Under review as a conference paper at ICLR 2024

A LAMPP FOR SEMANTIC SEGMENTATION

A.1 METHODS

We derive the following decision rule from the model in Fig.

p(yi | 2) S

plys | di = d)p(d; = d | ;) Zp pi) TT 1D 1y) i 1 73)

j=1-n Yj

&)

We obtain this decision rule as described below. Here we denote rooms r, true object labels
y, noisy object labels d, and observations z. (Underlines denote sets of variables, so e.g., z =
{z1,...,2,}.) Finally, we write d} to denote the base model’s prediction for each image segment
(df = argmax peg(d; | z;)). To see this:

p(y: | z) x ZZmey,dr

r y\{yz} d

—Z Z Zp ((yi | r)p(di | yi)p(@i | di)prj|r (dj [yj)p(x; | dj)

r g\{?h} d

=> 0 (plyi |) > Pl ot |)(Hzpym Z (d; | yy)p(a; | d))

Rather than marginalizing over all choices of d, we restrict each sum to a single term. For d;, we
choose the most likely detector output d; = d;. For d;, we choose the corresponding y; in the
outer sum. Together, these simplifications reduce the total number of unnecessary LM queries about
unlikely object confusions, and give a lower bound:

> p(d; = d; | yp(e | di = d) Zp ym(Hzpym (d; = v | w)p(a; | 7))

Applying Bayes’ rule locally:

plyi | di = d})p(d; = dy) p(d; = dj | x;)p(xi)
p(yi) p(di = d*)

p(r | ’yg Ys) 1 opldy =y | z)px))
Zp p(yi | 7) (HZ p(d; =y; | y;) p(d; = ;))

Finally, we make two modeling assumptions. First, we assume that of the form p(y) and p(d)—the
marginal distributions of true and noisy object labels—are uniform. This allows us to use LMs as a
source of information about object co-occurrence probabilities without relying on their assumptions
about base class frequency. Second, for non-target detections x;, we assume the probability that
noisy labels match the true labels is constant over object categories. Then, dropping constant terms
gives:

Pl =)plds = |)30l ym(HZ“‘yﬂ (d; =45 | 2,))

A.2 SOCRATIC MODEL BASELINE
We attempt to make the Socratic models inference procedure for this task as analogous to the LAMPP

approach as possible: the LM must account for both room-object co-occurrence likelihoods and
object-object resemblance likelihoods when predicting true labels. However, here, the LM must

13

Under review as a conference paper at ICLR 2024

Base Model mloU AloU by Object Category
RedNet (ID) 47.8
+ LAMPP 48.3

+ SM 37.5

RedNet (OOD) 33.8

+ LAMPP 34.0

CLIPSeg (ZS) 27.7

+ LAMPP 28.2

Table 4: Image Segmentation results. We report mloU, or intersection-over-union averaged over each object
category. We also report the improvements to IoU for each object category when LAMPP or Socratic Models is
applied to RedNet trained on in-domain or out-of-domain data, and CLIPSeg applied zero shot.

implicitly incorporate these likelihoods into its text-scoring, rather than integrating them into a
structured probabilistic framework.

Specifically, the Socratic model baseline is given model predictions c/l; for each segment x; and
re-labels each segment by querying GPT-3 with:

You can see: [@

You are in the [r]

The thing that looks like [c/l\i] is actually [y;] .

The LM is given the non-highlighted portions and asked to generate the portions highlighted in yellow.

QA is the set of all unique objects detected by the base model, written out as a comma-separated list. r
is a room type generated by the LM based on these objects (inferred by normalizing over possible
room types), and y; is the actual identity of the object corresponding to this segment. We replace all

pixels formerly predicted as CZ with y;.

A.3 FULL RESULTS

See Table [4 for the full results over object categories. In the ID case, note that shower curtain
improved dramatically with the incorporation of LAMPP. This is because the base model almost
always classifies shower curtains as window curtains, while explicitly incorporating room priors from
language models fixes this major class of error. Moreover, in the OOD setting, the base image model
sees far fewer examples of nightstands and consequently never predicts nightstands on the test data.
(Nightstands are frequently predicted to be tables and cabinets instead). This is likewise rectified
with LAMPP: background knowledge from language reduces model sensitivity to a systematic bias
in dataset construction

he goal objects that improved the most with the incorporation of LAMPP (shower curtain, nightstand
in the OOD case) are all ones that strongly co-occur with specific rooms, indicating the usefulness of
incorporating room-object co-occurrence priors.

14

Under review as a conference paper at ICLR 2024

B LAMPP FOR NAVIGATION

B.1 SOCRATIC MODEL BASELINE

As in the image segmentation case, we have a Socratic model baseline. LM priors are integrated into
exploration through directly querying the LM with

The house has: [r].
You want to find a [g]. First, go to each [rg] . If not found, go to each [r1] . If not
found, go to each - - -

whereby r is a list of all room types in the environment, for example, 3 bathrooms, I living room, 1
bedroom. The LM returns the best room type 7 to navigate to in order to find g. The agent visits all
ro in order of proximity. If the object is not found, the LM is queried for the next best room type to
visit, etc., until the object is found or we run out of rooms in the environment.

B.2 METHODS

Below we provide intuition for why our policy outlined in Section . T|follows from the generative
story of the success score y; depicted in Fig.|3] We assume objects are equally likely to be distributed
across all rooms.

At a high level, an agent greedily optimizing for success should move to a room r that maximizes
p(y | ,7, g) which, following Fig. [3]is equivalent to maximizing:

p(y | g,m)p(z | y) occp(y | g,7)p(y |)p(x)/p(y) < p(y | 9,7)P(Y | ®) (6)

The policy that maximizes Eq. (6) iterates between navigation and selection actions:

1. Navigation: We navigate to the unobserved room with the highest p(y | T)E] This follows
directly from Eq. (6)) and the assumption of uniform initial object locations.

2. Selection: Once we have some observations x of the room, we branch off into two cases:

(a) Deciding to continue: We do not see g (low p(y | x)). If we take n (= 25) steps in
the room and do not see any instance of g, we become relatively confident that the
room does not contain g at all, so p(y |) — 0 for that room. (Consequently, the
objective p(y | «)p(y | r) also — 0 for this room.) We eliminate this room from the
list of unobserved rooms and return to step 1.

(b) Deciding to stop: We see g (high p(y | z)), either on the way to the room or within the
room. We navigate to exact location that maximizes p(y |) and decide to stop based

on p(y [x)p(r | y).

B.3 FULL RESULTS

See Table [5 for the full set of results over goal-object categories. Note that the goal objects that
improved the most with the incorporation of LAMPP (TV monitor, sofa, toilet) are all ones that
strongly co-occur with specific rooms, indicating the usefulness of incorporating room-object co-
occurrence priors.

B.4 UNIFORM PRIORS MODEL VS. ORIGINAL STUBBORN AGENT MODEL

Recall that we modified the original STUBBORN agent in the navigation task to utilize the high-level
map, by uniformly sampling a random (unvisited) room to visit. More specifically, the uniform priors
model utilizes effectively the same high-level policy as LAMPP-based agent, but replaces LM priors
over over object-room co-occurrences with uniform priors:

1

room types in environment

p(y = True | r,g) = (7

SFor rooms with the same p(y | 7), or if there are multiple rooms of the same type, we navigate in order of
proximity to the agent’s current location.

15

Under review as a conference paper at ICLR 2024

Base Model SR SPL ASR by Goal Object Category
Class Freq. Class Freq.

Orig STUBBORN 527 538 212 228

Unif Prior (ZS) 52.1 51.7 20.2 21.5
25

+ LAMPP 66.5 65.9 35.4 36.0
0 Tv Sofa Toilet Chair Bed Plant
25

+ SM 61.2 65.3 313 35.1 0

Sofa Chair Plant Toilet Bed Tv

Table 5: Navigation results, showing class-averaged success rate (SR; averaged over goal objects) and frequency-
averaged success rate (averaged over episodes). We also report SPL, Success weighted by (normalized inverse)
Path Length. Finally, we report the improvements to success rate over each object category when LAMPP vs.
Socratic Models is applied.

Model Class-Avg. SR Freq.-Avg. SR
LAMPP 66.5 65.9
—p(y | r) during selection 58.8 64.9
Socratic model 61.2 65.3

Table 6: Navigation results verification ablations. We ablate the LM uncertainties over p(y |) when computing
the selection action, making LAMPP functionally similar to a Socratic model baseline. We find that having
these uncertainties are crucial; without them, LAMPP actually underperforms the Socratic model baseline.

Note in the zero-shot case we have no additional information about p(y | 7, g), so we must assume it
is uniform.

We report average success rates over object categories of the original STUBBORN agent vs. a
uniform priors agent vs. an LAMPP-based agent vs. a Socratic-model-based agent in Table[5. We
find that LAMPP is able to outperform both the original STUBBORN agent and the uniform priors
agent.

B.5 ADDITIONAL ANALYSIS

Why does LAMPP outperform Socratic modeling? In the SM approach, high-level decisions from
the LM and low-level decisions from observation models are usually considered separately and
delegated to different phases (it is hard to combine these information sources in string-space): in
our implementation, the SM baseline uses the top-down LM for navigation, and the bottom-up
observation model for selection.

Because the policy dictated by the LAMPP probabilistic model also ignores bottom-up observation
probabilities until the goal object is observed, the navigation step of both approaches is functionally
equivalent. However, for the selection step, we find that combining bottom-up and top-down uncer-
tainties is crucial (recall that LAMPP thresholds p(y | «,r, g) at selection steps, which decomposes
p(y [z)p(y | r,9)).

To further understand and how using LM probabilities contributes at this phase, we run a version
of LAMPP where we simply change the decision rule at the selection action to p(y |). Results
are reported in Table[6. Note that we actually underperform the SM baseline when we take away

top-down uncertainties p(y | r,g) — once again highlighting the importance of combining both
sources of uncertainty.

C LAMPP FOR VIDEO-ACTION SEGMENTATION

16

Under review as a conference paper at ICLR 2024

Base Model Step Recall A Step Recall by Task
Class Freq.

HSMM (ZS) 444 46,0

+ LAMPP 457 479 ol—l--- —

HSMM (OOD) 37.6 409

0
+ LAMPP 38.1 41.2 J ll

Jack Up a Car

lake Lemonade
Change a Tire

Table 7: Action recognition and segmentation results, showing class-averaged step recall (averaged over tasks)
and frequency-averaged step recall (averaged over videos). We also report the improvements to step recall over
each object category when LAMPP is applied.

C.1 SELECTING THE LM PROMPT
We performed significant prompt engineering in this setting (on the training set), and found that with

all of the prompts we tried, GPT-3 was biased towards outputting actions in the order that they were
presented to the model. The following are some examples of other prompts we tried:

“Your task is to [t]. Your actions are: {[Y]}
The step after [y] is [y']: [plausible / implausible]

29

“Your task is to [t]. Your actions are: {[Y]}
The step after [yl is [y']”

We also tried having the LM produce a global ordering and setting probability from an action later in
the sequence to earlier in the sequence to O:

“Your task is to [t]. Your set of actions is: {[Y]}
The correct ordering is:

The prompt in[5.I] was slightly better at combating this effect, though still highly imperfect.

C.2 FULL RESULTS

See Table[7lfor the full set of results over actions.

D TRAINING DETAILS

D.1 HYPERPARAMETERS

Since our method builds upon each base model, we used standard hyperparameters to train and run
inference for each base model. For the components of LAMPP that we build on top of the base
models, there are usually only a few hyperparameters to tune, which we tune based on performance
on a held-out development set.

In image segmentation, we tune is a weighting term A at the final decision layer that trades off the
weight on the LM prior and the observation posterior.

logp(y |) = Aogp(y) + (1 — A)logp(x | y)

17

Under review as a conference paper at ICLR 2024

We find he optimal A to be 0.9. In the navigation case, we tune a threshold 7 that determines when
the agent stops (p(y | ,r,g) > 7) and find the optimal 7 is 0.2 For video-action segmentation, we
have a hyperparameter < controlling the weight on the prior (see Eq. (@), which we set to 10.

E COMPUTATIONAL DETAILS

We run all experiments on a single 32GB NVIDIA V100 GPU.

For image segmentation experiments, we used either: 1. a pretrained RedNet checkpoint, 2. a RedNet
checkpoint trained for 1000 epochs on OOD data, 3. a pretrained zero-shot CLIPSeg model. 1 and 3
required no training, 2 required training for ~ 3-4 days on the GPU. Inference for a single experiment
takes several hours each on a single GPU.

For navigation experiments, we used the pre-trained STUBBORN model. A full inference run on
our GPU takes about a full day to complete. (However, multiple inference experiments could be run
in parallel using the same GPU — the bottleneck is simulating every step of every trajectory, rather
than GPU inference.)

For video-action segmentation experiments, we use the HSMM model trained by [Fried et al.| (2020).
On a single GPU, the model typically takes only a few minutes to fully train and a few minutes for
inference. Several inference experiments can be run in parallel on the same GPU.

Finally, to derive LM priors, we query the OpenAl API. Using our method uses a budget of ~$12
(in totality, over all experiments in all domains), as it queries a fixed number queries ahead of time
(~4k queries), which get reused over the entire test set. Meanwhile, running full SM experiments
requires on the order of several hundred dollars in totality — frequently requiring multiple queries per
test sample.

F LIMITATIONS

While flexible, LAMPP is not applicable to every machine learning task, and specifically requires (1)
a formalization of the task as a probabilistic graphical model, in which (2) values of some variables
(e.g. labels) can be represented as natural language strings, and (3) probabilistic relations between
these variables are described (with some degree of precision) in large-scale text corpora. As shown
above, many success cases involve common-sense knowledge about human environments or human
task structures; more specialized tasks (e.g. fine-grained image classification or medical diagnosis)
may not enjoy the same benefits.

18

