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ABSTRACT

Combinatorial Optimization (CO) problems are fundamentally important in numer-
ous real-world applications across diverse industries, characterized by entailing
enormous solution space and demanding time-sensitive response. Despite recent
advancements in neural solvers, their limited expressiveness struggles to capture
the multi-modal nature of CO landscapes. While some research has shifted towards
diffusion models, these models still sample solutions indiscriminately from the en-
tire NP-complete solution space with time-consuming denoising processes, which
limit their practicality for large problem scales. We propose DISCO, an efficient
DIffusion Solver for large-scale Combinatorial Optimization problems that excels
in both solution quality and inference speed. DISCO’s efficacy is twofold: First, it
enhances solution quality by constraining the sampling space to a more meaningful
domain guided by solution residues, while preserving the multi-modal properties of
the output distributions. Second, it accelerates the denoising process through an an-
alytically solvable approach, enabling solution sampling with minimal reverse-time
steps and significantly reducing inference time. DISCO delivers strong perfor-
mance on large-scale Traveling Salesman Problems and challenging Maximal
Independent Set benchmarks, with inference duration up to 5.28 times faster than
existing diffusion solver alternatives. By incorporating a divide-and-conquer strat-
egy, DISCO can well generalize to solve unseen-scale problem instances off the
shelf, even surpassing models specifically trained for those scales.

1 INTRODUCTION

Combinatorial Optimization (CO) is a fundamental field in both computer science and operations
research, encompassing the search for an optimal solution from a finite set of entities. These
challenges are widespread in various real-world applications across diverse industries, spanning
logistics (Ma et al., 2023; Li et al., 2024), production scheduling (Ye et al., 2024a; Zhang et al., 2024),
and resource allocation (Zhao et al., 2021a; 2022). A distinctive characteristic of CO problems is
the exponential expansion of their solution space as the problem scale increases. This exponential
growth is particularly pronounced in the case of NP-complete (NPC) problems (Garey & Johnson,
1979), representing the most formidable challenges within NP and posing a formidable obstacle to
precisely finding an optimal solution within a polynomial time frame.

In recent years, deep learning algorithms have showcased remarkable capabilities in CO problem
solving (Choo et al., 2022; Kim et al., 2022). However, these learning-based solvers are susceptible to
being misled by the multi-modal landscapes in CO problems (Khalil et al., 2017), wherein the learning
agent is required to identify a set of optimal solutions. This multi-modal property complicates the
learning, hindering efficient convergence to desired solutions, particularly when confronted with
large problem scale (Chen & Tian, 2019; Wu et al., 2021). Diffusion probabilistic models (Ho et al.,
2020; Song et al., 2021a) have demonstrated robust capabilities in generation tasks. Of particular
interest, Chi et al. (2023) and Huang et al. (2023b) have employed diffusion methods for decision
model construction, showcasing their inherent advantages in addressing multi-modal problems. This
serves as inspiration for us to explore the application of diffusion methods to CO.

We are not the first to apply diffusion models to CO problems. Graikos et al. (2022) tackle Euclidean
Traveling Salesman problems (TSP) by converting each instance into a low-resolution greyscale
image and then utilizing a Convolutional Neural Network (CNN) (LeCun et al., 1998) for denoising
the solution. Sun & Yang (2023) propose DIFUSCO to explicitly model problem structures with
Graph Neural Networks (GNNs) (Gori et al., 2005). Li et al. (2024) further develop DIFUSCO with
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an objective-guided, gradient-based search during deployment. Although these approaches show
improved performance, they still indiscriminately sample solutions from the entire NPC solution
space, simulating a Markov chain for generation with many steps. The incurred time overhead for
unproductive solution sampling is a critical bottleneck in applying diffusion solvers to real-world
instances, especially when dealing with large problem scales (Xu et al., 2018).

We contend that the potential of diffusion models in addressing large-scale CO problems has yet to
be fully discovered. We propose DISCO, an efficient DIffusion Solver for large-scale Combinatorial
Optimization problems. DISCO improves solution quality by restricting the sampling space to a
more meaningful domain, guided by solution residues, and enables rapid solution generation with
minimal denoising steps. DISCO delivers strong performance on large-scale TSP instances and
challenging Maximal Independent Set (MIS) benchmarks, with inference duration up to 5.28 times
faster than other diffusion solver alternatives. Through further leveraging the multi-modal property
and efficiency of DISCO, we can well generalize it to solve unseen-scale instances with a traditional
divide-and-conquer strategy (Fu et al., 2021; Ye et al., 2024b) off the shelf, even outperforming
models specifically trained for corresponding scales.

2 RELATED WORK

Combinatorial Optimization Combinatorial optimization (CO) problems have garnered consid-
erable attention over the years due to their extensive applicability across diverse domains such as
logistics (Bello et al., 2016; Kool et al., 2019), production scheduling (Ye et al., 2024a; Zhang et al.,
2024), and resource allocation (Zhao et al., 2021a; 2022). However, the exponential growth of the
solution space, as the problem scale escalates for these NPC problems (Garey & Johnson, 1979),
poses a formidable challenge for finding an optimal solution within a polynomial time frame. Tradi-
tional solvers for CO problems can be classified into exact algorithms, approximation algorithms, and
heuristic methods. Exact algorithms (Lawler & Wood, 1966; Schrijver et al., 2003), such as dynamic
programming (Cormen et al., 2022) and cutting-plane methods (Wolsey & Nemhauser, 2014), aim to
exactly find the optimal solution for each test instance. However, they only suit small to medium-
sized problems due to the inherent heavy computational complexity. Approximation (Hochba, 1997;
Vazirani, 2001) and heuristic (Glover & Kochenberger, 2006; Michalewicz & Fogel, 2013) methods,
on the other hand, are used when the problem scale is large or time constraints exist for finding
solutions. These methods can find solutions within an acceptable time cost. However, they typically
heavily rely on expert knowledge (Helsgaun, 2017; Taillard & Helsgaun, 2019) and cannot guarantee
the high quality of the final discoveries.

Learning for Combinatorial Optimization With the blossoming of deep learning mechanisms
that do not heavily rely on expert knowledge and can be easily adapted to various automated search
processes, researchers have widely explored neural solvers for CO problems. These approaches
encompass both supervised learning (SL) (Vinyals et al., 2015) and reinforcement learning (RL) (Mnih
et al., 2015). From a practical perspective, the choice between SL and RL depends on the availability
of problem data. For online operation problems (Seiden, 2002; Borodin & El-Yaniv, 2005), the input
data is progressively revealed, and decisions must be made immediately upon data arrival. Such
problems require algorithms to make decisions without fully understanding the problem, typically
modeled as Markov Decision processes and solved through trial-and-error methods using RL (Zhao
et al., 2021b; 2023). Conversely, for offline problems (Papadimitriou & Steiglitz, 1998), all input
data and all constraints are fully provided before solving the problems. The decision-makers can
fully utilize all relevant information for comprehensive analysis and iteratively improve solution
quality. Providing an initial solution by SL and further refining it by decoding strategies (Croes,
1958; Kool et al., 2019; Graikos et al., 2022) has become a common practice (Deudon et al., 2018).
Most CO problems can be modeled as decision problems on graphs (Yolcu & Póczos, 2019; Li &
Si, 2022; Zhang et al., 2024). Notably, TSP (Bi et al., 2022) and MIS (Darvariu et al., 2021) stand
out as two foundations regarding edge and node decision problems. DISCO leverages anisotropic
GNNs (Bresson & Laurent, 2018; Joshi et al., 2022) as the backbone to produce embeddings for both
graph edges and nodes, adequately demonstrating its superiority on both large-scale TSP and MIS
instances through extensive evaluations.

Diffusion Probabilistic Model Diffusion probabilistic models (DPMs) (Ho et al., 2020; Song et al.,
2021a) are primarily utilized for high-quality generation and have exhibited robust capabilities in
generating images (Huang et al., 2023c), audios (Luo et al., 2024), and videos (Ho et al., 2022). This
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impressive method was initially formulated by Sohl-Dickstein et al. (2015) and further extended by Ho
et al. (2020) through the proposal of a general generation framework. Its principle involves simulating
a forward process of gradually introducing noise, followed by training a reverse noise removal model
to generate data. These models can further adjust the conditional variables (Dhariwal & Nichol, 2021)
during the reverse process to generate data samples that satisfy specific attributes or conditions. In
comparison to other generative models such as Generative Adversarial Networks (Goodfellow et al.,
2014; Radford et al., 2015), diffusion models demonstrate higher stability during training. This is
attributed to their avoidance of adversarial training and they gradually approach the true distribution
of the data by learning to remove noise.

Diffusion for Combinatorial Optimization In addition to stable and high-quality generation,
DPMs have exhibited a promising prospect for generating a wide variety of distributions (Huang et al.,
2023b). This multi-modal property particularly benefits CO problem solving, where multiple optimal
solutions may exist and confront the limited expressiveness of previous neural solvers (Gu et al.,
2018; Li et al., 2018). Some attempts have been made. Graikos et al. (2022) convert TSP instances
into low-resolution greyscale images encoded by CNN. Sun & Yang (2023) propose DIFUSCO to
incorporate GNN for problem representation while Li et al. (2024) further develop DIFUSCO with
an objective-guided, gradient-based search during deployment. These efforts overlook the inefficient
solution sampling from enormous NPC solution space and the slow reverse process of diffusion
models, which significantly hampers their practicality for large-scale real-world applications (Xu
et al., 2018). DISCO differentiates itself by developing a specialized diffusion process tailored for
CO, optimizing both forward and reverse processes. Specifically, DISCO employs an analytical
denoising process (Huang et al., 2023a) to quickly produce high-quality solutions with very few
denoising steps, while reducing solution space associated with NPC problems by introducing solution
residues (Liu et al., 2024). This enhanced efficiency on both solution quality and inference speed
further amplifies DISCO’s advantages in generalizing to the CO challenge of unseen scales.

3 PRELIMINARY

Combinatorial optimization can generically be framed as the task of finding a valid solution Xs from
a discrete solution space Xs = {0, 1}N for a given instance s, while minimizing the task-specific
cost function cost(Xs) (Papadimitriou & Steiglitz, 1998). The optimal solution X∗

s is defined as:

argmin
Xs∈Xs

cost(Xs). (1)

Taking TSP instances as an example, N represents the edge number, Xi ∈ Xs indicates whether the
i-th edge is selected, and costs(X) means the tour length of X. Parameterized solvers, denoted as
p(·|s), are trained to predict the probability distribution over each problem variable. Either supervised
learning (Vinyals et al., 2015; Sun & Yang, 2023) or reinforcement learning (Bello et al., 2016; Kool
et al., 2019) mechanisms have been extensively explored.

While previous neural CO solvers have shown promising results, they usually suffer from the
expressiveness limitation when confronted with multiple optimal solutions for the same graph (Khalil
et al., 2017; Gu et al., 2018). Thanks to recent advances in generative models, DPMs have exhibited
promising prospects for generating a wide variety of distributions (Ho et al., 2020; Huang et al.,
2023b) suitable for CO solving.

DPMs view the input-to-noise process as a parameterized Markov chain that gradually adds noise to
the original data x0 until the signal is completely corrupted, this forward process is first formulated
by Sohl-Dickstein et al. (2015) with the definition:

q(xt | x0) = N
(
xt;αtx0, β

2
t I
)
, (2)

where αt and βt are the differentiable functions of time t with bounded derivatives, xt is noisy data,
and I is the identity matrix. Song et al. (2021b) give proof that this Markov chain can be represented
by the following stochastic differential equation:

dxt = htxt dt+ g(t) dwt, x0 ∼ q(x0), (3)

where ht = d logαt

dt , g2t =
dβ2

t

dt − 2htβ
2
t , and wt denotes the standard Wiener process (Einstein,

1905).
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Residue-Constrained

Solution Space

Residue
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𝑿𝑆 𝑿𝑆

(a) Traditional denoising process. (b) Ours.

Figure 1: In comparing DISCO’s solution sampling with traditional diffusion methods. We define darker
colors to represent higher solution quality. (a) Traditional diffusion generation indiscriminately spans the entire
mixed-quality solution space, i.e., a significant proportion of the samples do not satisfy problem constraints. (b)
DISCO constrains the generations close to the high-quality label Xs by introducing residues, resulting in a more
meaningful, yet smaller, solution space, while preserving the multi-modal properties of the output distributions.

4 METHOD

At the outset, we introduce solution residues in Sec. 4.1, which restricts the sampling space for large-
scale CO problems to a more meaningful domain, ensuring solution effectiveness while preserving
diversity. In Sec. 4.2, we present our analytical denoising process to generate high-quality solutions
with minimal reverse-time steps. In Sec. 4.3, we further leverage the multi-modal property and
efficiency of DISCO to generalize it to unseen scales with a traditional divide-and-conquer strategy.

4.1 RESIDUE-CONSTRAINED SOLUTION GENERATION

The NPC solution space grows exponentially with CO problem scales. The reverse generation
covering such an enormous space is inefficient since many samples do not even adhere to problem
constraints, as depicted in Fig. 1 (a). We propose our DISCO method to restrict the sampling from
the entire NPC space to a more meaningful domain while still preserving the multi-modal property of
output distributions. We achieve this by introducing solution residues (Liu et al., 2024) to prioritize
certainty besides noises to emphasize diversity, as shown in Fig. 1 (b). The reversed process starts
from both noise and an exceedingly economical degraded solution, confining the generated samples
close to the high-quality input data. Driving a high-quality solution from a degraded or heuristic one
has been verified as effective and is widely adopted in solving various CO problems (Zhao et al.,
2022; Zhang et al., 2024). Conditional guidance can decrease the unconditional likelihood of the
sample while increasing the conditional likelihood, leading to higher sample quality (Ho & Salimans,
2022).

Given problem instance s, parameterized DPM p(·|s) generates conditionally independent probability
distribution x0 for each problem variable, also known as heatmap scores (Fu et al., 2021; Sun &
Yang, 2023). Subsequently, task-specific decoding processes (Croes, 1958; Kool et al., 2019) are
employed to transform predicted x0 into discrete solution Xs. We denote Xd a readily obtainable
degraded solution that satisfies problem constraints and solution residues xres = Xd − x0. Take
TSP as an example, Xd can be obtained by connecting vertices in the graph in a sequential order to
form a tour. By introducing the residue xres, the forward diffusion process is the mapping from the
high-quality solution to the mixture of noise and degraded solution:

xt = x0 + (1− αt)xres + βtϵ, ϵ ∼ N (ϵ;0, I), (4)

where x0 = Xs denotes the high-quality solution label and xt is the noisy solution. According to the
reversed process of DDPM (Ho et al., 2020), we can derive the transition probability of the reversed
process that is defined as:

q(xt−1|xt,x0) ∝ exp

{
− (xt−1 − u)2

2σ2I

}
,

u =
αt−1αtβ

2
t−1 + α2

t−1 − α2
t

αt−1β2
t

xt +
(α2

t − α2
t−1)(1− αt)

αt−1β2
t

xres +
α2
t − α2

t−1

αt−1βt
ϵ,

σ2 =
(α2

t−1 − α2
t )β

2
t−1

α2
t−1β

2
t

.

(5)
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The residue prioritizes certainty while the noise emphasizes diversity, so that the solution space for
sampling is effectively constrained. For the learning process, the diffusion model only needs to learn
the residue between the high-quality label Xs and the proposed degraded solutions Xd rather than
the original Xs, which simplifies the learning. For the inference process, the generations are confined
close to the high-quality label Xs by introducing residues, allowing the model to efficiently find
high-quality solutions while leveraging this meaningful diversity to further improvement.

4.2 ANALYTICALLY SOLVABLE DENOISING PROCESS

The residue-constrained denoising process allows for the efficient generation of high-quality solutions;
however, typical DDPM usually takes 900∼1000 sampling steps for the inference. The slow solving
speed significantly limits the practical application of diffusion solvers in real-world CO problems,
particularly considering many time-sensitive demands, such as on-call routing (Ghiani et al., 2003)
and on-demand hailing service (Xu et al., 2018), not to mention the large-scale operation challenges.

To avoid time-consuming numerical integration and generate high-quality solutions with fewer steps,
we substitute the numerical integration process with an analytically solvable form. Inspired by
decoupled diffusion models (DDMs) (Huang et al., 2023a), the original mapping in Eq. 4 can be
decoupled into an analytical high-quality solution to degraded solution and a zero-to-noise mapping:

xt = x0 +

∫ t

0

xresdt+
√
tϵ, ϵ ∼ N (ϵ;0, I), (6)

where x0 +
∫ t

0
xresdt represents the solution to degradation, and

√
tϵ denotes the zero-to-noise

process. More importantly, since there is an analytical solution-to-degradation in the forward process,
we can derive the corresponding reversed process with a similar analytical form. In this way, the
efficiency of the reversed process can be improved by much fewer evaluation steps, e.g., inference
with 1 or 2 steps. More specifically, we employ continuous-time Markov chain with the smallest
time step ∆t → 0+ and use conditional distribution q(xt−∆t | xt,x0) to approximate q(xt−∆t | xt),
which is formulated by:

q(xt−∆t|xt,x0) ∝ exp

{
− (xt−∆t − u)2

2σ2I

}
,

u = xt −
∫ t

t−∆t

xresdt−∆tϵ/
√
t, σ2 = ∆t(t−∆t)/t,

(7)

where ϵ ∼ N (0, I). Benefiting from the analytical solution to degradation, we avoid the numerical
integration-based denoising and instead directly sample heatmap x0 with an arbitrary step size, which
significantly reduces the inference time.

We provide a theoretical analysis of the equivalence between DISCO and DDM in App. A, supporting
the effectiveness of our method. It is important to note that DDMs are not directly adopted by DISCO.
We integrate our residue-constrained design with DDMs, leading to refined diffusion processes and
training objectives. DISCO can efficiently achieve high-quality solutions by sampling from the
constrained solution space with fewer denoising steps, meeting the requirements of large-scale CO.

Training We adopt anisotropic GNNs (Bresson & Laurent, 2018; Joshi et al., 2022) as the network
architecture of DISCO. Unlike typical GNNs such as GCN (Kipf & Welling, 2016) or GAT (Velickovic
et al., 2017) designed for node-only embedding, anisotropic GNNs produce embeddings for both
nodes and edges, which are then fed into the diffusion model to generate heatmaps. Practically, we
input the noisy solution xt, the nodes and edges of Xd, and the time t into the anisotropic GNN
with parameter θ, predicting the parameterized residue xθ

res and noise ϵθ simultaneously. Specific
implementation details are provided in App. G.

We focus on offline CO problems. Therefore, we train DISCO in an efficient and stable supervised
mechanism to discover common patterns from high-quality solutions available for each instance. This
also helps circumvent the challenges associated with scaling up and the latency in the inference that
arises from the sparse rewards and sample efficiency issues when learning in an RL framework (Ma
et al., 2021; Wu et al., 2021), especially at large scales. The training objective is defined as:

min
θ

Eq(Xs)Eq(ϵ)

[
∥xθ

res − xres∥2 + ∥ϵθ − ϵ∥2
]
. (8)
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Figure 2: Our multi-modal graph search method, illustrated using a TSP instance for simplicity. M & D denotes
merging a combination of heatmaps c to global heatmap H and decoding a trial X from H.

Once trained, the model can be applied to generate heatmaps for a virtually unlimited number of un-
seen graphs during deployment. These heatmaps are fed into decoding strategies like Greedy (Graikos
et al., 2022), Sample (Kool et al., 2019), 2-opt (Croes, 1958), to achieve the final solution.

Sampling Eq. 6 shows the endpoint of the forward process is the mixture of the degraded solution
and noise, therefore, we start from the mixture in the sampling process. Given a degraded solution
Xd and a noise ϵ sampled from the normal distribution, we set x1 = Xd + ϵ (t = 1). Sampling from
x1 instead of ϵ constrains the sample space from the entire noise domain into a smaller one, ensuring
an effective solution. For a K-step sampling, we set the step size of each sampling to 1/K. At each
sampling step, we utilize the anisotropic GNN to predict the estimated residue xθ

res and noise ϵθ . In
this way, we can solve the reversed process via Eq. 7 iteratively, obtaining the high-quality solution
x0 until t = 0. After we sample a probability distribution x0 from pθ(s) for instance s, we adopt the
same operation as Sun & Yang (2023) to obtain the normalized heatmap score h = 0.5(x0 + 1).

4.3 MULTI-MODAL GRAPH SEARCH

Parameterized solvers trained on specific scales often struggle to generalize well to test instances of
different scales (Fu et al., 2021). Training a model from scratch on the target scale or fine-tuning the
model includes additional training time within the decision loop, making it impractical for real-world
applications that demand an off-the-shelf response. We aim to develop the generalization ability
of DISCO to unseen-scale instances. DISCO demonstrates efficiency advantages in both solution
quality and inference speed. Its multi-modal output can be further leveraged to enhance solution
diversity through a novel divide-and-conquer approach. In contrast, traditional divide-and-conquer
strategies (Fu et al., 2021; Ye et al., 2024b) can only produce a single deterministic solution for
each sub-problem. Increasing the solution diversity broadens the exploration of the solution space,
decreasing the likelihood of getting stuck in sub-optimal solutions (Zhang et al., 2015) and improving
generalization performance.

Algorithm 1 Multi-Modal Graph Search

Input: A graph problem G to be solved
Process:

1: Pre-train DISCO model pθ on a small scale
2: Split G into a set of subgraphs g
3: for g ∈ g do
4: Sample heatmap set H from pθ(g) with q

different noise xt

5: end for
6: Initialize trial set X = ∅
7: for k = 1, 2, 3, . . . , n do
8: Sample h from each H as combination ck
9: Merge ck as a global heatmap Hk

10: Decode trial Xk from Hk, add it to X
11: end for
12: Select a final trial with argminX∈X cost(X)

Specifically, we leverage a model pθ trained on a
smaller scale as a base to construct heatmaps for
sub-problems g, which are decomposed from
the original graph G. The scale of sub-problem
g ∈ g is fixed and close to the training scale of
pθ, thereby we can better solve g and smoothly
generalize pθ to the original scale. A detailed
pipeline is provided in Fig. 2. For sub-problem
decomposition, we adopt a vector ov record-
ing the occurrence number of each node of G
in all existing subgraphs. In each iteration, we
choose the node with the index argmin(ov) as
the cluster center and select the remaining nodes
with the k-nearest neighbor rule (Cover & Hart,
1967), forming a subgraph g. This process con-
tinues until min(ov) exceeds a certain threshold
ω. For each g ∈ g, we resize it to a uniform size.
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Leveraging trained DISCO model pθ, we can generate sub-heatmap score h for g. The solution for
the original graph G is obtained by merging all sub-heatmaps, which jointly cover G at least ω times,
through mean aggregation. The merged global heatmap H is:

Hij =
1

oij
×

|g|∑
l=1

ϕ(hl, i, j), (9)

where ϕ(hl, i, j) represents the heatmap value contributed by hl corresponding to index ij of H,
with ϕ(hl, i, j) = 0 if no correspondence. The scalar oij records the occurrence count of edge ij
across all subgraphs. Subsequently, we decode the merged heatmap H into the final solution X. A
comparison of various graph merging methods, along with evidence that our graph splitting method
helps avoid local optima, is also provided in App. H.

We leverage the multi-modal output of DISCO to enhance the solution diversity and avoid the final
solution from getting stuck in the sub-optimum. For each subgraph g ∈ g, we repeatedly sample
a set of heatmaps H with q different noise xt. We randomly sample one heatmap h from each H,
combining as a set c with |c| = |g|, merging as a global heatmap H, and decoding a solution trial X
from H. This sample process is repeated n times, generating multiple trials as X . We decide the final
solution with the minimum cost from X , i.e., argminX∈X cost(X). Although there can be expq(|g|)
possible trial combination, we observe that performance asymptotically converges, so we limit the
sampling to finite n trials. A detailed description of our algorithm is provided in Alg. 1.

5 EXPERIMENTS

We provide extensive experimental results to demonstrate the superiority of DISCO. We begin by
detailing the experimental settings in Sec. 5.1, followed by comparisons with state-of-the-art CO
solvers on well-studied TSP problems in Sec. 5.2. Subsequently, we conduct ablations on DISCO
components in Sec. 5.3, verify its generalization ability to unseen problem scales in Sec. 5.4, and
assess its scalability in solving MIS problems in Sec. 5.5.

5.1 EXPERIMENTAL SETTINGS

Metrics While DISCO is generically applicable to various NPC problems, our evaluations primarily
focus on the most representative TSP problem, as it is a common challenge in the machine learning
community with established competitors, providing a solid benchmark to demonstrate our method’s
superiority. Our evaluation metrics include the average length (Length) of tours and the clock time
(Time) required for solving all test instances, presented in seconds (s), minutes (m), or hours (h). We
also report the performance gap (Gap), which is the average of the relative decrease in performance
compared to a baseline method.

Baselines We conduct an extensive comparison of DISCO with a diverse set of baselines, includ-
ing exact solvers, heuristic solvers, and state-of-the-art learning methods. For exact solvers, our
comparisons include Concorde (Applegate et al., 2006) and Gurobi (LLC Gurobi Optimization,
2018). Regarding heuristic solvers, we evaluate against LKH-3 (Helsgaun, 2017), 2-opt (Croes,
1958) and a simple Farthest Insertion principle (Cook et al., 2011). In terms of learning-based
methods, we compare with recent advances including AM (Kool et al., 2019), ELG-POMO (Gao
et al., 2023), BQ-NCO (Drakulic et al., 2024), and GLOP (Ye et al., 2024b), and diffusion-based
solvers DIFUSCO (Sun & Yang, 2023) and T2T (Li et al., 2024). Note that, T2T is currently the
most powerful neural solver for TSP problems.

We label the large-scale training instances using the LKH-3 heuristic solver (Helsgaun, 2017) and
generate the test instances following the same principle as Fu et al. (2021) and Sun & Yang (2023).
All experiments are conducted on a single NVIDIA A100 GPU, paired by AMD EPYC 7662 CPUs
@ 2.00GHz. Some learning-based solvers struggle with large problem scales; for instance, Image
Diffusion (Graikos et al., 2022) only operates on a 64× 64 greyscale image. To ensure fairness, we
compare them on small-scale instances. The results are provided in App. C, along with comparisons
with GCN (Joshi et al., 2019), Transformer (Bresson & Laurent, 2021), POMO (Kwon et al., 2020),
Sym-NCO (Kim et al., 2022), DPDP (Ma et al., 2021), and MDAM (Xin et al., 2021). Our codes,
the mentioned baselines, pre-trained models, and documentation are provided in the Supplementary
Material and will be publicly released upon acceptance.
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Table 1: Comparisons on large-scale TSP problems. G, S, and BS denotes Greedy decoding, Sampling decoding,
and Beam Search (Sutskever et al., 2014), respectively. The symbol * indicates the baseline for computing the
performance gap. The symbol † denotes that the diffusion model samples once. N/A indicates that results could
not be produced within 24 hours (Qiu et al., 2022), and OOM signifies running out of 80GB GPU memory.

ALGORITHM TYPE
TSP-5000 TSP-8000 TSP-10000

LENGTH ↓ GAP ↓ TIME ↓ LENGTH ↓ GAP ↓ TIME ↓ LENGTH ↓ GAP ↓ TIME ↓
CONCORDE EXACT N/A N/A N/A N/A N/A N/A N/A N/A N/A
GUROBI EXACT N/A N/A N/A N/A N/A N/A N/A N/A N/A
LKH-3 (DEFAULT) HEURISTICS 51.94∗ — 6.57m 65.21∗ — 16.23m 71.77∗ — 8.8h
LKH-3 (LESS TRIALS) HEURISTICS 52.22 0.54% 5.17m 66.11 1.38% 13.83m 71.79 0.03% 51.27m
RAW 2-OPT HEURISTICS 58.99 13.57% 6.16m 79.29 21.59% 14.15m 91.16 27.02% 28.49m
FARTHEST INSERTION HEURISTICS 57.20 10.13% 0.97m 72.28 10.84% 5.78m 80.59 12.29% 13.25m

BQ-NCO RL+G 175.34 237.58% 75.72m 725.67 1012.82% 4.98h OOM
AM RL+G 89.35 72.03% 1.68m 122.42 87.73% 3.95m 141.51 97.17% 7.68m
ELG-POMO RL+G 59.96 15.44% 51.18m 76.71 17.64% 2.02h OOM
GLOP RL+G 53.39 2.79% 0.51m 67.51 3.53% 0.53m 75.29 4.90% 1.90m
DIFUSCO SL+G† 53.31 2.64% 8.65m 67.51 3.53% 19.38m 73.99 3.10% 35.38m
T2T SL+G† 53.17 2.37% 25.88m 67.43 3.40% 1.11h 73.87 2.92% 1.52h
DISCO (OURS) SL+G† 52.48 1.04% 5.72m 66.11 1.38% 14.32m 73.85 2.90% 25.12m

AM RL+BS 83.93 61.59% 19.07m 114.82 76.08% 1.13h 129.40 80.28% 1.81h
GLOP RL+S 53.28 2.58% 0.54m 67.41 3.37% 0.59m 75.27 4.88% 5.96m
DIFUSCO SL+S 53.15 2.33% 21.07m 67.41 3.37% 50.18m 73.90 2.97% 1.83h
T2T SL+S 53.10 2.23% 47.85m 67.40 3.36% 1.86h 73.81 2.84% 2.47h
DISCO (OURS) SL+S 52.44 0.96% 9.06m 66.06 1.30% 22.82m 73.81 2.84% 48.77m

5.2 COMPREHENSIVE COMPARISONS

We compare DISCO to alternative NPC solvers across various large-scale problem instances, in-
cluding TSP-5000, TSP-8000, and TSP-10000. Given that generating heatmaps with parameterized
solvers and transforming them into solutions through decoding strategies has become standard prac-
tice (Deudon et al., 2018), we report parameterized solvers’ performance decoding with different
strategies. Xia et al. (2024) highlight that the MCTS strategy (Fu et al., 2021) heavily relies on
TSP-specific heuristics, and is less suited to other problem types. Therefore, we focus on general
decoding strategies, including Greedy (Graikos et al., 2022), Sampling (Kool et al., 2019), and
2-opt (Croes, 1958), which represents local search, to evaluate each method’s general CO-solving
capability. These strategies are introduced in App. F. The performance comparisons with the TSP-
specific MCTS strategy can be found in App. H. We align DISCO’s decoding settings with DIFUSCO
and T2T to demonstrate its superiority as a diffusion solver. To ensure fairness, we apply 2-opt to all
learning-based methods, as some solvers like DIFUSCO and T2T use it while others do not. Follow
Graikos et al. (2022), we use the Greedy+2-opt strategy by default, and Sampling is conducted 4
times across all problem scales. Unless otherwise noted, DISCO’s denoising steps are set to 1 to
highlight its efficiency, while DIFUSCO uses 50 steps and T2T uses 20 steps in inference and 3
iterations × 10 steps in gradient search. Additional details are provided in App. G.

The comprehensive results are summarized in Tab. 1. We observe that DISCO outperforms all the
previous methods on all problem scales, including T2T which is the current state-of-the-art solver
for TSP problems. Diffusion-based methods generally outperform other learning-based approaches,
highlighting the significance of diffusion as a choice. Its inherent multi-modal expressiveness makes
it particularly well-suited for optimization problems. Notably, beyond its performance advantage,
DISCO also demonstrates a significant advantage in inference speed compared to the other two
diffusion alternatives, DIFUSCO and T2T, with its inference duration achieving up to 5.28 times
speedup, better satisfying many real-world applications that require time-sensitive responses. Since
T2T requires gradient-based search during deployment, its computational resource demands are
obviously higher than DISCO and DIFUSCO. A detailed comparison is provided in App. H. We also
evaluate DISCO on real-world TSP scenarios from TSPLIB (Reinelt, 1991) in App. E. DISCO is the
best performer in 28 out of 29 test cases while its inference speed surpasses all compared algorithms,
further validating the practicality of our method.

We provide comparisons of DISCO with more recent learning-based methods which are only trainable
on small-scale instances in App. C and App. H, with DISCO consistently maintaining its performance
advantage. We provide more evidence in App. H to demonstrate the impact of DISCO’s multi-modal
property on improving solution quality. To facilitate a better understanding of our approach, we
provide visual comparisons of denoising results in App. D. These include the evolution of generated
heatmaps throughout the denoising process and the correlation between the final solution quality
and the total number of diffusion steps. We further test the generalization ability of DISCO as a
probabilistic solver to unseen degraded solutions and unseen problem distributions in App. H.
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5.3 ABLATIONS ON DISCO COMPONENTS

We conduct ablation experiments on two key modules of DISCO: the analytical denoising process
and residue constraints. The results are summarized in Tab. 2. We can observe that for the version
without these two modules, which can also be regarded as an equal implementation of DIFUSCO,
its reverse process requires 50 steps to achieve satisfactory results; otherwise, the solution quality
suffers. In contrast, with the analytical denoising process, we can obtain a satisfactory solution with
just 1 step, significantly improving inference speed. Moreover, the presence of residue constraints
notably enhances the quality of generated heatmaps, as evident from a direct example in Fig. 3. The
improvement in predicted heatmap quality naturally translates into higher solution quality, ultimately
reflecting the efficacy of DISCO motivation.

(a) W/o residue. (b) W/ residue.
Figure 3: Akin to inner loops in a gener-
ated TSP heatmap (a), the denoised sam-
ples without residues span an enormous
NPC space, leading to frequent failures in
satisfying problem constraints as (b).

Table 2: Ablations on DISCO components. Step denotes the de-
noising step number. A and R represent the analytical diffusion
process and residue constraints. Note that, DISCO w/o A&R can
be regarded as an equal implementation of DIFUSCO.

ALGORITHM STEPS
TSP-8000 TSP-10000

LENGTH↓ GAP(%)↓ TIME ↓ LENGTH ↓ GAP(%)↓ TIME ↓
G

R
E

E
D

Y W/O A&R 50 67.51 3.53% 19.38m 73.99 3.10% 35.38m
W/O A&R 1 69.43 6.47% 17.23m 77.67 8.22% 26.80m
W/O R 1 66.65 2.21% 15.85m 76.27 6.27% 27.27m
DISCO 1 66.11 1.38% 14.32m 73.85 2.90% 25.12m

S
A

M
P

L
IN

G W/O A&R 50 67.41 3.37% 50.18m 73.90 2.97% 1.83h
W/O A&R 1 69.20 6.12% 38.80m 77.47 7.94% 1.01h
W/O R 1 66.49 1.96% 29.20m 76.17 6.13% 1.00h
DISCO 1 66.06 1.30% 22.82m 73.81 2.84% 48.77m

5.4 MULTI-MODAL GRAPH SEARCH FOR GENERALIZATION

Benefiting from DISCO’s verified advantage in both solution quality and inference speed, we can
generalize a pre-trained DISCO model pθ to solve the unseen-scale problem instances off the shelf
by a traditional divide-and-conquer strategy. We train the base model pθ on TSP-100 instances and
transfer it to TSP-5000/8000/10000 instances. The decomposed sub-problems g should jointly cover
the global graph problem G at least ω = 1 time. For each sub-problem g ∈ g, we generate a set of
heatmaps H with q = 2 different noises. The results are summarized in Tab. 3. We organize the
experiments in the following logic: First, we test diffusion models trained on different problem scales
to verify the existence of performance degradation. In addition, we validate that the multi-modal
graph search method allows trained models to transfer to unseen problem scales off the shelf. Finally,
we propose potential methods to further enhance the performance of our graph search approach.

Table 3: Results on multi-modal graph search. GS means graph search. T indicates training on the corresponding
problem scale. ‘Best Inter.’ refers to selecting the best intermediate h with the greedily decoded solution from
heatmap set H for each subgraph g, rather than random selection to maintain trial diversity.

ALGORITHM TYPE TRIAL
TSP-5000 TSP-8000 TSP-10000

LENGTH ↓ GAP ↓ TIME ↓ LENGTH ↓ GAP ↓ TIME ↓ LENGTH ↓ GAP ↓ TIME ↓
LKH-3 (DEFAULT) HEURISTICS 10000 51.94∗ — 6.57m 65.21∗ — 16.23m 71.77∗ — 8.8h
ATT-GCN SL+MCTS 1 52.76 1.58% 13.30m 66.77 2.40% 25.95m 74.60 4.86% 37.97m
GLOP RL 1 53.39 2.79% 0.51m 67.51 3.53% 0.53m 75.29 4.90% 1.90m

DISCO (TSP-5000, T) SL+G† 1 52.48 1.04% 5.72m 67.42 3.39% 17.52m 74.98 4.47% 25.37m
DISCO (TSP-8000, T) SL+G† 1 52.97 1.98% 5.10m 66.11 1.38% 17.32m 74.60 3.94% 25.70m
DISCO (TSP-10000, T) SL+G† 1 53.21 2.44% 5.82m 67.27 3.16% 17.46m 73.85 2.90% 25.12m

DIFUSCO (BEST INTER.) SL+GS+G† 1 52.78 1.62% 1.31h 66.86 2.53% 2.16h 74.33 3.57% 4.91h
DIFUSCO SL+GS+G† 50 52.67 1.41% 2.11h 66.61 2.15% 4.81h 74.35 3.60% 5.93h
DISCO (BEST INTER.) SL+GS+G† 1 52.77 1.60% 8.12m 66.56 2.07% 19.82m 74.45 3.73% 36.43m
DISCO SL+GS+G† 50 52.65 1.37% 32.40m 66.52 2.01% 1.34h 74.24 3.44% 1.82h

DISCO SL+GS+G† 100 52.62 1.31% 57.53m 66.52 2.01% 2.31h 74.22 3.41% 3.76h
DISCO (ω = 4) SL+GS+G† 50 52.60 1.27% 35.45m 66.48 1.95% 1.40h 74.23 3.43% 2.18h
DISCO SL+GS+MCTS 50 52.32 0.73% 41.98m 66.12 1.40% 1.59h 73.69 2.68% 2.10h

We can observe that when testing a trained model on a different problem scale, although DISCO
generalizes decently, it performs less effectively compared to models trained on the equivalent scale.
Meanwhile, our multi-modal graph search algorithm, combined with pθ trained only on TSP-100,
exhibits better performance than direct generalization. Att-GCN (Fu et al., 2021) and GLOP (Ye
et al., 2024b) also adopt the divide-and-conquer mechanism for generalization. However, their
parameterized solver lacks the ability to generate diverse trials, which causes the final solution
may get stuck in the sub-optimum. Our DISCO method increases the diversity of solution samples
and broadens exploration in the solution space, enhancing the likelihood of finding higher-quality
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solutions and being more effective than Att-GCN and GLOP. Although DIFUSCO also possesses the
multi-modal property, its inference speed is prohibitively slow. DISCO achieves at least 3.26 times
faster inference speed than DIFUSCO for graph search, while also delivering superior results.

While our graph search approach offers expq(|g|) possibilities for enriching solution diversity, its
performance asymptotically converges to the number of sampled trials, as confirmed by the general-
ization results on TSP-1000 in Fig. 4. The required trial number increases with solution variance,
which is controlled by the number of denoising steps. We recommend 2-step denoising for better
practice. We also compare our method with a variant that does not generate diverse trials—specifically,
selecting the best intermediate h with the greedily decoded solution from heatmap set H for each
subgraph g—and find that this version generally performs worse. This amplifies the importance of
solution diversity for solving CO problems. DISCO’s performance can be further enhanced by trading
off time costs through various means such as increasing sampled trials, augmenting the subgraph
number |g| by controlling ω, and re-decoding the merged heatmap combinations corresponding to
the most promising trial with more sophisticated strategies like MCTS. These enhancements can even
lead to better performance than models trained on the corresponding scale. These conclusions are
corroborated in Table 3.

10 50 100 150 200 250 300 350 400 450 500
Trials

2.0

2.4

2.8

3.2

Ga
p(

%
)

Step=1
Step=2
Step=5
Step=10

Figure 4: Asymptotic performance of multi-
modal graph search with trial number.

Table 4: Results on MIS problems. TS denotes tree search.

METHOD TYPE
SATLIB ER-[700-800]

SIZE ↑ GAP ↓ TIME ↓ SIZE ↑ GAP ↓ TIME ↓
KAMIS HEURISTICS 425.96∗ — 37.58m 44.87∗ — 52.13m
GUROBI EXACT 425.95 0.00% 26.00m 41.38 7.78% 50.00m

DGL SL+TS N/A N/A N/A 37.26 16.96% 22.71m
INTEL SL+TS N/A N/A N/A 38.80 13.43% 20.00m
INTEL SL+G 420.66 1.48% 23.05m 34.86 22.31% 6.06m
DIMES RL+G 421.24 1.11% 24.17m 38.24 14.78% 6.12m
DIFUSCO SL+G 424.50 0.34% 13.00m 38.83 12.40% 8.80m
T2T RL+G 425.02 0.22% 14.30m 39.56 11.83% 8.53m
DISCO (OURS) SL+G 424.58 0.32% 10.32m 40.30 10.17% 9.00m

LWD RL+S 422.22 0.88% 18.83m 41.17 8.25% 6.33m
DIMES RL+S 423.28 0.63% 20.26m 42.06 6.26% 12.01m
GFLOWNET UL+S 423.54 0.57% 23.22m 41.14 8.53% 2.92m
DIFUSCO SL+S 425.04 0.22% 26.09m 40.70 9.29% 17.33m
T2T SL+S 425.06 0.21% 24.56m 41.37 7.81% 29.73m
DISCO (OURS) SL+S 425.06 0.21% 25.38m 42.21 5.93% 16.93m

5.5 EVALUATIONS ON MAXIMAL INDEPENDENT SET

Besides TSP, we evaluate DISCO on commonly studied MIS problems, both of which are ade-
quately representative of edge-based and node-based NPC problems. Evaluations are conducted on
SATLIB (Hoos & Stützle, 2000) and Erdős-Rényi (ER) (Erdős & Rényi, 1960) graph sets, which
exhibit challenge for recent learning-based solvers (Li et al., 2018; Ahn et al., 2020; Böther et al.,
2022; Qiu et al., 2022; Zhang et al., 2023). Training instances are labeled using the KaMIS heuristic
solver (Lamm et al., 2016), with test instances aligned with Qiu et al. (2022). We adopt the same 50
denoising steps and 4 sample times as DIFUSCO to distinguish model capabilities. Details of experi-
mental settings and baselines can be found in App. B. We report the average size of the independent
set (Size) in Tab. 4. DISCO exhibits a clear performance advantage over most competitors.

6 CONCLUSION

We propose DISCO, an efficient diffusion solver for large-scale CO problems. DISCO obtains
improved solution quality by restricting the sampling space to a more meaningful domain guided
by solution residues, and enables rapid solution generation with minimal denoising steps. DISCO
delivers strong performance on large-scale TSP instances and challenging MIS benchmarks SATLIB
and Erdős-Rényi, with inference duration up to 5.28 times faster than existing diffusion solver
alternatives. Through further combining a traditional divide-and-conquer strategy, DISCO can be
generalized to solve unseen-scale problem instances off the shelf, even outperforming models trained
specifically on those scales.

This work has two limitations. First, DISCO relies on supervised learning and decoding strategies to
transform output heatmaps, limiting it to offline operations where iterative optimization is feasible.
For online operations, DISCO must generate immediate high-quality solutions across the NPC
problem space. Future work should explore integrating trial-and-error methods for online applications.
Second, DISCO’s multi-modal graph search can lead to exponential growth in trial variance. While
this variance aids in exploring the solution space and finding optimal solutions, it also increases
computational costs. Developing a lightweight policy for smarter trail sampling is promising.
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7 CODE OF ETHICS

Our proposed DISCO method is a general-purpose parameterized solver for CO problems. DISCO
leverages diffusion technologies to address the multi-modal nature of CO problems effectively.
DISCO optimizes both its forward and reverse processes more efficiently for solution generation, and
significantly excels in both inference speed and solution quality. This improved efficiency further
enhances DISCO’s capabilities to generalize to arbitrary-scale instances off the shelf. We believe
that such efficient, learnable neural solvers for NPC problems will have a positive impact on a broad
range of real-world applications (Ghiani et al., 2003; Xu et al., 2018).

8 REPRODUCIBILITY

We provide detailed descriptions of the experiment settings in Sec. 5.1, more implementation details
can be found in App. B and App. G. The code for DISCO, the mentioned baselines, pre-trained
models, and detailed accompanying documentation are also included in the Supplementary Material
to ensure reproducibility.
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APPENDIX

A EQUIVALENCE ANALYSIS BETWEEN DDM AND DISCO

Real-world combinatorial optimization (CO) problems often require the rapid generation of high-
quality solutions Xs for problem instance s. Previous neural solvers have suffered from the expres-
siveness limitation when confronted with multiple optimal solutions for the same graph (Khalil et al.,
2017; Gu et al., 2018; Li et al., 2018). In contrast, diffusion probabilistic models (DPMs) (Ho et al.,
2020) have shown promising prospects for generating a wide variety of distributions suitable for
CO solving. An obvious bottleneck is the slow inference speed of DPMs. This is due to DPMs
employing numerical integration during the reverse process, requiring multiple steps of accumulation
and solving and significantly incurring time overhead.

Inspired by decoupled diffusion models (DDMs) (Huang et al., 2023a), we substitute the time-
consuming numerical integration process with an analytically solvable form. The original solution-to-
noise mapping can be decoupled into solution-to-zero and zero-to-noise mapping:

xt = x0 +

∫ t

0

ftdt+

∫ t

0

dwt, x0 ∼ q(x0), (10)

where x0 +
∫ t

0
ftdt describes the solution attenuation and

∫ t

0
dwt describes the noise accumulation.

Since ft can be designed analytically, the efficiency of the reversed process can be improved by much
fewer evaluation steps, e.g., inference steps = 1 or 2. The distribution of xt conditioned on x0 is
defined as:

q(xt | x0) = N (xt;x0 + Ft, tI), (11)
where Ft =

∫ t

0
ftdt and we sample xt by xt = x0 + Ft +

√
tϵ with ϵ ∼ N (0, I).

For a reverse time, the sampling formula for x0 is based on the analytic attenuation function ft that
models image to zero transition. We employ continuous-time Markov chain with the smallest time
step δt → 0+ and use conditional distribution q(xt−∆t | xt,x0) to approximate q(xt−∆t | xt,x0).

q(xt−∆t | xt,x0) ∝ exp

{
− (xt−∆t − ũ)2

2σ̃2I

}
, (12)

where ϵ ∼ N (0, I), ũ = xt + Ft−∆t − Ft + ϵ∆t/
√
t, and σ̃2 = ∆t(t −∆t)/t. Since ft has an

analytic form, we can avoid the ordinary differential equation-based denoising and instead directly
sample x0 with an arbitrary step size, which significantly reduces the inference time.

Although the inference speed can benefit from the analytically solvable form, denoising methods still
require inefficient sampling from the entire NPC solution space of CO problems, which typically
grows exponentially with the number of problem scale N . We propose to constrain the sampling
space into a more meaningful one by introducing residues (Liu et al., 2024) to DDM, which is our
DISCO method, i.e., an efficient DIffusion Solver for large-scale CO problems. The reversed process
starts from both noise and an exceedingly cost-effective degraded solution, confining the generation
process in a more meaningful and smaller domain close to the high-quality labels. The residue
prioritizes certainty while the noise emphasizes diversity, so that to ensure solution effectiveness
while still maintaining their multi-modal property of output distributions.

Instead of the traditional forward process merely outputting noise, it is now a combination of noise
xt and a degraded solution Xd for generating residue constraints xres = Xd − x0. The degraded
solution Xd is an exceedingly cost-effective path but satisfies problem constants. For example,
0− 1− . . .− n− 0, connecting nodes in sequential order. Since DDM has already demonstrated its
equivalence to previous diffusion processes defined by Equation 3 (Huang et al., 2023a), we now
provide proof of the equivalence between our method and DDM to demonstrate the effectiveness of
DISCO in a theoretical aspect.

Forward Process The proposed forward formula considering residue is:

xt = x0 +

∫ t

0

xresdt+
√
tϵ. (13)

Compared with the original forward formulation of DDM (Eq. 10), the proposed forward formulation
utilizes a different function xres substituting the attenuation function ft, which means the two
diffusion processes are equivalent.
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Reversed Process In the reversed process, we need to parameterize two components: xθ
res and ϵθ ,

which estimate the residue xres and the noise ϵ, respectively. From Eq. 6, we have:

x0 = xt −
∫ t

0

xresdt−
√
tϵ. (14)

Thus, the reverse process can be defined as:

pθ(xt−∆t | xt) := q(xt−∆t | xt,x0). (15)

Applying Bayes’ theorem (Jaynes, 2003), we obtain:

q(xt−∆t | xt,x0) =
q(xt | xt−∆t)q(xt−∆t | xt)

q(xt | x0)
(16)

=
q(xt | xt−∆t)N (xt−∆t;x0 +Ht−∆t, (t−∆t)I)

N (xt;x0 + Ft, tI)
.

Eq. 16 aligns with the reverse process in DDM, thus the reverse process formula is:

q(xt−∆t | xt,x0) ∝ exp

(
− (xt−∆t − u)2

2σ2I

)
, (17)

where ũ = xt −
∫ t

t−∆t
htdt− ∆t√

t
ϵ, σ̃2 = ∆t(t−∆t)

t , equivalent to the reverse formula of DDM.

B MAXIMAL INDEPENDENT SET

Besides the TSP problem, we also evaluate DISCO on commonly studied MIS problems, both of
which are adequately representative of edge-based and node-based NPC problems. We give specific
details of experimental settings in this section.

Datasets We conduct evaluations on SATLIB (Hoos & Stützle, 2000) and Erdős-Rényi (ER) (Erdős
& Rényi, 1960) graph sets, which exhibit challenge for recent learning-based solvers (Li et al., 2018;
Ahn et al., 2020; Böther et al., 2022; Qiu et al., 2022; Zhang et al., 2023). The training instances
are labeled by the KaMIS heuristic solver (Lamm et al., 2016). The split of test instances on SAT
datasets and the random-generated ER test graphs are taken from (Qiu et al., 2022).

Metrics We compare the performance of different probabilistic solvers by the average size (Size) of
the predicted maximal independent set for each test instance; larger sizes indicate better performance.
We also use the same Gap and Time definitions as in the TSP case. We adopt the same denoising steps
and sample times as DIFUSCO (Sun & Yang, 2023) to distinguish model capabilities. Specifically,
we use 50 steps for denoising heatmap and generate 4 times for sampling strategies. Following the
principle of efficiency, we randomly sample a set of nodes from the original graph with a probability
of 50% to obtain the degraded solution.

Baselines We compare DISCO with 9 other MIS solvers on the same test sets, including two
traditional OR methods and seven learning-based approaches. For the traditional methods, we use
Gurobi and KaMIS (Lamm et al., 2016) as baselines. For the learning-based methods, we compare
with LwD (Ahn et al., 2020), Intel (Li et al., 2018), DGL (Böther et al., 2022), DIMES (Qiu et al.,
2022), GFlowNet (Zhang et al., 2023), DIFUSCO (Sun & Yang, 2023), and T2T (Li et al., 2024).

C COMPARISONS ON SMALL-SCALE TSP INSTANCES

Some learning-based solvers struggle with large problem scales, we compare them on small-scale in-
stances for fairness. Specifically, we compare with learning-based methods Image Diffusion (Graikos
et al., 2022), GCN (Joshi et al., 2019), Transformer (Bresson & Laurent, 2021), POMO (Kwon
et al., 2020), Sym-NCO (Kim et al., 2022), DPDP (Ma et al., 2021), and MDAM (Xin et al., 2021).
Along with the learning-based methods works on large scales including AM (Kool et al., 2019),
DIFUSCO (Sun & Yang, 2023), and T2T (Li et al., 2024). We compare with traditional operation
methods including Concorde (Applegate et al., 2006) and Gurobi (LLC Gurobi Optimization, 2018),
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Table 5: Comparisons on TSP-50 and TSP-100. The symbol ∗ denotes the baseline for computing the perfor-
mance gap. The symbol † indicates that the diffusion model samples once.

ALGORITHM TYPE
TSP-50 TSP-100

LENGTH↓ GAP(%)↓ LENGTH ↓ GAP(%)↓
CONCORDE EXACT 5.69∗ 0.00 7.76∗ 0.00
2-OPT HEURISTICS 5.86 2.95 8.03 3.54

AM GREEDY 5.80 1.76 8.12 4.53
GCN GREEDY 5.87 3.10 8.41 8.38
TRANSFORMER GREEDY 5.71 0.31 7.88 1.42
POMO GREEDY 5.73 0.64 7.84 1.07
SYM-NCO GREEDY - - 7.84 0.94
DPDP 1k-IMPROVEMENTS 5.70 0.14 7.89 1.62
IMAGE DIFFUSION GREEDY† 5.76 1.23 7.92 2.11
DIFUSCO GREEDY† 5.70 0.10 7.78 0.24
T2T GREEDY† 5.69 0.04 7.77 0.18
DISCO (OURS) GREEDY† 5.70 0.16 7.80 0.58

AM 1k×SAMPLING 5.73 0.52 7.94 2.26
GCN 2k×SAMPLING 5.70 0.01 7.87 1.39
TRANSFORMER 2k×SAMPLING 5.69 0.00 7.76 0.39
POMO 8×AUGMENT 5.69 0.03 7.77 0.14
SYM-NCO 100×SAMPLING - - 7.79 0.39
MDAM 50×SAMPLING 5.70 0.03 7.79 0.38
DPDP 100k-IMPROVEMENTS 5.70 0.00 7.77 0.00
DIFUSCO 16×SAMPLING 5.69 -0.01 7.76 -0.01
T2T 16×SAMPLING 5.69 -0.01 7.76 -0.01
DISCO (OURS) 16×SAMPLING 5.69 -0.01 7.76 0.03

LKH-3 (Helsgaun, 2017), 2-OPT (Croes, 1958), and Farthest Insertion (Cook et al., 2011). We label
the training instances using the Concorde solver for TSP-50/100 and we take the same test instances
as (Kool et al., 2019; Joshi et al., 2022). The comprehensive results are summarized in Tab. 5,
with DISCO consistently maintaining its performance advantage. We visualize the corresponding
denoising processes in Fig. 5.
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Figure 5: Denoising processes on TSP-50. Decoding the final heatmap with Greedy+2-opt yields tour lengths of
5.95 for DIFUSCO, 5.77 for DISCO without residues (w/o R), and 5.75 for DISCO.

D QUALITATIVE RESULTS

D.1 DENOISING PROCESSES ON LARGE-SCALE INSTANCES

We illustrate the denoising processes of different diffusion methods on large-scale problems in
Figure 6, using TSP-1000 as an example for clarity. The analytical denoising design and introduction
of residues in DISCO ensure that high-quality solutions can be obtained with a few steps. In contrast,
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alternative methods generate solutions that frequently violate problem constraints, such as isolated
nodes, non-closed tours, and inner loops.
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Figure 6: Denoising processes on TSP-1000. Decoding the final heatmap with Greedy+2-opt yields tour lengths
of 27.69 for DIFUSCO, 26.33 for DISCO without residues (w/o R), and 25.35 for DISCO.

D.2 PERFORMANCE WITH DIFFERENT DENOISING STEPS

Here, we demonstrate the final heatmaps x0 generated by different denoising steps with different
diffusion methods. The visualizations are summarized in Fig. 7, which still opt for TSP-1000 to
ensure readability. The corresponding decoded tour lengths are annotated directly below each plot. It
is evident that DISCO consistently produces high-quality solutions across various denoising steps.
Particularly for time-sensitive scenarios requiring few denoising steps, DISCO maintains a significant
advantage over the baselines.
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Figure 7: Generated heatmaps on TSP 1000-instances under different denoising steps, with the final decoded tour
length captioned below. DISCO consistently produces higher-quality heatmaps that better satisfy the problem
constraints, leading to better decoding results with the same number of denoising steps.
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E GENERALIZATION TO REAL-WORLD INSTANCES

We evaluate DISCO on TSPLIB (Reinelt, 1991), a collection of real-world TSP scenarios, to assess
its effectiveness in transferring knowledge from the synthetically generated data to the real world.
We directly transfer the DISCO models trained on TSP-50 and TSP-100 to these real-world instances
without any fine-tuning. Each instance strictly follows the evaluation protocol proposed by TSPLIB.
The results are summarized in Tab. 6. We can observe that DISCO is the best performer in 28 out of
29 test cases. Notably, as a diffusion-based algorithm, DISCO’s solving speed is the fastest among all
compared algorithms across all cases, further demonstrating its efficiency advantage and practicality.
The test code and models for this part are provided in the Supplementary Material for reproducibility.
We also provide visualizations of each solution generated by DISCO in Fig. 8.

Table 6: TSPLIB performance. We indicate the training scales for DISCO/DIFUSCO in parentheses.

Method Kool et al. Joshi et al. d O Costa et al. Hudson et al. DIFUSCO (50) DIFUSCO (100) DISCO (50) DISCO (100)
Instance Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

eil51 0.125 1.628 3.026 8.339 28.051 0.067 10.074 0.000 0.482 0.000 0.519 0.117 0.049 0.000 0.049 0.000
berlin52 0.129 4.169 3.068 33.225 31.874 0.449 10.103 0.142 0.527 0.000 0.526 0.000 0.047 0.000 0.048 0.000
st70 0.200 1.737 4.037 24.785 23.964 0.040 10.053 0.764 0.663 0.000 0.670 0.000 0.062 -0.741 0.064 -0.741
eil76 0.225 1.992 4.303 27.411 26.551 0.096 10.155 0.163 0.788 0.000 0.788 0.174 0.076 -0.557 0.072 -0.557
pr76 0.226 0.816 4.378 27.793 39.485 1.228 10.049 0.039 0.765 0.000 0.785 0.187 0.074 -0.379 0.072 -0.379
rat99 0.347 2.645 5.559 17.633 32.188 0.123 9.948 0.550 1.236 1.187 1.192 0.000 0.115 0.000 0.103 -0.165
kroA100 0.352 4.017 5.705 28.828 42.095 18.313 10.255 0.728 1.259 0.741 1.217 0.000 0.110 -0.019 0.106 -0.019
kroB100 0.352 5.142 5.712 34.686 35.137 1.119 10.317 0.147 1.252 0.648 1.235 0.742 0.116 0.235 0.108 0.262
kroC100 0.352 0.972 5.641 35.506 34.333 0.349 10.172 1.571 1.199 1.712 1.168 0.000 0.108 0.029 0.103 -0.067
kroD100 0.352 2.717 5.621 38.018 25.772 0.866 10.375 0.572 1.226 0.000 1.175 0.000 0.118 -0.117 0.110 -0.117
kroE100 0.352 1.470 5.650 26.589 34.475 1.832 10.270 1.216 1.208 0.274 1.197 0.274 0.114 0.168 0.110 0.000
rd100 0.352 3.407 5.737 50.432 28.963 0.003 10.125 0.459 1.191 0.000 1.172 0.000 0.101 -0.733 0.097 -0.733
eil101 0.359 2.994 5.790 26.701 23.842 0.387 10.276 0.201 1.222 0.576 1.215 0.000 0.114 -0.318 0.107 -0.318
lin105 0.380 1.739 5.938 34.902 39.517 1.867 10.330 0.606 1.321 0.000 1.280 0.000 0.124 -0.306 0.107 -0.306
pr107 0.391 3.933 5.964 80.564 29.039 0.898 9.977 0.439 1.381 0.228 1.378 0.415 0.148 -0.199 0.144 -0.169
pr124 0.499 3.677 7.059 70.146 29.570 10.322 10.360 0.755 1.803 0.925 1.782 0.494 0.144 0.198 0.144 0.151
bier127 0.522 5.908 7.242 45.561 39.029 3.044 10.260 1.948 1.938 1.011 1.915 0.366 0.176 -0.379 0.169 -1.026
ch130 0.550 3.182 7.351 39.090 34.436 0.709 10.032 3.519 1.989 1.970 1.967 0.077 0.153 0.245 0.162 -0.016
pr136 0.585 5.064 7.727 58.673 31.056 0.000 10.379 3.387 2.184 2.490 2.142 0.000 0.146 0.069 0.180 -0.342
pr144 0.638 7.641 8.132 55.837 28.913 1.526 10.276 3.581 2.478 0.519 2.446 0.261 0.159 -0.063 0.186 -0.063
ch150 0.697 4.584 8.546 49.743 35.497 0.312 10.109 2.113 2.608 0.376 2.555 0.000 0.169 0.276 0.202 -0.061
kroA150 0.695 3.784 8.450 45.411 29.399 0.724 10.331 2.984 2.617 3.753 2.601 0.000 0.174 0.033 0.208 -0.098
kroB150 0.696 2.437 8.573 56.745 29.005 0.886 10.018 3.258 2.626 1.839 2.592 0.067 0.176 0.554 0.206 0.417
pr152 0.708 7.494 8.632 33.925 29.003 0.029 10.267 3.119 2.716 1.751 2.712 0.481 0.183 0.122 0.221 -0.062
u159 0.764 7.551 9.012 38.338 28.961 0.054 10.428 1.020 2.963 3.758 2.892 0.000 0.184 -0.067 0.196 -0.067
rat195 1.114 6.893 11.236 24.968 34.425 0.743 12.295 1.666 4.400 1.540 4.428 0.767 0.266 0.947 0.310 0.560
d198 1.153 373.020 11.519 62.351 30.864 0.522 12.596 4.772 4.615 4.832 4.153 3.337 0.297 0.330 0.375 0.292
kroA200 1.150 7.106 11.702 40.885 33.832 1.441 11.088 2.029 4.710 6.187 4.686 0.065 0.301 1.134 0.346 -0.398
kroB200 1.150 8.541 11.689 43.643 31.951 2.064 11.267 2.589 4.606 6.605 4.619 0.590 0.301 1.481 0.346 0.065

Mean 0.532 16.767 7.000 40.025 31.766 1.725 10.420 1.529 1.999 1.480 1.966 0.290 0.149 0.067 0.161 -0.136

F DECODING STRATEGY

For offline problems (Papadimitriou & Steiglitz, 1998; Martello et al., 2000), all input data and
all constraints are fully provided before solving the problems. The decision-makers can fully
utilize all relevant information for comprehensive analysis and iteratively improve solution quality.
Providing an initial solution by SL and further refining it by decoding strategies has become a
common practice (Deudon et al., 2018). We introduce the following decoding strategies combined
with DISCO, including Greedy (Graikos et al., 2022), Sampling (Kool et al., 2019), and 2-OPT
strategies (Croes, 1958).

Greedy Strategy We use a straightforward greedy strategy to decode solutions from heatmaps
produced by probabilistic models. Specifically, we iteratively add the highest-scoring candidates
among the remaining ones to the partial solution. We repeat this process until all relevant nodes/edges
are incorporated. For diffusion-based methods, we sample the initial solution once with a single noise
data xt. We set the denoising step as 1 for DISCO when executing this greedy strategy, allowing the
variance σ to approach zero (as described in Eq. 7) to generate more confident solutions.

Sampling Strategy Probabilistic solvers usually sample multiple solutions (Kool et al., 2019)
through various means and execute the best one. Statistically, increasing the number of samples can
enhance the breadth and depth while exploring the solution space, thereby increasing the probability
of finding higher-quality solutions (Zhang et al., 2015). Following this logic, we generate multiple
heatmaps from pθ(x0|s) with different noise data xt and then apply the greedy decoding algorithm
described above to each heatmap.
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Figure 8: Visualization of DISCO’s generated solutions on TSPLIB instances.

2-opt Strategy We also adopt a 2-opt decoding strategy (Andrade et al., 2012) to refine the greedy
solutions of TSP tasks. Specifically, we iteratively swap two edges in the current solution to reduce
the total length of the tour. We repeat this process until no further improvement can be made. We
follow Graikos et al. (2022) and use the Greedy+2-opt strategy as the default.

We conduct DISCO combined with all these strategies on TSP instances to demonstrate its robustness.
Following instructions from Böther et al. (2022), we only conduct greedy strategy and sampling
strategy on MIS instances to fairly compare the capabilities of different parameterized solvers.

G IMPLEMENTATION DETAILS

Training Setting We adopt anisotropic GNNs (Velickovic et al., 2017) as the backbone of our
DISCO model. Anisotropic GNNs can produce embeddings for both nodes and edges, which exactly
match the CO problems most of which can be formulated as graph problems. Specifically, we
input the noisy solution xt, the node and edge features of Xd, and the time t into the anisotropic
GNN with parameter θ, predicting the parameterized residue xθ

res and noise ϵθ simultaneously with
two independent convolutional layers. We use a 12-layer anisotropic GNN with a width of 256 as
DIFUSCO (Sun & Yang, 2023) does. We adopt a linear schedule (Huang et al., 2023a) to gradually
reduce the noise during the model’s generation process.

Following Sun & Yang (2023), we implement sparsification in large-scale graph problems to diminish
computational complexity. We constrain each node to maintain only k edges connecting to its closest
neighbors. Specifically, we set k = 100. We also directly transfer the trained models to the same
graphs with different sparsifications without fine-tuning, the generalization results are summarized in
Tab. 7. We can observe that DISCO performs consistently stable while the sparsification changes,
indicating its robustness.

For TSP-5000 instances, we train DISCO with instances of 64000 and batch size of 12. For TSP-
8000/10000, the model is trained using 6,400 instances with a batch size of 4. Align with DIFUSCO,
we incorporate curriculum learning approach (Bengio et al., 2009) and begin the training process
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Table 7: Evaluation results on different sparsification k. The symbol ◦ indicates the sparsification used for
training, while the other lines are directly generalized results without fine-tuning.

ALGORITHM TYPE k
TSP-5000 TSP-8000 TSP-10000

LENGTH ↓ TIME ↓ LENGTH ↓ TIME ↓ LENGTH ↓ TIME ↓
DISCO SL+G† 50 52.36 5.03m 66.14 13.48m 73.85 24.80m
DISCO SL+G† 100 52.48◦ 5.72m 66.11◦ 14.32m 73.85◦ 25.12m

DISCO SL+S 50 52.34 7.51m 66.07 22.26m 73.82 40.17m
DISCO SL+S 100 52.44◦ 9.06m 66.06◦ 22.82m 73.81◦ 48.77m

from the TSP-100 checkpoint. For TSP-5000/8000/10000, we label training instances using the
LKH-3 heuristic solver (Helsgaun, 2017) with 1000 trials. For the TSP-50 and TSP-100 models used
for the checkpoint, we generate 1502000 random instances labeled by Concorde solver, training with
batch sizes of 256 and 128 respectively.

For the MIS instances, we use the training split of 49500 examples from SATLIB (Hoos & Stützle,
2000), training with a batch size of 64. For Erdős-Rényi graph sets (Erdős & Rényi, 1960), we use
60000 random instances from the ER-[700-800] variant and train DISCO with a batch size of 16. The
training instances are labeled by the KaMIS heuristic solver (Lamm et al., 2016).

Evaluation Details We conduct extensive evaluations on both TSP and MIS instances to demon-
strate the superiority of our DISCO model. We keep our experimental settings consistent with
previous literature (Qiu et al., 2022; Sun & Yang, 2023). For small-scale TSP instances, i.e., TSP-50
and TSP-100, we evaluate on 1280 instances, while for TSP-5000/8000/10000, we use 16 instances.
For MIS instances, we evaluate on 500 instances on SATLIB and 128 instances on ER-[700-800].

H ADDITIONAL RESULTS

H.1 GENERALIZATION TO UNSEEN PROBLEM DISTRIBUTIONS

We compare the generalization ability of our method to unseen problem distributions with that of the
diffusion solver DIFUSCO.

Both methods are trained on uniform distribution and tested on other different distributions for
TSP-10000 instances, including a normal distribution N (µ, σ2) and a cluster distribution proposed
by Bi et al. (2022). For the normal distribution, we set µ = 0.5 and σ2 = 0.1 to ensure a distinct
difference from the training. This generalization comparison does not include the diffusion solver
T2T, due to its use of active search during deployment. The comparisons are summarized in Tab. 8.

Table 8: Evaluation results on different problem distributions.

ALGORITHM TYPE
UNIFORM NORMAL CLUSTER

LENGTH ↓ TIME ↓ LENGTH ↓ TIME ↓ LENGTH ↓ TIME ↓
DIFUSCO SL+G† 73.99 35.38m 116.76 29.27m 37.84 30.25m
DISCO SL+G† 73.85 25.12m 116.34 25.57m 37.74 28.13m

H.2 RESOURCE CONSUMPTION COMPARISONS

We compare our algorithm with the state-of-the-art diffusion-based models, DIFUSCO and T2T, in
terms of computational resources on TSP-10000 instances as presented in Tab. 9.

Table 9: Comparisons on computational resources.

ALGORITHM TYPE LENGTH ↓ GAP ↓ TIME ↓ GPU MEMORY ↓ GPU HOURS ↓
DIFUSCO SL+G† 73.99 3.10% 35.38m 14G 0.59
T2T SL+G† 73.87 2.92% 91.32m 71G 1.52
DISCO SL+G† 73.85 2.90% 25.12m 14G 0.42
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H.3 GENERALIZATION TO UNSEEN DEGRADED SOLUTIONS

To validate our model’s generalization capability on the degraded solution Xd, we conduct experi-
ments using a degraded solution that differs from the training one. The following configurations of
degraded solutions are tested:

• Training: We adopt the same Xd used during the training process, i.e., connecting vertices
in the graph sequentially to form a tour.

• Greedy: The nearest unvisited node to the current node is selected as the next step, ensuring
the partial solution remains valid. This process is repeated iteratively until a complete path
is constructed.

• Far Ins: The farthest insertion algorithm proposed by Cook et al. (2011) is applied to
construct the degraded solution. This method iteratively inserts the farthest unvisited node
into the tour.

• LKH-3: The degraded solution is generated using the LKH-3 heuristic solver (Helsgaun,
2017) with 1000 trials and 10 runs.

We conduct the comparison on TSP-5000, and the results are presented in Tab. 10. These results
demonstrate that our model generalizes effectively across various Xd configurations.

Table 10: Comparisons on various degraded solution configurations.

Xd TYPE TRAINING GREEDY FAR INS LKH-3

PERFORMANCE SL+G† 52.48, 1.04% 52.47, 1.02% 52.48, 1.04% 52.39, 0.87%

H.4 CLARIFICATION ON HOW DISCO AVOIDS SUB-OPTIMAL

The graph-splitting approach prevents DISCO from falling into local optima by sampling overlapped
subgraphs. This overlap mechanism ensures the same edge can be evaluated from multiple sub-
problem views, avoiding local optima caused by a purely single sub-problem view. Then, the
generated sub-heatmaps are effectively merged for finally achieving a high-quality solution.

As described in Sec. 4.3, each node is included and evaluated by at least ω subgraphs simultaneously,
which means overlap exists among subgraphs. We design comparative experiments to analyze
the effect of this overlap mechanism. As shown in Tab. 11, when there is no overlap between the
subgraphs, the model’s performance significantly decreases. We also provide a Venn graph illustrating
relationships between overlapped subgraphs and an illustration of subgraphs without overlap in Fig. 9.

Table 11: Comparisons of graph splitting with and without overlap.

ALGORITHM TYPE TSP-5000 TSP-8000 TSP-10000

DISCO W/O OVERLAP SL+GS+G 55.60, 7.05% 70.42, 7.99% 82.29, 14.66%
DISCO W/ OVERLAP SL+GS+G 52.77, 1.60% 66.56, 2.07% 74.45, 3.73%

We also compare different graph merging methods in our multi-modal graph search. In this divide-
and-conquer process, each edge may be shared by multiple subgraphs, with corresponding heatmaps
sampled for each subgraph. To leverage this information, we employ various merging methods to
determine the final value for each edge. Following the notations in Sec. 4.3, we describe each merging
method as follows:

• "Min" (or "Max") selects the minimum (or maximum) value for each edge from all corre-
sponding heatmaps, i.e. min|g| ϕ(hl, i, j) (or max|g| ϕ(hl, i, j)).

• "Argmin" (or "Argmax") ranks the edge values within each heatmap it belongs to. The value
in the final merged heatmap is chosen based on the heatmap where edge ij ranks the lowest
(or highest), i.e. ϕ(hargmin|g| ϕ(hl,i,j), i, j) (or ϕ(hargmax|g| ϕ(hl,i,j), i, j)).

• "Mean" calculates the average of all occurrences of each edge across the heatmaps, i.e.
1
oij

×
∑|g|

l=1 ϕ(hl, i, j).
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(a) W/ overlap (b) W/o overlap
Figure 9: Illustrations of subgraphs with overlap (a) and without overlap (b). For clarity, in Figure (a), the
subgraph boundary is shown as the convex hull of its vertex set, while in Figure (b), it is represented by
connecting its boundary points.

Figure 10: Decoding with the MCTS strat-
egy.

Table 13: Comparisons of three diffusion-based solvers using
MCTS as the decoding strategy on TSP-5000, 8000, and 10000.
LKH-3 is the baseline for computing the performance gap.

METHOD
TSP-5000 TSP-8000 TSP-10000

LENGTH ↓ GAP ↓ LENGTH ↓ GAP ↓ LENGTH ↓ GAP ↓
LKH-3 51.94∗ — 65.21∗ — 71.77∗ —

DIFUSCO 52.55 1.17% 66.46 1.92% 73.62 2.58%
T2T 52.66 1.13% 66.48 1.95% 73.90 2.97%
DISCO (OURS) 52.13 0.37% 65.71 0.77% 73.56 2.49%

We conduct a comparison of various merging methods on TSP-5000 in terms of Length↓ and Gap(%)↓.
The results are summarized in Tab. 12.

Table 12: Comparisons on various merging methods.

MERGING METHOD TYPE MIN MAX ARGMIN ARGMAX MEAN

PERFORMANCE SL+G† 79.08, 52.25% 53.05, 2.14% 79.15, 52.39% 52.94, 1.93% 52.77, 1.60%

H.5 COMPARISONS USING MCTS AS DECODING STRATEGY

We compare our method with recent diffusion solvers DIFUSCO (Sun & Yang, 2023) and T2T (Li
et al., 2024), taking MCTS as the decoding strategy. The results are presented in Tab. 13. A bar chart
illustrating the performance discrepancy among each method is also provided in Fig. 10. Our method
outperforms the others across all three scales.

H.6 RESULTS ON TSP-500 AND TSP-1000

We provide more comprehensive comparisons on TSP-500 and TSP-1000. We extensively compare
DISCO with various baselines, including exact solvers, heuristic solvers, and recent non-diffusion-
based learning methods. For exact solvers, our comparisons include Concorde (Applegate et al.,
2006) and Gurobi (LLC Gurobi Optimization, 2018). Regarding heuristic solvers, we evaluate against
LKH-3 (Helsgaun, 2017) and 2-opt (Croes, 1958). In terms of learning-based methods, we compare
with recent non-diffusion neural solvers including AM (Kool et al., 2019), GCN (Joshi et al., 2019),
ELG-POMO (Gao et al., 2023), BQ-NCO (Drakulic et al., 2024), and GLOP (Ye et al., 2024b). The
results are shown in Tab. 14
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Table 14: Comparisons on TSP-500 and TSP-1000. G denotes Greedy decoding. The symbol * indicates the
baseline for computing the performance gap. The symbol † denotes that the diffusion model samples once.

ALGORITHM TYPE
TSP-500 TSP-1000

LENGTH ↓ GAP ↓ TIME ↓ LENGTH ↓ GAP ↓ TIME ↓
CONCORDE EXACT 16.55∗ — 37.66m 23.12∗ — 6.65h
GUROBI EXACT 16.55 0.00% 45.63h N/A N/A N/A
LKH-3 (DEFAULT) HEURISTICS 16.55 0.00% 46.28m 23.12 0.00% 2.57h
RAW 2-OPT HEURISTICS 17.99 8.68% 0.33m 25.24 9.16% 1.08m

AM RL+G 19.99 20.79% 1.08m 31.12 34.60% 1.15m
GCN SL+G 29.72 79.61% 6.67m 48.62 110.29% 28.52m
BQ-NCO RL+G 16.97 2.54% 1.56m 23.92 3.48% 11.03m
ELG-POMO RL+G 17.66 6.71% 3.88m 25.65 10.94% 22.87m
GLOP RL+G 16.91 1.99% 1.50m 23.84 3.11% 3.00m
DISCO (OURS) SL+G† 16.86 1.87% 0.25m 23.65 2.29% 1.12m

Figure 11: Solution quality improves as the
number of samples increases.

Table 15: Comparisons of performances in terms of number of
samples. LKH-3 is the baseline for computing the performance gap.

SAMPLE
TSP-5000 TSP-8000 TSP-10000

LENGTH ↓ GAP ↓ LENGTH ↓ GAP ↓ LENGTH ↓ GAP ↓
LKH-3 51.94∗ — 65.21∗ — 71.77∗ —

1 52.48 1.04% 66.11 1.38% 73.85 2.90%
2 52.66 1.13% 66.48 1.95% 73.90 2.97%
4 52.44 0.96% 66.06 1.30% 73.81 2.84%
8 52.39 0.87% 65.95 1.13% 73.77 2.79%
16 52.36 0.81% 65.91 1.07% 73.74 2.74%
32 52.31 0.71% 65.87 1.01% 73.73 2.73%
64 52.27 0.64% 65.84 0.97% 73.67 2.65%

H.7 ENHANCING SOLUTION QUALITY THROUGH MULTI-MODAL PROPERTIES

We conduct a direct experiment to demonstrate the impact of the multi-modal property on improving
solution quality. We vary the number of noises for sampling solutions. We present a line chart in
Fig. 11 with the number of samples as the x-axis and Gap(%)↓ as the y-axis to visually demonstrate
how the multi-modal property enhances model performance. The detailed comparison results are
outlined in Tab. 15.

25


	Introduction
	Related Work
	Preliminary
	Method
	Residue-Constrained Solution Generation
	Analytically Solvable Denoising Process
	Multi-Modal Graph Search

	Experiments
	Experimental Settings
	Comprehensive Comparisons
	Ablations on DISCO Components
	Multi-Modal Graph Search for Generalization
	Evaluations on Maximal Independent Set

	Conclusion
	Code Of Ethics
	Reproducibility
	Equivalence Analysis between DDM and DISCO
	Maximal Independent Set
	Comparisons on Small-Scale TSP Instances
	Qualitative Results
	Denoising Processes on Large-Scale Instances
	Performance with Different Denoising Steps

	Generalization to Real-World Instances
	Decoding Strategy
	Implementation Details
	Additional Results
	Generalization to Unseen Problem Distributions
	Resource Consumption Comparisons 
	Generalization to Unseen Degraded Solutions
	Clarification on how DISCO Avoids Sub-optimal
	Comparisons using MCTS as Decoding Strategy
	Results on TSP-500 and TSP-1000
	Enhancing Solution Quality through Multi-modal Properties


