observe reward rt and next state st+1

Nst,at Nst,at + 1
Update the task-specific posterior distribution pmi(st+1, rt|st, at) for the current MDP
if Nst,at = B then

Update the world-model posterior distribution pwm(st+1, rt|st, at) with the collected
transitions
do_sample TRUE

end if
end for

end for

D Experimental Setting

D.1 OpenAI Gym Mujoco Domains

Similar to [31], we evaluated on the HalfCheetah, Hopper, and Walker-2D environments. For the
gravity domain, we select a random gravity value between 0.5g and 1.5g for each task. For the
body-parts domain, we set the size and mass of each of the four parts of the body (head, torso, thigh,
and leg) to a random value between 0.5⇥ and 1.5⇥ its nominal value. As shown in Appendix C
of [31], these changes lead to highly diverse tasks for lifelong RL. Further, as required by CEM-based
deep RL methods [48], we added a check-done function for Hopper and Walker following the settings
in previous paper.

When implementing VBLRL, we found that in the first few episodes of each new tasks, the agent
hasn’t collected enough samples of the new task, which results in overfitting problems when training
the task-specific. Thus, we use the world-model posterior instead to do the first few rounds of
predictions and let the task-specific model begin training after collecting enough samples. The
world-model has lower possibility of overfitting as its training data comes from all the previous tasks
and has much larger quantity. The results shown in the experiments section are collected after the
task-specific model starts collecting samples. We list the other implementation details below. The
planning horizons are selected from values suggested by previous model-based RL papers [8; 48]. We

17

find that in Hopper and Walker, using regular neural networks instead of Bayesian neural networks to
model the task-specific posterior also works fine (the world model still uses BNN).

Hyper-parameters CG CB HG HB WG WB Reach Reach-Wall

iterations 100 100 100 100 100 100 150 150
Steps (each iteration) 100 100 400 400 400 400 150 150

learning rate (world model) 0.001 0.001 0.0006 0.0006 0.0006 0.0006 0.001 0.001
learning rate (task-specific model) 0.0005 0.0005 0.0006 0.0006 0.0006 0.0006 0.001 0.001

planning horizon 20 20 30 30 30 30 1 1
kl-divergence weight 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

particles (CEM) 50 50 {1, 20} {1, 20} {1, 20} {1, 20} {1, 20} {1, 20}
batch size (world-model) 8 ⇥ 64 8 ⇥ 64 8 ⇥ 64 8 ⇥ 64 8 ⇥ 64 8 ⇥ 64 8 ⇥ 64 8 ⇥ 64
batch size (task-specific) 256 256 256 256 256 256 256 256

tasks 40 40 20 20 20 20 30 30
search population size 500 500 500 500 500 500 500 500

elites (CEM) 50 50 50 50 50 50 50 50

Table 2: Hyperparameters for different task sets

For LPG-FTW and EWC, we use the original source code2 with parameters and model architectures
suggested in the original paper. Specifically, we select step size from {0.005, 0.05, 0.5}. For LPG-
FTW, e use � = 1e � 5, µ = 1e � 5 and select k from 3,5,10. For EWC, we select � from
{1e � 6, 1e � 7, 1e � 4}. For HiP-MDP baseline, we modify the original algorithm for a fair
comparison. We replace the DDQN algorithm used in T-HiP-MDP with the exact same CEM
planning method we used in VBLRL as well as the same parameters. And we use the same model
architecture of Bayesian Neural network by modifying the baseline algorithm to also predict reward
for each state-action pair (the original method only considers next-state prediction).

For BOSS and BLRL, we set the number of sampled models K = 5, and � = 0.95,� = 0.01 for
value iteration.

We reported the results averaged over three random seeds, and the error bar shows one standard
deviation. All experiments were run on our university’s high performance computing cluster.

One of the limitations of the current experiments is that we did not evaluate our algorithm on
image-based environments. We leave this for future work.

D.2 Meta-World Domains

The hyperparameters used are included in Table 4.

D.3 Grid-World Item Searching

Our testbed consists of a collection of houses, each of which has four rooms. The goal of each
task is to find a specific object (blue, green or purple) in the current house. The type of each room
is sampled based on an underlying distribution given by the environment. Each room type has a
corresponding probability distribution of which kind of objects can be found in rooms of this type.
Different tasks/houses vary in terms of which rooms are which types and precisely where objects are
located in the room (the task’s hidden parameters). Room types are sampled from a joint distribution.

Room type probability Room 1 Room 2 Room 3 Room 4
Top-left 0.4 0 0.4 0.2

Bottom-left 0 0.8 0 0.2
Top-right 0.1 0 0 0.9

Bottom-right 0 0 0.8 0.2

Table 3: Room type probability distribution

2https://github.com/Lifelong-ML/LPG-FTW

18

Object type probability Blue ball Green box Purple box
Room 1 0 0.3 0
Room 2 0 0.2 1
Room 3 0.6 0 0
Room 4 0 0 0

Table 4: Object type probability distribution

D.4 Box-jumping Task

We use a simplified version of jumping task [9] as a simple testbed for the proposed algorithm
VBLRL. We select a random position of obstacle between 15 ⇠ 33 for each task. The 4-element state
vector describes the (x, y) coordinates of the agent’s current position, and its velocity in the x and
y directions. The agent can choose from two actions: jump and right. The reward function for this
box-jumping task is:
Rt = I{st reach the right wall}� I{st+1 hit the obstacle}+ ẋt · I{st+1 not hit the obstacle} (13)

E Proof for Lemma 4.1

In the following proofs as well as in the main text, n and T both denote the number of samples
collected from the environment.

We first rewrite the Bayesian posterior density g(!|DT

i
) with respect to ⇡ as:

g(!|DT

i
) =

p(DT

i
|!)R

� p(D
T

i
|!)d⇡(!)

=

Q
T

t=1 p(s
t+1, rt|Dt

i
, at;!)

R
�

Q
T

t=1 p(s
t+1, rt|Dt

i
, at;!)d⇡(!)

=

Q
T

t=1 p(s
t+1, rt|Dt

i
, at;!)

E⇡

Q
T

t=1 p(s
t+1, rt|Dt

i
, at;!)

=

Q
T

t=1 p(s
t+1, rt|Dt

i
, at;!)

Q
T

t=1 q(s
t+1, rt|Dt

i
, at)

(14)

Then, we refer to the following lemma [55] which is a known information-theoretical inequality:
Lemma E.1. Assume that f(!) is a measurable real-valued function on �, and g(!) is a density
with respect to ⇡; we have

E⇡g(!)f(!) DKL(gd⇡||d⇡) + lnE⇡ exp(f(!)) (15)

We refer the readers to the original paper for detailed proof.

Based on the definition of Rn(g), we have:

Rn(g) = E⇡g(!i)
TX

t=1

ln
q(st+1, rt|Dt

i
, at)

p(st+1, rt|Dt

i
, at;!i)

+DKL(gd⇡||d⇡)

= E⇡

Q
T

t=1 p(s
t+1, rt|Dt

i
, at;!i)Q

T

t=1 q(s
t+1, rt|Dt

i
, at)

TX

t=1

ln
q(st+1, rt|Dt

i
, at)

p(st+1, rt|Dt

i
, at;!i)

+ E⇡

Q
T

t=1 p(s
t+1, rt|Dt

i
, at;!i)Q

T

t=1 q(s
t+1, rt|Dt

i
, at)

TX

t=1

ln
p(st+1, rt|Dt

i
, at;!i)

q(st+1, rt|Dt

i
, at)

= E⇡

Q
T

t=1 p(s
t+1, rt|Dt

i
, at;!i)Q

T

t=1 q(s
t+1, rt|Dt

i
, at)

h
ln

Q
T

t=1 q(s
t+1, rt|Dt

i
, at)

Q
T

t=1 p(s
t+1, rt|Dt

i
, at;!i)

� ln

Q
T

t=1 q(s
t+1, rt|Dt

i
, at)

Q
T

t=1 p(s
t+1, rt|Dt

i
, at;!i)

i

= 0
(16)

19

Then, let f(!) = �
P

T

t=1 ln
q(st+1

,r
t|Dt

i ,a
t)

p(st+1,rt|Dt
i ,a

t;!) in Lemma E.1, we have

Rn(·) = DKL(gd⇡||d⇡)� E⇡g(!)f(!)

� lnE⇡ exp(f(!))

= lnE⇡

Q
T

t=1 p(s
t+1, rt|Dt

i
, at;!i)Q

T

t=1 q(s
t+1, rt|Dt

i
, at)

= ln

Q
T

t=1 q(s
t+1, rt|Dt

i
, at)

Q
T

t=1 q(s
t+1, rt|Dt

i
, at)

= 0

(17)

Combine Equation 16 and 17, we have that

inf Rn(·) � 0 = Rn(g) (18)

Thus, we have that g(!) attains the infimum of Rn(·).

F Proof for Proposition 4.2

In general, instead of using the critical prior-mass radius "⇡,n to describe certain characteristics of
the Bayesian prior as in Corollary 5.2 of Zhang [55], we define and use the prior-mass radius d⇡ in
Proposition 4.2, which is independent of the sample size n and measures the distance between the
prior and true distribution.

Firstly, by definition of KL divergence: As T !1, in Lemma 4.1
TX

t=1

ln
q(st+1, rt|Dt

i
, at)

p(st+1, rt|Dt

i
, at;!i)

! T ·DKL(q||p(·|!i))

Then, we use n instead of T to denote the number of samples collected, and we rewrite the original
form for infimum of Rn(·) as:

inf Rn(g) = inf[E⇡g(!i) · n ·DKL(q||p(·|!i)) +DKL(gd⇡||d⇡)]

= inf[E⇡g(!i)DKL(q||p(·|!i)) +
1

n
DKL(gd⇡||d⇡)]

(19)

Given Equation (19) and Following [55], we define the Bayesian resolvability as

rn(q) = inf
g

[E⇡g(!i)DKL(q||p(·|!i)) +
1

n
DKL(gd⇡||d⇡)]

= � 1

n
lnE⇡e

�nDKL(q||p(·|!i)).

(20)

Intuitively, the Bayesian resolvability controls the complexity of the density estimation process.
Based on this definition and our previous definitions of d⇡, we can derive a simple and intuitive
estimate of the standard Bayesian resolvability.
Lemma F.1. The resolvability of standard Bayesian posterior defined in (20) can be bounded as

rn(q)
n+ 1

n
d⇡

proof. For all d > 0, we have

rn(q) = �
1

n
lnE⇡e

�nDKL(q||p(·|!i)) � 1

n
ln[e�nd⇡(p 2 � : DKL(q||p) d)]

= d+
1

n
⇥ [� ln⇡(p 2 � : DKL(q||p) d)] n+ 1

n
d⇡

20

This bound links the Bayesian resolvability to the number of samples n and prior-mass radius
d⇡ which is a fixed property of the density given a specific prior and the true underlying density.
Intuitively, the Bayesian posterior is better behaved when the Bayesian prior is closer to the true
distribution (d⇡ is smaller) and more samples are used (n is larger).

Now we can prove the main theorem of Lemma 1. Let ⇢ = 1
2 , ✏h = 2"n+(4⌘�2)h

�/4 , define �1 =

{p 2 � : DRe

⇢
(q||p) < ✏h} and �2 = {p 2 � : DRe

⇢
(q||p) � ✏h}. We let a = e�nh and

define ⇡0(✓) = a⇡(✓)C when ✓ 2 �1 and ⇡0(✓)C when ✓ 2 �2, where the normalization constant
C = (a⇡(�1) + ⇡(�2))�1 2 [1, 1/a]. Firstly,

EX⇡0(�2|X)✏h EXE⇡0⇡0(✓|X)
1

2
||p� q||21 EXE⇡0⇡0(✓|X)DKL(q||p)

according to the Markov inequality (with probability at least 1� �) and Pinsker’s inequality. Then,
according to Theorem 5.2 and Proposition 5.2 in Zhang’s paper,

EXE⇡0⇡0(✓|X)DKL(q||p)
⌘ lnE⇡0e�nDKL(q||p(·|!i))

⇢(⇢� 1)n

+
⌘ � ⇢

⇢(1� ⇢)n
inf
{�j}

ln
X

j

⇡0(�j)
(⌘�1)/(⌘�⇢)(1 + rub(�j))

n

 ⌘h� (⌘/n) lnE⇡e�nDKL(q||p(·|!i))

⇢(1� ⇢)
+

⌘ � ⇢

⇢(1� ⇢)

h (⌘ � 1)h

⌘ � ⇢
+ "upper,n

⇣⌘ � 1

⌘ � ⇢

⌘i

=
(2⌘ � 1)h

⇢(1� ⇢)
+
�(⌘/n) lnE⇡e�nDKL(q||p(·|!i)) + (⌘ � ⇢)"upper,n((⌘ � 1)/(⌘ � ⇢))

⇢(1� ⇢)

Then, using the definitions of d⇡ , we further obtain

EX⇡0(�2|X)✏h

 (2⌘ � 1)h

⇢(1� ⇢)
+

⌘ infd>0[d� 1
n
ln⇡({p 2 � : DKL(q||p) d})] + (⌘ � ⇢)"upper,n((⌘ � 1)/(⌘ � ⇢))

⇢(1� ⇢)

 (2⌘ � 1)h

⇢(1� ⇢)
+

⌘(1 + 1
n
)d⇡ + (⌘ � ⇢)"upper,n((⌘ � 1)/(⌘ � ⇢))

⇢(1� ⇢)

=
(2⌘ � 1)h+ "n

⇢(1� ⇢)

We use ⌘ instead of � which is used in the original paper to avoid confusion with the discount factor.
Then, we further divide both sides by ✏h and obtain ⇡0(�|X) 0.5. Then, by definition,

⇡(�2|X) = a⇡0(�2|X)/(1� (1� a)⇡0(�|X))

 a

a+ 1
=

1

1 + enh

Thus, we get the desired bound.

G Proof for Proposition 4.4

The result shown in Proposition 4.4 can be derived simply by replacing the Bayesian concentration
sample complexity term in BOSS with the result in Lemma 4.3. So the central part is the proof of
Proposition 4.2, which we already did. The other parts are the same as the proof in BOSS, so we refer
the readers to BOSS’s original paper and omit the proof here. Note that the single-task baseline that
BLRL is built upon is BOSS, and could be replaced by other Bayesian-exploration RL algorithm.

21

H Single-task baseline comparison on Mujoco domain

In this section, we compare the performance of the single-task version of our algorithm with the
single-task version of LPG-FTW/EWC. Note that to make it a fair comparison, we let the model-free
single-task RL baseline used by LPG-FTW/EWC collect 2.0⇥ more samples (interactions with the
environment) than VBLRL as in the lifelong learning setting.

Figure 6: Average performance comparison for single-task baselines. Top-Left: Hopper-Gravity;
Top-Right: Hopper-Bodyparts; Bottom-Left: Walker-Gravity; Bottom-Right: Walker-Bodyparts.

I Full lifelong RL comparison on Mujoco domain

As LPG-FTW and EWC are built upon a model-free RL baseline with relatively lower sample
efficiency, we let LPG-FTW/EWC collect 2.0⇥ more samples (interactions with the environment)
than VBLRL as in the single-task learning setting. Comparing Figure 6 and Figure 7, we find
that in the Hopper domains, even though the single-task baseline used by LPG-FTW and EWC
performs much better than VBLRL after we let them collect 2⇥ samples each iteration, in lifelong RL
experiments VBLRL still achieves comparable performance with LPG-FTW and EWC. In the walker
domains where the single task baselines achieves similar performance, VBLRL shows significant
better performance than LPG-FTW/EWC in lifelong RL experiments.

J Grid-World Item Searching

We also evaluate BLRL in a simple Grid-World domain. Our testbed consists of a collection of
houses, each of which has four rooms. The goal of each task is to find a specific object (blue, green or
purple) in the current house. The type of each room is sampled based on an underlying distribution
given by the environment. Each room type has a corresponding probability distribution of which kind
of objects can be found in rooms of this type. Different tasks/houses vary in terms of which rooms
are which types and precisely where objects are located in the room (the task’s hidden parameters).

To simplify the problem, instead of modeling the whole MDP distribution, we use BLRL to model
the object distribution as the Bayesian posterior and sample MDPs from the distribution. We use
BOSS with a fixed prior (no intertask transfer) as our baseline. The average training performance of
all 300 tasks are shown in Figure 8 top right. Each task consists of 10 epochs, with 21 sample steps
for each epoch. Within the limited steps allotted for each task, BLRL is able to discover and transfer
the common knowledge and helps the agent quickly adapt to new tasks as the training goes on. In

22

Figure 7: Average performance comparison for lifelong RL algorithms. Top-Left: Hopper-Gravity;
Top-Right: Hopper-Bodyparts; Bottom-Left: Walker-Gravity; Bottom-Right: Walker-Bodyparts.

comparison, running BOSS with a fixed prior is able to find the optimal policy eventually but needs
more sample steps and learns more slowly than BLRL.

Figure 8: Top-left: Grid-World Item Searching; Top-right: Grid-World Item Searching evaluation
results; Bottom-left: Box-jumping Task; Bottom-right: Box-jumping Task evaluation results.

K Box-Jumping Task

We use a simplified version of the jumping task [9] as a testbed for the proposed algorithm VBLRL.
As shown in Figure 8 bottom left, the goal of the agent is to reach the right side of the screen by
jumping over the obstacle. The agent can only choose from two actions: jump and right. It will hit
the obstacle unless the jump action is chosen at precisely the right time. We set different obstacle
positions as different tasks, constituting the HiP-MDP hidden parameters. The 4-element state

23

vector describes the (x, y) coordinates of the agent’s current position, and its velocity in the x and y
directions.

Figure 8 bottom right presents the average performance during training across all 300 tasks. Each
task is run for 30 episodes. VBLRL clearly learns faster than the HiP-MDP baseline and reaches
better final performance. Thus, in the lifelong RL setting, separating the updating processes of the
world-model posterior and the task-specific posterior can lead to better learning efficiency.

L How VBLRL models different categories of uncertainty

ஐܲ

߱

 ڮ

 ڮ

 ଵߤ ڮ

 ௗߤ

 ଵߪ

 ௗߪ

 ڭ

 ڭ

 ڭ ڭ
 ࡿ

 ڮ

 ڮ

 ଵߤ ڮ

 ௗߤ

 ଵߪ

 ௗߪ

 ڭ

 ڭ

 ڭ ڭ
 ࡿ

ܲሺݏᇱǡ ǡݏȁݎ ܽǢ ߱ሻ

Task-specific posterior

World-model posterior
Epistemic
uncertainty

Epistemic
uncertainty

Aleatory
uncertainty

Aleatory
uncertainty

Figure 9: How VBLRL estimates different kinds of uncertainties in HiP-MDP. The world-model
posterior captures the epistemic uncertainty of the general knowledge distribution (shared across all
tasks controlled by the hidden parameters) via the internal variance of world-model BNN. As the
learner is exposed to more and more tasks, the posterior should converge to P⌦. The task-specific
posterior captures the epistemic uncertainty of the current task i, which comes from the alleatory
uncertainty of the world model when generating !i for a new task, via the internal variance of
task-specific BNN. The posterior should output the highest probability for ! near the true !i as the
agent collects enough data from the task. The aleatory uncertainty of the final prediction is measured
by the output variance of the prediction.

M Additional explanation of the algorithm

Here we first provide an example to help the readers better understand our plate notation. In our
Gridworld Item Searching case, represents the parameters of P⌦, which is the room-type and
object distribution. For each task, the environment samples a hidden parameter !, which is the actual
room and object layout of this house, from this distribution P⌦. The sampled ! then will result in an
MDP m and let the agent interact with it.

M.1 planning algorithm

With the transition dynamics and reward functions, a planning algorithm like CEM is not the only way
to solve the MDP to get an optimal policy. Another option would be using other Deep RL algorithms
like Soft actor-critic [19] with data generated from the model. However, in this case, incorporating a
deep RL algorithm means that we need to introduce additional neural networks (that is, policy/value
networks) for each task. The update signal from the RL loss is usually stochastic and weak, which is
even worse in this case when our model is still far from accurate. So, here we assume applying a
planning algorithm is a better way to get the policy.

24

N Ablation study of the number of particles

We also run ablation studies on the number of particles in CEM planning. The agent performance
is close when the number of particles is around 50. The computational complexity drops as we use
fewer particles and is especially larger when the number of particles � 70.

Figure 10: Left: How the average performance change with respect to different number of particles
on Cheetah-Gravity domain. Right: How the total running hours on a Nvidia Geforce RTX 3090Ti
change with respect to different number of particles on Cheetah-Gravity domain.

O Coin Example

Consider a coin-flipping environment. We want to find the sample complexity of the unbiased coin
(i.e. How many times we need to flip this coin such that our posterior samples are accurate.). Consider
a Dirichlet prior, ↵0 = (n1, n2) and ✓0 = (12 ,

1
2). We want to find sample complexity B such that

the posterior likelihood for a coin with heads likelihood in [0.5� ✏, 0.5 + ✏] is at least 1� �.

Note that the Dirichlet distribution on the two-dimensional simplex is the Beta distribution. The
Multinomial distribution with two outcomes is the Binomial distribution. That is, given the process

H ⇠ Bin(H|⇢ = 0.5, B), (21)

⇢̂ ⇠ Beta(⇢̂|↵ = H + n1,� = B �H + n2), (22)
choose a value B such that

P (0.5� ✏ ⇢̂ 0.5 + ✏) � 1� �, (23)

BX

H=0

Bin(H|⇢ = 0.5, B) ·
Z 0.5+✏

⇢̂=0.5�✏

Beta(⇢̂|↵ = H + n1,� = B �H + n2) � 1� �. (24)

Here, n1 and n2 capture the prior. The smallest B that satisfies Equation 24 can be found numerically.

We set ✏ = 0.1 and � = 0.3. Here are the results of sample complexity B given different values of
n1, n2:

We fix the sum of (n1, n2) as 10. As shown in the results, the value of sample complexity B becomes
lower as we use a more accurate prior (from (10, 0) to (5, 5) and from (0, 10) to (5, 5)).

In general, for the task-specific posterior, we can relate B, ✏ and � with the following equation:
Z

P0

Dir(P0|�True)
h X

N:||N||1=B

Mult(N |P0, B)
h Z

P :||P (�)�P0(�)||✏

Dir(P |�old+N)dP
ii
dP0 � 1��

(25)
For the world model posterior:

X

N:||N||1=Bw

Mult(N |Pw0 , Bw)
h Z

P :||Pw(�)�Pw0 (�)||✏

Dir(Pw|�wold +N)dPw

i
� 1� � (26)

25

(n1, n2) lowest B
(0,10) 78
(1,9) 68
(2,8) 58
(3,7) 49
(4,6) 42
(5,5) 40
(6,4) 42
(7,3) 48
(8,2) 58
(9,1) 68
(10,0) 78

For each task, first we pick a true model P0 according to the true distribution and initialize the
task-specific prior �old = �w. Then, we make some observations from the world. Once we have the
true model and the observations, we can calculate how many models are ✏-close to the true model,
weighted according to their posterior likelihood.

26

	Introduction
	Background
	Related work
	Model-based Lifelong Reinforcement Learning
	Sample Complexity Analysis
	Variational Bayesian Lifelong RL
	Backward Transfer of Variational Bayesian Lifelong RL

	Experiments
	OpenAI Gym MuJoCo Domains
	Meta-world Domains
	Ablation Study

	Conclusion and Discussion
	VBLRL algorithm
	BNN model
	BLRL algorithm
	Experimental Setting
	OpenAI Gym Mujoco Domains
	Meta-World Domains
	Grid-World Item Searching
	Box-jumping Task

	Proof for Lemma 4.1
	Proof for Proposition 4.2
	Proof for Proposition 4.4
	Single-task baseline comparison on Mujoco domain
	Full lifelong RL comparison on Mujoco domain
	Grid-World Item Searching
	Box-Jumping Task
	How VBLRL models different categories of uncertainty
	Additional explanation of the algorithm
	planning algorithm

	Ablation study of the number of particles
	Coin Example

