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Abstract

Claims made by individuals or entities are of-001
tentimes nuanced and cannot be clearly labeled002
as entirely “true” or false”—as is frequently the003
case with scientific and political claims. How-004
ever, a claim (e.g., “vaccine A is better than005
vaccine B”) can be dissected into its integral as-006
pects and sub-aspects (e.g., efficacy, safety, dis-007
tribution), which are individually easier to vali-008
date. This enables a more comprehensive, struc-009
tured response that provides a well-rounded010
perspective on a given problem while also al-011
lowing the reader to prioritize specific angles012
of interest within the claim (e.g., safety towards013
children). Thus, we propose CLAIMSPECT,014
a retrieval-augmented generation-based frame-015
work for automatically constructing a hierarchy016
of aspects typically considered when address-017
ing a claim and enriching them with corpus-018
specific perspectives. This structure hierarchi-019
cally partitions an input corpus to retrieve rele-020
vant segments, which assist in discovering new021
sub-aspects. Moreover, these segments enable022
the discovery of varying perspectives towards023
an aspect of the claim (e.g., support, neutral, or024
oppose) and their respective prevalence (e.g.,025
“how many biomedical papers believe vaccine026
A is more transportable than B?”). We apply027
CLAIMSPECT to a wide variety of real-world028
scientific and political claims featured in our029
constructed dataset, showcasing its robustness030
and accuracy in deconstructing a nuanced claim031
and representing perspectives within a corpus.032
Through real-world case studies and human033
evaluation, we validate its effectiveness over034
multiple baselines.035

1 Introduction036

Scientific and political topics increasingly being con-037
sumed in the form of concise, attention-grabbing claims038
which lack the nuance needed to represent complex re-039
alities (Vosoughi et al., 2018; Allcott and Gentzkow,040
2017; Lazer et al., 2018). Such claims are frequently041
oversimplified or confidently stated, despite being valid042
only under specific conditions or when evaluated from043
certain perspectives. For instance, a claim like “vaccine044
A is better than vaccine B” may appear straightforward045

Claim: “Vaccine A is better than Vaccine B”

Efficacy DistributionSafety

Safety for 
Children

Safety for 
Elderly

Affirmative (80% of papers): A has a lower rate 
of severe allergic reactions in adults than B.

Opposition (20% of papers): B has a lower rate of 
blood clotting incidents in adults than A.

Safety for Adults

Figure 1: An example hierarchy of a nuanced claim
being deconstructed into aspects. Each node is enriched
with relevant excerpts, the affirmative/neutral/opposing
perspectives, and their respective evidence.

but becomes inherently nuanced when specific aspects, 046
such as efficacy, safety, and distribution logistics, are 047
considered. Moreover, the ambiguous and fragmented 048
nature of information shared on such platforms often 049
allows such claims to be twisted or reframed as “true” 050
or “false” to support conflicting narratives, complicating 051
the task of verifying their validity (Sharma et al., 2019; 052
Pennycook and Rand, 2021). 053

Stance detection categorizes textual opinions as sup- 054
portive, neutral, or opposing relative to a target (Mo- 055
hammad et al., 2016). However, documents—especially 056
those in a scientific domain—often present a range of 057
stances across various aspects of a claim. For instance, 058
as illustrated in Figure 1, a study might find Vaccine A 059
safer for adults than Vaccine B while highlighting its 060
significantly greater logistical challenges for widespread 061
distribution. In this case, the paper supports the claim 062
regarding “safety for adults” (note: not “safety” in its 063
entirety) but opposes it concerning distribution. This 064
complexity renders stance detection at the document 065
level ineffective for nuanced, multifaceted claims. 066

Fact-checking models often validate claims by retriev- 067
ing evidence from large corpora or using web-integrated 068
language models (Thorne et al., 2018; Popat et al., 2018; 069
Zhang and Gao, 2023). While some methods now offer 070
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varied factuality judgements like “mostly true” or “half-071
true” (Zhang and Gao, 2023), these are less effective in072
scientific contexts. Especially in evolving areas, fine-073
grained scientific claims may be unsubstantiated due074
to a lack of research or scientific consensus, rather than075
being outright false. This distinction is vital, as it high-076
lights areas needing further exploration. For example, in077
Figure 1, relevant paper excerpts mapped to the “Safety078
for Adults” node show that an 80:20 ratio of affirmative079
to opposing stances towards the sub-aspect claim sug-080
gests consensus, whereas a 60:40 ratio or sparse data081
signals limited research or disagreement. Such insights,082
crucial for understanding gaps in knowledge, are often083
overlooked by existing fact-checking frameworks.084

We address these challenges using CLAIMSPECT,085
a framework which systematically deconstructs and086
analyzes claims by leveraging large language models087
(LLMs). ClaimSpect hierarchically partitions a claim088
into a tree of aspects and sub-aspects, enabling struc-089
tured validation and the discovery of perspectives. This090
is accomplished by adopting the following principles:091

Principle #1: Claim trees capture the multidimen-092
sionality inherent in nuanced topics. As opposed093
to considering a single target claim and the full doc-094
ument, we must first determine the relevant aspects095
discussed within the corpus itself in order to discover096
more targeted subclaims. However, it is essential to097
retain the hierarchical nature of such aspects. This is098
demonstrated in Figure 1, where certain aspects that099
are difficult to validate (e.g., “safety”) can typically100
be partitioned until they reach “atomic” sub-aspects101
that are more commonly considered (e.g., “safety for102
children”, “safety for adults”, and “safety for elderly”).103
Furthermore, these hierarchical relationships are often104
also reflected in how we naturally navigate formulat-105
ing our own perspective towards a given topic (either106
individually or collectively): parse through the existing107
knowledge on a topic, consider different sub-angles of108
the problem based on this knowledge, retrieve more109
sub-angle specific knowledge, develop our opinions ac-110
cordingly, and aggregate them to a high-level opinion111
(Perony et al., 2013; Chen et al., 2022). Thus, this brings112
us to our next principle.113

Principle #2: Iterative, discriminative retrieval en-114
hances LLM-based tree construction. LLMs have115
recently shown promise in automatic taxonomy enrich-116
ment and expansion, organizing data into hierarchies of117
categories and subcategories similar to our target aspect118
hierarchy (Shen et al., 2024b; Zeng et al., 2024b). How-119
ever, these approaches often rely on general knowledge120
existing within the LLM’s pre-training dataset, overlook-121
ing corpus-specific insights crucial for (1) uncovering122
fine-grained sub-aspects prevalent in domain-specific123
data, and (2) ensuring alignment with the task of de-124
termining corpus-wide consensus. To address this, we125
leverage retrieval-augmented generation (RAG), which126
has recently made advances in knowledge-intensive127
tasks by integrating external corpora or databases into128
the generation process (Lewis et al., 2020; Gao et al.,129

2023). We introduce an iterative RAG approach, which 130
dynamically constructs the aspect hierarchy by retriev- 131
ing relevant segments for an aspect node, using them 132
to discover new sub-aspects. This ensures the taxon- 133
omy aligns closely with corpus-specific discussions of 134
claims, aspects, and perspectives. 135

We note that noisy retrieval often hinders reasoning 136
performance (Shen et al., 2024a). In our setting, this 137
may occur when certain retrieved excerpts overlap mul- 138
tiple semantically similar aspect nodes (e.g., “safety for 139
children” vs. “safety for adults”), introducing noise 140
when determining sub-aspects for only one aspect. To 141
mitigate this, we introduce a discriminative ranking 142
mechanism that prioritizes segments discussing a single 143
aspect in-depth, enhancing sub-aspect discovery and the 144
final aspect hierarchy. 145

Principle #3: Perspectives enrich understanding 146
beyond stance and consensus. For each aspect node in 147
the hierarchy, we identify and cluster papers based on 148
their stance (affirmative, neutral, opposing) using hier- 149
archical text classification and stance detection. These 150
clusters reveal not only the presence or absence of con- 151
sensus but also the key perspectives within each stance. 152
For example, as shown in Figure 1, the affirmative per- 153
spective might highlight Vaccine A’s lower rate of severe 154
allergic reactions in adults, while the opposition focuses 155
on its higher incidence of blood clotting. These per- 156
spectives offer transparency, uncover potential research 157
gaps (e.g., if 80% of the affirmative papers do not ad- 158
dress these blood clotting incidents), and provide critical 159
context for framing nuanced claims. 160

Overall, CLAIMSPECT utilizes a structured approach 161
to deconstruct a nuanced claim into a hierarchy of as- 162
pects, targeting a holistic approach considering all as- 163
pects which could be used to validate the root claim. The 164
framework comprises the following steps: (1) aspect- 165
discriminative retrieval, (2) iterative sub-aspect discov- 166
ery, and (3) classification-based perspective discovery. 167
Our contributions can be summarized as: 168

• From the best of our knowledge, CLAIMSPECT 169
is the first work to formally deconstruct claims 170
into a hierarchical structure of aspects to determine 171
consensus. 172

• We construct two novel datasets of real-world, 173
scientific and political nuanced claims and corre- 174
sponding corpora. 175

• Through experiments and case studies on real- 176
world domains, we demonstrate that ClaimSpect 177
performs hierarchical consensus analysis signifi- 178
cantly more effectively than the baselines. 179

Reproducibility: We provide our dataset and source 180
code1 to facilitate further studies. 181

2 Related Works 182

Fact Checking. Fact-checking models (Thorne et al., 183

1https://anonymous.4open.science/r/
perspective-E61C/
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2018; Popat et al., 2018; Atanasova et al., 2019;184
Karadzhov et al., 2017) have leveraged external evi-185
dence to validate claims, but often treat claims as mono-186
lithic statements. Web-integrated methods (Zhang and187
Gao, 2023; Karadzhov et al., 2017) attempt to enrich188
fact-checking with additional context, but still fail to189
account for nuanced claims that cannot be clearly vali-190
dated without considering a diverse range of claim sub-191
aspects and their varying levels of evidence. In contrast,192
CLAIMSPECT acknowledges the nuance behind certain193
claims, utilizing a corpus to help identify the various as-194
pects that would be considered when validating a claim—195
enabling a more multi-faceted and interpretable analysis.196
We note that CLAIMSPECT does not aim to validate a197
given claim— it simply aims to deconstruct the claim198
into a hierarchy of aspects which could be used to vali-199
date it, posing potential perspectives towards the aspect200
of the claim, grounded in the corpus.201

LLM-Based Taxonomy Generation. Recent ad-202
vances in taxonomy generation (Shen et al., 2024b;203
Zeng et al., 2024b; Chen et al., 2023; Zeng et al., 2024a;204
Sun et al., 2024) have demonstrated the potential of205
large language models for structuring information hier-206
archically. However, these methods typically rely on207
static, domain-agnostic knowledge, limiting their adapt-208
ability to construct rich, fine-grained taxonomies (Sun209
et al., 2024). CLAIMSPECT addresses these limitations210
through corpus-aware, aspect-discriminative retrieval211
and iterative sub-aspect discovery, constructing a rich212
taxonomy of aspects that is aligned with a corpus. This213
allows us to identify the relevant segments to both a214
given aspect but also a perspective towards that aspect.215

Stance Detection Traditional stance detection (Mo-216
hammad et al., 2016) classifies opinions as supportive,217
neutral, or opposing towards a target (e.g., claim). How-218
ever, these approaches typically assign a single stance219
to an entire document, overlooking the nuanced, aspect-220
specific stances present within many claims, especially221
in scientific and political contexts. Recent works (Zhang222
and Gao, 2023) have introduced more fine-grained judg-223
ments (e.g., “mostly true”), but similar to fact-checking224
methods, they often fail to capture the multi-faceted na-225
ture and rationale behind certain stances. By exploiting226
its constructed aspect hierarchy, CLAIMSPECT is able227
to infer viable supportive, neutral, and opposing per-228
spectives towards an aspect and its associated papers.229

3 Methodology230

Illustrated in Figure 2, CLAIMSPECT consists of the231
following steps: (1) aspect-discriminative retrieval, (2)232
iterative sub-aspect discovery, and (3) classification-233
based perspective discovery.234

3.1 Preliminaries235

3.1.1 Task Definition236

We assume that as input, the user provides a claim t0237
(e.g.,“Vaccine A is better than Vaccine B”) and a corpus238

D. In order to better reflect real-world settings, we do 239
not assume that each document d ∈ D is relevant to t0. 240

Definition 1 (CLAIM) A statement or assertion that ex- 241
presses a position, which may require validation or 242
scrutiny. It often encapsulates multiple dimensions that 243
contribute to its overall truthfulness or validity. 244

Definition 2 (ASPECT) A specific component or di- 245
mension of a claim that can be independently analyzed 246
or evaluated. 247

ClaimSpect aims to output a hierarchy of aspects T , 248
where each aspect node (e.g., “safety”) within the hi- 249
erarchy can be considered as a descendant subclaim ti 250
of the root user-specified claim, t0 (e.g., “A is a safer 251
vaccine than B”). In other words, each aspect node ti 252
should reflect a relevant aspect that is important to con- 253
sider when evaluating the root claim t0. 254

3.1.2 Document Preprocessing 255

For each d ∈ D, we assume we have its full textual 256
content (e.g., a full scientific paper). In order to have 257
smaller, context-preserving units of text for our frame- 258
work to retrieve, we segment each d into chunks using 259
the widely-recognized text segmentation method, C99 260
(Choi, 2000). This method labels sentences with match- 261
ing tags if they pertain to the same topical group, which 262
assists with retaining consecutive discussion of an as- 263
pect to a single segment. 264

3.1.3 Initial Coarse-Grained Aspect Discovery 265

Given our weak supervision setting, where only the root 266
claim t0 is provided, we first generate reliable, coarse- 267
grained aspects to guide the retrieval-augmented hierar- 268
chy construction. These aspects are typically common- 269
sense and do not require domain expertise to identify. 270
Preliminary experiments confirm that LLMs can reli- 271
ably identify them based on their expansive background 272
knowledge alone. Thus, we prompt an LLM to generate 273
coarse-grained aspects t0i ∈ T 0 (e.g., efficacy, safety, 274
and distribution in Figure 1) that will serve as the chil- 275
dren of t0 ∈ T . For each aspect t0i , the model outputs 276
its label, significance to t0, and a list of n = 10 relevant 277
keywords. This initial subtree forms the foundation of 278
our framework. The full prompt is in Appendix A.1. 279

3.2 Aspect-Discriminative Retrieval 280

In order to construct a rich, coarse-to-fine aspect hier- 281
archy that is aligned with the corpus, we must identify 282
similarly rich reference material from our corpus. In 283
general, noisy retrieval often hinders reasoning perfor- 284
mance (Shen et al., 2024a), which may negatively im- 285
pact discovering subaspects of a given node. Thus, in 286
order to discover each subaspect tij of an aspect node ti, 287
we must determine which segments Si from our corpus 288
D discuss ti. However, not all segments are equally 289
informative for discovering subaspects. 290

Specifically, a high-quality, discriminative segment 291
si for node ti contains the following features: (1) si 292
discusses ti in depth and (2) si does not discuss ti’s 293
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Inputs: 
- Claim: “Vaccine A is better than Vaccine B“

Aspect-Discriminative Retrieval (Section 3.2)

-  Corpus:

Coarse-Grained Aspect Discovery

Efficacy DistributionSafety

LLM

Retrieval-Augmented Keyword Enrichment

Safety 1 32

Discriminative Segment Ranking

Iterative Subaspect Discovery (Section 3.3)

1

3

2

LLM

adverse effects
vaccine 

administration
side effects
monitoring EfficacySafety Distribution

distractorstarget 1

3

2

re-rank

1

3

2

LLM
Safety for 
Children

Safety for 
Elderly

Safety for 
Adults

Classification-Based
Perspective Discovery
(Section 3.4)

Safety for 
Adults

Affirmative (80% of corpus): 
Vaccine A is safer for adults 
aged 18-55 than Vaccine B.

Opposition (20% of corpus):
Vaccine B is safer for adults 
aged 18-55 than Vaccine A.

Figure 2: CLAIMSPECT deconstructs a nuanced claim into a hierarchy of aspects typically considered for validating
the claim. We automatically discover the set of perspectives towards each aspect from the corpus.

siblings in breadth or depth. For instance, in Figure 1,294
a segment regarding the side effects observed within295
a clinical trial of Vaccine A and B on both children296
and adults discusses “safety” in more depth than if it297
only mentioned children. Furthermore, for discovering298
subaspects of “safety for children”, a segment which299
independently discusses the safety for both children300
and adults would introduce additional noise into the301
subaspect generation process. Overall, it is important302
to rank these segments such that we select a set which303
minimizes the noise we introduce into the retrieval-304
augmented discovery of subaspects, while maximizing305
the number of subaspects which we can discover. We306
formalize our discriminative ranking mechanism in the307
sections below:308

3.2.1 Retrieval-Augmented Keyword Enrichment309

In order to determine whether a segment discusses an310
aspect ti in depth, we must first further enrich our un-311
derstanding of ti. We propose performing a retrieval-312
augmented keyword-based enrichment of ti, where each313
keyword is likely to occur within segments relevant to ti314
and, thus, reflects either explicitly or implicitly the sub-315
aspects of ti. For example, for the “efficacy” aspect, the316
corresponding keywords are: neutralization, immune317
stimulation, post-dose antibody response, and waning318
immunity. First, we use a retrieval embedding model to319
select the top-n segments (based on cosine-similarity)320
from the entire corpus that are relevant to a ti-specific321
query (its root, name, description, and keywords from322
Section 3.1.3):323

Claim: [t0]; Aspect: [ti]: [generated description of324
ti]; Aspect Keywords: [generated keywords of ti].325

We provide these initial top n segments in addition to326
the root claim t0, the aspect label ti, and its description327
to the LLM in-context to identify 2k keywords. Given328
the same information and these keywords, we then329
merge similar or duplicate terms, while filtering irrele-330
vant terms– explicitly prompting the model to provide331
solely k keywords. This set of terms w ∈ Wi; |Wi| = k,332
grounds our discriminative segment ranking for node ti.333
We provide these two prompts in Appendix A.2.334

3.2.2 Discriminative Segment Ranking 335

In order to determine the most discriminative segments 336
Si for aspect node ti, we first collect an initial large pool 337
of segments using the same retrieval embedding-based 338
method as Section 3.2.1. Our subsequent goal is to rank 339
a segment s ∈ Si based on its discriminativeness: 340

• Target Score: Reward s based on its likelihood to 341
contain all relevant subaspects tij of ti. 342

• Distractor Score: Penalize s based on the degree and 343
depth of other sibling aspects that it discusses. 344

We assume that tis’ keywords Wi implicitly and/or 345
explicitly reflect many of its subaspects. Thus, we use 346
them to approximate the depth of an aspect-specific 347
discussion. We convert each keyword wi into a descrip- 348
tive query: “[wi] with respect to [all ancestor nodes of 349
wi]”. By integrating the ancestors into the query, we in- 350
fluence the retention of ti’s hierarchical context; for ex- 351
ample, we specifically reward a segment if it discusses 352
“the safety of Vaccine A and B”, as opposed to merely 353
“safety”. We embed each keyword query emb(w ∈ Wi) 354
using the retrieval embedding model, in addition to em- 355
bedding each segment emb(s) ∈ Si. 356

More formally, we are given an aspect node thi , 357
which is a child of parent node th and sibling node of 358
tj ∈ Th

̸=i. We are also provided with a segment embed- 359

ding emb(s) ∈ Si, all keyword query embeddings of thi , 360
emb(w) ∈ Wi, and all sibling keyword query embed- 361
dings, emb(w) ∈ Wh

̸=i. We compute the discriminative 362
rank based on the following: 363

Definition 3 (TARGET SCORE) A segment si is re- 364
warded based on a weighted average (H) of its degree 365
of similarity to all keywords w ∈ Wi, implying a deeper 366
discussion of node ti and its subaspects. 367

p(si,Wi) = H

([
sim

(
emb(si), emb(w)

)
| w ∈Wi

])
,

where H(X) =

∑|X|
r=1

1
r
xr∑|X|

r=1
1
r

(1)

368

We compute a weighted average based on Zipf’s Law 369
(Powers, 1998), where a word indexed at the r-th po- 370
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sition will have a weight of 1/r. This weighted aver-371
age of the segment-keyword similarities is based on372
the assumption that the model will implicitly generate373
the keywords from most to least significant– in other374
words, we weight the first term w1 ∈ Wi the highest,375
while weighing w|X| the lowest. For example, if si had376
similarities of [0.9, 0, 0] to Wi = {w1, w2, w3}, then377
p(si,Wi) = 0.5363. On the other hand, if the similar-378
ities were [0.7, 0.8, 0.7], p(si,Wi) = 0.7272. Overall,379
the target score will indicate a segment’s discussion380
depth of aspect node ti– how many keywords it aligns381
with and to what degree.382

Definition 4 (DISTRACTOR SCORE) A segment si is383
penalized based on the breadth and depth of siblings384
discussed. The breadth is indicated by the mean target385
scoring between si and each Wj of tj ∈ Th

̸=i. The depth386
is indicated by the max target scoring between si and387
each Wj of tj ∈ Th

̸=i.388

n(si, Th
̸=i) = 0.5×

(
1

|Th
̸=i|

|Th
̸=i|∑

j=1

p(si,Wj)

)

+ 0.5×
(
max

j=
[
1,|Th

̸=i
|
](p(si,Wj)

)) (2)389

We utilize the target and distractor scores to com-390
pute our overall discriminativeness score, which weighs391
the proximity between a segment and its target aspect,392
relative to its overall and individual proximity to its393
distractor, sibling aspects.394

Definition 5 (DISCRIMINATIVENESS SCORE) A seg-395
ment si is rewarded based on a weighted average (H)396
of its degree of similarity to all keywords w ∈ Wi, while397
being penalized based on the breadth and depth of sib-398
lings discussed.399

d(si,Wh) =
β × p(si,W

h
i )

γ × n(si, Th
̸=i)

(3)400

In Equation 3, d(si,Wh) grows proportional to the401
target score, while falling proportional to the distractor402
score. We include the β and γ scaling factors for each403
in case users would like to customize their degree of404
reward or penalty. Ultimately, we rank each segment405
s ∈ Si based on its discriminativeness score, taking the406
top-k segments which feature the richest discussion of407
target aspect ti in order to discover its subaspects.408

3.3 Iterative Subaspect Discovery409

In order to expand our aspect hierarchy, we iteratively410
exploit our aspect-discriminative retrieval as knowledge411
which grounds the LLM’s subaspect discovery. Given412
the aspect node ti, its description, its corresponding413
discriminative segments Si, and the root claim t0, we414
prompt the model to determine a set of at minimum two415
and at maximum k subaspects for aspect t0. We provide416
this prompt in Appendix A.3.417

Definition 6 (SUBASPECT) A more granular compo-418
nent of a parent aspect ti that further refines ti’s eval-419
uation and would be considered when specifically ad-420
dressing the root claim t0.421

Each subaspect is represented in the same manner spec- 422
ified in Section 3.1.3: its label, description, and key- 423
words. We continue constructing our aspect hierarchy 424
in a top-down fashion, as detailed in Algorithm 1 of 425
Appendix E. 426

Ultimately, the output of Algorithm 1 is our final 427
aspect hierarchy, serving as the basis for our consensus 428
determination and perspective discovery process. 429

3.4 Classification-Based Perspective Discovery 430

With the aspect hierarchy constructed, we must identify 431
the complete set of corpus segments that (1) pertain to 432
the root claim t0 and (2) align with an aspect node in 433
hierarchy T . Pinpointing papers discussing aspect node 434
ti allows us to infer their perspective on ti and assess 435
the presence and extent of consensus. However, as noted 436
in Section 3.1.1, we cannot assume all corpus segments 437
are relevant to the root claim—-an assumption made in 438
LLM-based taxonomy-guided hierarchical classification 439
works (Zhang et al., 2024a). Thus, we must first filter 440
out claim-irrelevant segments. 441

Filtering. A naive approach determines segment 442
relevance per node via in-context prompting, but this 443
scales poorly. Instead, we frame relevance filtering 444
as a binary search problem, identifying the relevance- 445
irrelevance boundary. Specifically, we embed the 446
claim label t0 (emb(t0)) and each child aspect t0i ∈ 447
T 0 (emb(“[aspect_label] with respect to [t0]”)), 448
computing the claim representation as: 449

c0 =
1

2

(
emb(t0) +

∑|T 0|
i=1 emb(t0i )

|T 0|

)
(4) 450

We rank the encoded segments by cosine-similarity to 451
c0 and use binary search to find the index r where fewer 452
than δ% of segments in a ±n window are relevant. This 453
rank r serves as our threshold, filtering out lower-ranked 454
segments and retaining only those relevant to t0 (S′

0). 455
This optimization significantly reduces the quantity of 456
relevance judgments necessary; the relevancy prompt is 457
in Appendix A.4. 458

Hierarchical Text Classification. With S′
0 and T , 459

we apply taxonomy-guided hierarchical classification 460
to determine S′

i for each aspect node ti ∈ T . Since our 461
focus is retrieval-guided aspect hierarchy construction 462
rather than classification, we adopt a recent LLM-based 463
hierarchical classification model (Zhang et al., 2024a), 464
which enriches taxonomy nodes (e.g., adding keywords) 465
to support its top-down classification of S′

i to ti. 466
Perspective & Consensus Discovery. The final 467

step of our pipeline is to determine the primary per- 468
spectives Pi = {ai, oi} towards each aspect node ti, 469
where ai is the overarching supportive perspective and 470
oi is the opposing perspective. We also seek to iden- 471
tify the papers which hold each of these perspectives 472
(Di = Dsupp

i ∪Dopp
i ∪Dneutral

i ), accounting for papers 473
which do not hold any clear perspective towards ti. 474

Definition 7 (PERSPECTIVE) A descriptive viewpoint 475
expressed toward a specific aspect ti of claim t0 in the 476
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form of an implicit or explicit stance towards ti (e.g.,477
support, neutral, or oppose) and optionally, a rationale.478

We do not assume that Dsupp
i , Dopp

i , and Dneutral
i are479

non-overlapping, as they may have multiple segments in-480
dicating different perspectives. For example, a segment481
s′i ∈ S′

i mapped to “Safety for Elders” may discuss a482
clinical trial showing increased anaphylactic shock in483
older patients when taking Vaccine A. However, another484
segment from the same paper may also note severe hives485
from Vaccine B. Thus, we allow for such flexibility.486

Recent studies have shown LLMs demonstrate power-487
ful abilities in stance detection (Zhang et al., 2024b; Lan488
et al., 2024). Consequently, in order to discover these489
perspectives, we prompt the model to first determine the490
stance of each segment s′i ∈ S′

i:491

• Supports Claim: s′i either implicitly or explicitly492
indicates that the claim is true with respect to ti.493

• Neutral to Claim: s′i is relevant to the claim and494
aspect, but does not indicate whether the claim is true495
with respect to ti.496

• Opposes Claim: s′i either implicitly or explicitly in-497
dicates that the claim is false with respect to ti.498

This forms the segment sets: Ssupp
i , Sneutral

i , and Sopp
i .499

We ask the model to summarize the perspective (stance500
and rationale) of each segment set: Pi. Both prompts501
are provided in Appendix A.5. Since we retain the502
original paper source of each segment, we are able to503
construct Di for each node ti. This indicates consensus;504
for instance, how many papers in D held perspective505
psupp
i towards aspect ti. As our final output, we have506

the aspect hierarchy T , the set of perspectives Pi,507
and their corresponding papers Di.508

4 Experimental Design509

We explore CLAIMSPECT’s performance on an open-510

source model, Llama-3.1-8B-Instruct ( ).511
We sample from the top 1% of the tokens and set the512
temperature based on the nature of the given task (same513
setting across all samples); we include these settings in514
Appendix B. We set the maximum depth of the aspect515
hierarchy to l = 3.516

4.1 Dataset517

In order to evaluate CLAIMSPECT’s abilities to decon-518
struct nuanced claims into a hierarchy of aspects and519
identify their corresponding perspectives, we construct520
two novel, large-scale datasets specific to our task,521
applied to both political (World Relations) and scien-522
tific (Biomedical) domains. To construct this dataset,523
we first manually collect ∼50 reference materials dis-524
cussing (1) security-related international conflicts, and525
(2) biomedical safety-related studies. Then, we used526
GPT-4o (OpenAI et al., 2024) to generate nuanced527
claims based on these materials. Subsequently, we used528
the Semantic Scholar API (Allen Institute for AI, 2025)529
to collect meta information relevant literature based on530
these claims. Then, based on this meta information,531

we filtered the collected literature and retrieved the full 532
texts. This way, for each claim, we obtained a corre- 533
sponding literature repository. We show the statistics of 534
each of these datasets in Tab. 1. More details about the 535
dataset construction can be found in Appendix C. 536

Dataset Claims Papers Segments

World Relations 140 9,525 1,081,241
Biomedical 50 3,719 428,833

Total 190 13,244 1,510,074

Table 1: # of claims, papers, and segments per dataset.

4.2 Baselines 537

Our primary motivation is to deconstruct a nuanced 538
claim into an aspect hierarchy and identify correspond- 539
ing perspectives. However, no existing methods tackle 540
this novel task. Consequently, we implement and com- 541
pare our method with both RAG-driven and LLM-only 542

approaches, run on both Llama ( ) and GPT-4o-mini 543

( ): (1) RAG-Based: Given a claim and definition 544
of an aspect hierarchy, we use the claim as a query to 545
retrieve relevant documents. We then provide the docu- 546
ments in-context when prompt the LLM to generate the 547
aspect hierarchy; (2) Iterative RAG-Based: Given a 548
claim, definition of an aspect hierarchy, and node infor- 549
mation, we construct a detailed query to retrieve relevant 550
documents and provide them in-context for subaspect 551
discovery; (3) No-Discriminative: An ablation study 552
(No Disc), where we replace the discriminative ranking 553
with an enriched semantic similarity rank. All details 554
are provided in Appendix D. 555

4.3 Evaluation Metrics 556

We design a thorough automatic evaluation suite using 557
GPT-4o-mini to determine the quality of our gener- 558
ated taxonomies, using both node-level and taxonomy- 559
level metrics. For each judgment, we ask the LLM to 560
provide additional rationalization: 561

• (Node-Wise) Node Relevance: For each aspect node 562
ti and its respective path within the hierarchy, what is 563
its relevance to the claim t0? Scored 0/1. 564

• (Node-Wise) Path Granularity: Does the path to 565
node ti preserve the hierarchical relationships be- 566
tween its entities (is each child tij more specific than 567
the parent ti)? Scored 0/1. 568

• (Level-Wise) Sibling Granularity: For each set of 569
siblings T i within the hierarchy, does the overall set 570
reflect the same level of specificity relative to their 571
parent aspect ti? Scored from 1 to 4 (all different → 572
some → most → all same). 573

• (Node-Wise) Uniqueness: Does the aspect node ti 574
have other overlapping nodes within the hierarchy T ? 575
Scored 0/1. 576

• (Node-Wise) Segment Quality: How many segments 577
s ∈ S′

i are relevant to the claim t0 and aspect ti? We 578
compute the average proportion of relevant segments 579
per node. 580
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Table 2: Comparison between ClaimSpect and all baselines. Sibling granularity (Sib) is normalized; all others are
scaled by 100. Since Iterative Zero-Shot is not grounded with a corpus, there are no associated segments to each
node. Thus, we omit its segment relevance scores (Seg). We bold the top score and underline the second-highest.

Method
World Relations Biomedical

Rel Path Sib Unique Seg Rel Path Sib Unique Seg

Iterative Zero-Shot 97.85 41.94 58.01 72.96 — 98.33 44.44 57.04 77.17 —

Iterative RAG 97.18 45.34 59.01 74.25 42.79 97.14 45.93 59.08 76.17 27.11

Iterative Zero-Shot 98.60 42.88 64.04 76.01 — 97.89 41.56 62.09 77.55 —

Iterative RAG 97.40 52.30 66.45 76.59 46.93 94.37 50.07 64.21 77.05 31.82

CLAIMSPECT 95.30 78.24 85.26 87.62 43.23 97.95 75.10 74.80 86.26 27.39

CLAIMSPECT - No Disc 99.00 79.75 82.64 85.43 49.47 96.07 76.26 74.39 87.69 39.03

Table 3: Pairwise comparisons between all methods for each dataset. Each value is the percentage of samples within
each dataset where the method is considered better. Inconsistent (Incon) indicates that when the position of the
methods are flipped in-prompt, the opposite conclusion is drawn (e.g., A wins in A vs. B, but B wins in B vs. A).

Method Pair (A vs. B)
World Relations Biomedical

A Wins B Wins Tie Incon A Wins B Wins Tie Incon

Zero-Shot vs RAG 0.00 33.06 0.00 66.94 2.22 22.22 0.00 75.55

Zero-Shot vs ClaimSpect 0.00 97.58 0.00 2.42 0.00 95.55 2.22 2.22

RAG vs ClaimSpect 0.81 90.32 0.00 8.87 0.00 95.55 0.00 4.44

ClaimSpect - No Disc vs ClaimSpect 21.43 30.00 0.00 48.57 24.00 28.00 0.00 48.00

Zero-Shot vs RAG 0.00 36.00 0.00 64.00 0.71 47.14 0.00 52.14

Zero-Shot vs ClaimSpect 0.00 98.00 0.00 2.00 0.00 96.43 0.00 3.57

RAG vs ClaimSpect 0.00 90.00 0.00 10.00 7.14 72.14 0.71 20.00

In addition to automatically evaluating our aspect581
hierarchy, we also conduct a supplementary human eval-582
uation on 50 perspectives and their sampled segments,583
which CLAIMSPECT identifies from the corpus (Section584
5.2).585

5 Experimental Results586

5.1 Overall Performance & Analysis587

Tables 2-3 demonstrate several key advantages of588
CLAIMSPECT over the baselines across various node589
and level-wise metrics for both the World Relations and590
Biomedical datasets. CLAIMSPECT is able to strongly591
enforce the hierarchical structure of the generated as-592
pect hierarchy while preserving relevance to the corpus.593
Below, we present our core findings and insights.594

CLAIMSPECT excels in granular aspect discov-595
ery. As shown in Tab. 2, CLAIMSPECT significantly596
outperforms the baselines in metrics associated with597
node-level structure, particularly outperforming Itera-598

tive RAG by 72.6% and 63.51% in preserving hier-599
archical relationships (path granularity) and by 44.48%600
and 26.61% in maintaining uniform sibling-level speci-601
ficity (sibling granularity) for both datasets respectively.602
This demonstrates the method’s ability to retrieve and603
organize aspects at targeted levels of granularity. These604
gains are similarly observed with the GPT-based base-605
lines, despite relying on a closed-source model. We606
attribute this gain to ClaimSpect’s iterative subaspect607
discovery (Section 3.3) being integrated with its aspect-608
discriminative retrieval mechanism (Section 3.2), where609
the pool of segments grounding the subaspect discovery610

is iteratively updated based on the given aspect node. 611
We can see that the No Disc ablation does experience 612
some loss in granularity quality. It is important to note 613
that No Disc does experience competitive and, at times, 614
better performance; this is likely due to it considering 615
more segments, which may or may not discuss multi- 616
ple aspects. In contrast, the baseline methods retrieve 617
broader, less focused segments, reducing their ability to 618
discover fine-grained sub-aspects. Overall, this demon- 619
strates that ClaimSpect is able to deconstruct a claim 620
into a well-structured hierarchy of aspects. 621

CLAIMSPECT constructs a rich aspect hierarchy 622
while preserving relevance. In Tab. 2, we observe that 623
ClaimSpect’s constructed hierarchy features nodes that 624
are 14.40% and 11.23% more unique than the top base- 625
line on each dataset, respectively. This indicates that 626
ClaimSpect’s hierarchies are richer in aspect quality, 627
experiencing less overlap between aspects across the 628
tree and supported by an increase in segment quality. 629
Despite this significant boost in uniqueness, ClaimSpect 630
only experiences a 3.35% and 0.386% drop from the 631
top baseline in aspect node relevance for the World Re- 632
lations and Biomedical datasets, respectively. This high- 633
lights the strength of ClaimSpect’s retrieval-augmented 634
keyword enrichment and aspect-discriminative retrieval 635
(Sections 3.2.1 and 3.2), which prioritize segments that 636
thoroughly discuss a single aspect rather than shallow 637
descriptions of multiple aspects. This allows us to dis- 638
cover a richer set of unique and relevant subaspects at 639
each level, throughout the hierarchy. 640

CLAIMSPECT is overwhelmingly preferred over 641
baselines. Tab. 3 presents pairwise comparisons be- 642
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Claim: Current vaccine platforms, including mRNA
technology, pose unprecedented risks due to a lack of long-
term studies on human genetic impact. (186 segments)

Aspect: Long-term Studies (12)
Description: The lack of long-term studies on
human genetic impact is a significant concern.

Aspect: mRNA Technology (58)
Description: The use of mRNA technology in
vaccines is a relatively new development.

Aspect: Genetic Impact Assessment (12)
Description: The assessment of genetic impact
is crucial for determining vaccine safety.

stability and storage

non-viral delivery routes

repeat administration

host genome interaction

mRNA degradation patterns

mRNA interactions with host
cellular mechanisms

mRNA long term risks

mRNA vaccine side effects

mRNA vaccine public perception

Aspect: Vaccine Safety Evaluation (35)
Description: The evaluation of vaccine safety is
crucial for assessing genetic impact.

Aspect: Genetic Risk Assessment (2)
Description: The assessment of genetic risks is a
critical part of genetic impact assessment,
especially with respect to genetic interaction risks,
long-term genetic impact, and integrating these
into the design process.

Aspect: Long-Term Studies on Vaccine Impact (21)
Description: Findings of current studies on
long-term vaccine effectiveness, storage stability, &
genetic impact.

Aspect: Genetic Impact Risks (1)
Description: Genetic impact risks of current vaccine
platforms need to be studied in the long term to
determine potential side effects.

Aspect: Vaccine Effectiveness (12)
Description: The long-term effectiveness of current
vaccine platforms should be studied to determine if
they remain effective over time.

Aspect: Long-term Side Effects (1)
Description: Long-term side effects of current vaccine
platforms need to be studied to determine the
potential risks to human health.

Aspect: mRNA Interaction with Host Genome (3)
Description: mRNA vaccines are designed to be
transient and not interact with the host genome, but
there may be potential risks associated with this
interaction that are not yet fully understood.

Aspect: mRNA Vaccine Delivery Methods (26)
Description: mRNA vaccines can be delivered to host
cells via non-viral delivery routes, which may interact
differently with host cells and potentially lead to
different long-term effects compared to viral vectors.

Aspect: mRNA Vaccine Long-Term Studies (46)
Description: There may be a need for more research
on the long-term effects of mRNA vaccines to fully
understand their risks and benefits.

Support (13/53 papers): Current vaccine platforms, including mRNA, pose potential risks due to limited long-term genetic impact
studies. Papers highlight platform limitations, the need for universal vaccines, and challenges with mRNA/LNP system stability.

Neutral (6/53): These segments emphasize the need for high-quality evidence on mRNA vaccine stability and potential risks but take
no clear stance on the claim.

Opposing (21/53): mRNA vaccines are safe and effective, with no unprecedented risks from limited long-term studies. Most segments
highlight benefits like rapid antibody response and flexible development, and some mention alternative technologies as more risky.

Perspectives

Figure 3: A constructed Biomedical aspect hierarchy. All nodes and their # of segments from levels 1-2 are included;
a subset of the third level is highlighted. The # of papers mapped to each perspective is provided in parentheses.

tween CLAIMSPECT and the baselines. Across both643
datasets, CLAIMSPECT exhibits a clear advantage.644

When compared with Zero-Shot , CLAIMSPECT645
is judged superior in 97.58% and 95.55% of cases for646
World Relations and Biomedical datasets, respectively.647

Even against RAG , CLAIMSPECT outperforms in648
90.00% and 72.14% of samples. This is a stark contrast649
from the lack of strong preference between the baselines650
themselves. These results validate that CLAIMSPECT651
constructs significantly more meaningful aspect hier-652
archies relevant to the claim.653

5.2 Perspective Discovery Analysis654

CLAIMSPECT identifies nuanced, corpus-specific655
perspectives. We showcase a qualitative analysis of656
a nuanced claim’s aspect hierarchy, highlighting certain657
subtrees and the root node’s extracted perspectives, in658
Fig. 3. We observe each coarse-grained aspect (yellow659
nodes) well represents the various angles of the root660
claim that would be considered in validating it: what661
long-term vaccine studies currently exist, what is the cur-662
rent mRNA technology, and how is genetic impact cur-663
rently assessed? We see that the path-specific dependen-664
cies are reflected within the descriptions of each aspect665
(e.g., “mRNA Interaction with Host Genome” involves666
both mRNA technology and potential genetic impact667
risks). Furthermore, these hierarchical relationships and668
claim relevance are preserved even in the final layer669
of the hierarchy (e.g., “mRNA Interaction with Host670
Genome” → “mRNA degradation patterns”). Finally,671
we see that the perspectives mapped to the root node are672
informative, providing justification behind each stance.673
Note that ClaimSpect maps segments to each perspec-674
tive, allowing us to identify the original paper sources675
and ultimately provide a corpus-specific estimate of676
the consensus. Overall, this deconstructed view of the677
claim provides a means to identify which and to what678
degree certain aspects have been explored (e.g., mRNA679

Technology has been more explored within the corpus 680
compared to Genetic Impact Assessment). 681

Human annotators validate the grounding of dis- 682
covered perspectives. To assess the validity of the per- 683
spectives discovered by CLAIMSPECT, we apply human 684
evaluation to evaluate whether these perspectives are ef- 685
fectively grounded in the corpus. We randomly sampled 686
50 perspectives along with their associated 5 segments 687
from the generated results across two datasets. The eval- 688
uation metric used was whether at least one segment in 689
5 could provide grounding background knowledge for 690
the corresponding perspective. As shown in Table 4 , 691
we found that in the majority of cases (72%) are sup- 692
ported by specific literature segments. This shows the 693
perspectives identified by CLAIMSPECT are largely 694
supported by the corpus. 695

Dataset Corpus Support Rate

World Relations 72.0%
Biomedical 72.0%

Total 72.0%

Table 4: Human validation on corpus support for per-
spectives discovered by CLAIMSPECT.

6 Conclusion 696

Our work introduces CLAIMSPECT, a novel framework 697
for deconstructing nuanced claims into a hierarchy of 698
corpus-specific aspects and perspectives. By integrat- 699
ing iterative, aspect-discriminative retrieval with hierar- 700
chical sub-aspect discovery and perspective clustering, 701
CLAIMSPECT provides a structured, comprehensive 702
view of complex claims. Our experiments on two novel, 703
large-scale datasets demonstrate that CLAIMSPECT con- 704
structs rich, corpus-aligned aspect hierarchies that are 705
enriched with diverse and informative perspectives. This 706
highlights its effectiveness as a scalable and adaptable 707
method for nuanced claim analysis across domains. 708
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7 Limitations & Future Work709

The primary contribution of CLAIMSPECT is our710
retrieval-augmented framework for constructing an as-711
pect hierarchy relevant for validating a nuanced claim.712
In order to demonstrate the hierarchy’s potential, we713
apply it to the task of perspective discovery, involv-714
ing (1) identifying which segments from the corpus715
are relevant to a given aspect node, (2) determining716
the stance (or lack thereof) of the segment towards the717
claim and aspect, and (3) discovering the potential per-718
spective of each of the stance-based segment clusters.719
Consequently, this step relies heavily upon an existing720
hierarchical classification model (Zhang et al., 2024a),721
as we do not claim novelty with respect to classification.722
Similarly, our classification-based perspective discov-723
ery (Section 3.4) is reliant on the LLM’s fine-grained724
stance detection abilities— although prior work (Zhang725
et al., 2024b; Lan et al., 2024) has shown precedence726
for its capabilities. Thus, the performance of the hier-727
archical classification and stance detection serves as a728
bottleneck to our method’s performance. For example,729
if the LLM-based stance detection has a high recall730
but low precision for detecting segments which support731
the aspect of claim, then the method may overestimate732
the consensus behind a certain perspective within the733
corpus. Likewise, if the detection has a high precision734
but lower recall, it may underestimate the consensus.735
Nonetheless, our work aims to, overall, motivate the736
need to structure the aspects of certain nuanced claims737
before diving straight into their validation.738

Hierarchically analyzing nuanced claims opens up739
doors to many new avenues of research. First, CLAIM-740
SPECT can be integrated with more systematic and/or741
tool-integrated fact validation systems, in an effort to742
build a more robust fact-checking system. Furthermore,743
CLAIMSPECT can be applied to more targeted retrieval744
or question answering tasks where a question, similar745
to a nuanced claim, cannot easily be answered and may746
benefit from a more structured output (similar to an747
aspect hierarchy).748
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A Prompt Template903

In this section, we present the prompts used in different904
modules of CLAIMSPECT.905

A.1 Coarse-Grained Aspect Discovery906

This is the prompt used to generate coarse-grained907
aspects for the root claim, including their labels, de-908
scription, and relevant keywords to structure the initial909
retrieval-augmented hierarchy.910

Prompt
For the topic, {topic}, output the list of up to {k}
aspects in JSON format.

911

A.2 Retrieval-Augmented Keyword Enrichment912

Following are the prompts used for retrieval-augmented913
keyword enrichment, instructing the LLM to refine and914
filter aspect-specific keywords for improved segment915
ranking.916

Prompt (Extraction)
The claim is: {claim}. You are analyzing it
with a focus on the aspect {aspect_name}. The
aspect, {aspect_name}, can be described as the
following: {aspect_description}
Please extract at most {2*max_keyword_num}
keywords related to the aspect {aspect_name}
from the following documents: {contents} En-
sure that the extracted keywords are diverse, spe-
cific, and highly relevant to the given aspect.
Only output the keywords and seperate them
with comma. Your output should be in JSON
format.

917

Prompt (Filtering)
Our claim is ’{claim}’. With respective to
the target aspect ’{aspect_name}’, identify
{min_keyword_num} to {max_keyword_num}
relevant keywords from the provided list: {key-
word_candidates}.
{aspect_name}: {aspect_description}
Merge terms with similar meanings, exclude rel-
atively irrelevant ones, and output only the final
keywords separated by commas.
Your output should be in JSON format.

918

A.3 Iterative Subaspect Discovery919

Following is the prompt used to iteratively guide the920
LLM in discovering and expanding subaspects for each921
aspect node based on discriminative retrieval and root922
claim context.923

Prompt
Output the list of up to {k} subaspects of parent
aspect {aspect} that would be considered when
evaluating the claim, {topic}. claim: {topic}
parent_aspect: {aspect}; {aspect_description}
path_to_parent_aspect: {aspect_path} Provide
your output in the following JSON format.

924

A.4 Relevance Filtering 925

Following is the prompt used for relevance filtering, 926
leveraging binary search on cosine-similarity rankings 927
to efficiently identify and retain only the most relevant 928
segments for each aspect. 929

Prompt
I am currently analyzing a claim based on a seg-
ment from the literature from several different
aspects. The segment is: {segment} The claim is:
{claim} The aspects are: {aspects} Please help
me determine whether this segment is related to
the claim so that I can analyze this claim based
on it from at least one of these aspects. Your
output should be ’Yes’ or ’No’ in JSON format.

930

A.5 Perspective Discovery 931

Following are prompts used to for determining segment 932
stances (support, neutral, or oppose) and summarizing 933
perspectives, including rationales, for each aspect. 934

Prompt
You are a stance detector, which determines the
stance that a segment from a scientific paper has
towards an aspect of a specific claim. Oftentimes,
scientific papers do not provide explicit, outright
stances, so your job is to figure out what stance
the data or statement that they are presenting
implies. Segment: {segment.content}
What is the segment’s stance specifically with
respect to {aspect_name} for if {claim}?
{aspect_name} can be described as {as-
pect_description}. Claim: {claim} Aspect to
consider: {aspect_name}: {aspect_description}
Path to aspect: {aspect_path}
Your stance options are the following: - sup-
ports_claim: The segment either implicitly or
explicitly indicates that claim is true specific to
the given aspect. - neutral_to_claim: The seg-
ment is relevant to the claim and aspect, but does
not indicate whether the claim is true specific to
the given aspect. - opposes_claim: The segment
either implicitly or explicitly indicates that the
claim is false specific to the given aspect. - irrel-
evant_to_claim: The segment does not contain
relevant information on the claim and the aspect.

935
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B Generative Settings936

This section details the temperature values used in vari-937
ous stages of our process and their respective roles.938

B.1 Overview of Temperature Settings939

• Coarse-Grained Aspect Discovery (0.3): Used940
to generate high-level aspects related to the claim.941
A lower temperature ensures structured and deter-942
ministic output.943

• Subaspect Discovery (0.7): Used for identifying944
subaspects from ranked segments. A higher tem-945
perature allows for more diversity while maintain-946
ing coherence.947

• OpenAI Chat Models (GPT-4o (OpenAI et al.,948
2024), GPT-4o-mini (OpenAI et al., 2024)) (0.3):949
Applied in various stages where GPT-4o models950
are used (e.g., aspect generation, classification),951
ensuring consistent responses.952

• Subaspect Discovery (Aspect Ranking and Re-953
trieval) (0.7): Used when extracting subaspects954
from ranked segments to balance creativity with955
relevance.956

B.2 General Trends957

• Lower temperature (0.3) is used for structured958
and deterministic tasks such as aspect generation959
and classification.960

• Higher temperature (0.7) is applied to subaspect961
discovery, where diversity and exploration are ben-962
eficial.963

C Dataset Construction964

To evaluate the effectiveness of CLAIMSPECT, our nu-965
anced claims analysis, we constructed two datasets cov-966
ering two key domains: political (World Relations)967
and scientific (Biomedical). The dataset construction968
process consists of the following steps:969

C.1 Manual Seed Collection970

We begin by manually collecting a set of seed claims971
from reliable sources such as Google Scholar (Google972
Scholar, 2025) and PubMed (PubMed, 2025). Specifi-973
cally, we collect material from 7 papers in the World Re-974
lations domain and 50 papers in the Biomedical domain.975
These initial materials serve as a context or specific976
topics for generating nuanced claims.977

C.2 Nuanced Claims Generation978

Using the literature collected in the previous step and979
definition of nuanced claims as context, we prompt980
GPT-4o (OpenAI et al., 2024) to generate nuanced981
claims related to the topics within these papers. To en-982
sure diversity in claim perspectives, we employ two sets983
of prompts: one for generating claims that align with the984
perspectives in the literature and another for generating985

claims that diverge from them. The specific prompts 986
used are detailed below. 987

Positive Claim Generation Prompt
Scientific or political claims are often nuanced
and multifaceted, rarely lending themselves to
simple “yes” or “no” answers. To answer such
questions effectively, claims must be broken into
specific aspects for in-depth analysis, with evi-
dence drawn from relevant scientific literature.
We are currently studying such claims using this
corpus:
{context}
Task: Generate 10 nuanced and diverse claims
based on this corpus. The claims should adhere
to the following criteria:
1. Diversity: The claims should be sufficiently
varied: they should involve diverse sub-topics in
the context
2. Complexity: The claims should be complex
and controversial (and not necessarity true), re-
quiring multi-aspect analysis rather than simplis-
tic treatment. Avoid overly straightforward or
simplistic claims.
3. Research Feasibility: The claims should not
be too specific and should pertain to topics with
a likely body of existing literature to support
evidence-based exploration.
4. Concision: The claims should be concise and
focused in one short sentence.
5. Completeness: The claims should be complete
and not require additional context to understand.
Output: Provide the claims as a list.

988
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Negative Claim Generation Prompt
Scientific or political claims are often nuanced
and multifaceted, rarely lending themselves to
simple “yes” or “no” answers. To answer such
questions effectively, claims must be broken into
specific aspects for in-depth analysis, with evi-
dence drawn from relevant scientific literature.
We are currently studying such claims using this
corpus:
{context}
Task: Generate 10 nuanced and diverse claims
based on this corpus. The claims should adhere
to the following criteria:
1. Diversity: The claims should be sufficiently
varied: they should involve diverse sub-topics in
the context
2. Complexity: The claims should be complex
and controversial (and not necessarity true), re-
quiring multi-aspect analysis rather than simplis-
tic treatment. Avoid overly straightforward or
simplistic claims.
3. Research Feasibility: The claims should not
be too specific and should pertain to topics with
a likely body of existing literature to support
evidence-based exploration.
4. Concision: The claims should be concise and
focused in one short sentence.
5. Completeness: The claims should be complete
and not require additional context to understand.
6. The claims should be against the point of
view in the context.
Output: Provide the claims as a list.

989

We find that the generated nuanced claims are of high990
quality. They are content-rich, specific, and difficult991
to classify as simply true or false, aligning well with992
our task requirements. Below are some example claims993
from our datasets.994

Claims for World Relations
1. International collaborations under the Global
Nuclear Security Program prioritize geopolitical
alliances over immediate nuclear threat reduc-
tion.
2. Counteracting WMDs through international
partnerships creates dependency and may hin-
der national self-sufficiency in threat reduction
capabilities.
3. The effectiveness of the biological threat re-
duction component is questionable given the rise
and global spread of emerging biological threats.

995

Claims for Biomedical Domain
1. COVID-19 vaccine safety evaluations are com-
promised by inconsistent application of evidence
standards across different data sources like RCTs
and VAERS.
2. The rigid adherence to optimized distribution
plans might inhibit the flexibility needed to re-
spond to unforeseen disruptions in the vaccine
supply chain.
3. Keeping manufacturing costs secret is essen-
tial for protecting proprietary processes and in-
novations in the pharmaceutical industry.

996

C.3 Meta Information Collection 997

To support the corpus-based analysis of each claim, we 998
retrieve relevant literature using the Semantic Scholar 999
API (Allen Institute for AI, 2025). 1000

Since our claims are highly nuanced and involve mul- 1001
tiple concepts, directly searching for claims themselves 1002
does not yield useful matches based on literature titles 1003
and abstracts. To address this, we first perform keyword 1004
extraction for each claim. We then use the extracted key- 1005
words to query the Semantic Scholar API and retrieve 1006
up to 1000 related literature entries for each claim. 1007

C.4 Filtering and Full-Text Collection 1008

After obtaining the literature metadata, we first filter 1009
out entries with missing fields and retain the top 100 1010
most relevant papers based on relevance. We then utilize 1011
the provided PDF URLs to download the full-text of 1012
the selected literature and convert them into plain text 1013
with pdftotext (Palmer, 2024). As a result, we obtain 1014
a comprehensive textual literature repository for each 1015
claim, ensuring a rich contextual foundation for further 1016
analysis. 1017

This structured approach ensures a robust dataset suit- 1018
able for nuanced claims analysis across the domains. 1019

D Baselines 1020

Our primary motivation for CLAIMSPECT is to demon- 1021
strate its capabilities of deconstructing a nuanced claim 1022
into an aspect hierarchy and identifying corresponding 1023
perspectives. However, no existing methods tackle this 1024
novel task. Consequently, we choose to implement and 1025
compare our method with both RAG-driven and LLM- 1026
only approaches, detailed below. We run each baseline 1027

using both Llama ( ) and GPT-4o-mini ( ): 1028

1. RAG-Based: Given a claim and definition of an 1029
aspect hierarchy, we use the claim as a query to 1030
retrieve relevant documents. We then provide the 1031
documents in-context when prompt the LLM to 1032
generate the aspect hierarchy. 1033

2. Iterative RAG-Based: Given the claim, the 1034
definition of an aspect hierarchy, and the 1035
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name/description of the current node ti, we con-1036
struct a detailed query to retrieve node-specific1037
relevant documents. We then provide these docu-1038
ments in-context to prompt the LLM for generating1039
the children subaspects tij of aspect ti.1040

We also conduct an ablation study, No Discriminative1041
(No Disc), where we remove discriminative ranking1042
and instead replace it with a semantic similarity-based1043
ranking. For this, we compute the semantic similarity1044
between each segment and our ti-specific query from1045
Section 3.2.1.1046

E Top-Down Construction Algorithm1047

Algorithm 1 Iterative Subaspect Discovery
Require: Root Claim t0, Corpus D, max_depth=l
1: T = initialize_tree(t0) {T .depth = 0}
2: t0i ∈ T 0 ← coarse_grained_aspects(t0) {Section 3.1.3}
3: q = queue(T 0)
4: while len(q) > 0 and T.depth ≤ l do
5: ti ← pop(q)
6: enrich_node(t0, ti, D) {Section 3.2.1}
7: Si ← rank_segments(t0, ti, D) {Section 3.2.2}
8: tij ∈ T i ← subaspect_discovery(t0, ti, Si)
9: q.append(T i)

10: end while
11: return T

14
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