
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DISCO: EFFICIENT DIFFUSION SOLVER FOR LARGE-
SCALE COMBINATORIAL OPTIMIZATION PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Combinatorial Optimization (CO) problems are fundamentally important in numer-
ous real-world applications across diverse industries, characterized by entailing
enormous solution space and demanding time-sensitive response. Despite recent
advancements in neural solvers, their limited expressiveness struggles to capture
the multi-modal nature of CO landscapes. While some research has shifted towards
diffusion models, these models still sample solutions indiscriminately from the en-
tire NP-complete solution space with time-consuming denoising processes, which
limit their practicality for large problem scales. We propose DISCO, an efficient
DIffusion Solver for large-scale Combinatorial Optimization problems that excels
in both solution quality and inference speed. DISCO’s efficacy is twofold: First, it
enhances solution quality by constraining the sampling space to a more meaningful
domain guided by solution residues, while preserving the multi-modal properties of
the output distributions. Second, it accelerates the denoising process through an an-
alytically solvable approach, enabling solution sampling with minimal reverse-time
steps and significantly reducing inference time. DISCO delivers strong perfor-
mance on large-scale Traveling Salesman Problems and challenging Maximal
Independent Set benchmarks, with inference duration up to 5.28 times faster than
existing diffusion solver alternatives. By incorporating a divide-and-conquer strat-
egy, DISCO can well generalize to solve unseen-scale problem instances off the
shelf, even surpassing models specifically trained for those scales.

1 INTRODUCTION

Combinatorial Optimization (CO) is a fundamental field in both computer science and operations
research, encompassing the search for an optimal solution from a finite set of entities. These
challenges are widespread in various real-world applications across diverse industries, spanning
logistics (Ma et al., 2023; Li et al., 2024), production scheduling (Ye et al., 2024a; Zhang et al., 2024),
and resource allocation (Zhao et al., 2021a; 2022). A distinctive characteristic of CO problems is
the exponential expansion of their solution space as the problem scale increases. This exponential
growth is particularly pronounced in the case of NP-complete (NPC) problems (Garey & Johnson,
1979), representing the most formidable challenges within NP and posing a formidable obstacle to
precisely finding an optimal solution within a polynomial time frame.

In recent years, deep learning algorithms have showcased remarkable capabilities in CO problem
solving (Choo et al., 2022; Kim et al., 2022). However, these learning-based solvers are susceptible to
being misled by the multi-modal landscapes in CO problems (Khalil et al., 2017), wherein the learning
agent is required to identify a set of optimal solutions. This multi-modal property complicates the
learning, hindering efficient convergence to desired solutions, particularly when confronted with
large problem scale (Chen & Tian, 2019; Wu et al., 2021). Diffusion probabilistic models (Ho et al.,
2020; Song et al., 2021a) have demonstrated robust capabilities in generation tasks. Of particular
interest, Chi et al. (2023) and Huang et al. (2023b) have employed diffusion methods for decision
model construction, showcasing their inherent advantages in addressing multi-modal problems. This
serves as inspiration for us to explore the application of diffusion methods to CO.

We are not the first to apply diffusion models to CO problems. Graikos et al. (2022) tackle Euclidean
Traveling Salesman problems (TSP) by converting each instance into a low-resolution greyscale
image and then utilizing a Convolutional Neural Network (CNN) (LeCun et al., 1998) for denoising
the solution. Sun & Yang (2023) propose DIFUSCO to explicitly model problem structures with
Graph Neural Networks (GNNs) (Gori et al., 2005). Li et al. (2024) further develop DIFUSCO with

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

an objective-guided, gradient-based search during deployment. Although these approaches show
improved performance, they still indiscriminately sample solutions from the entire NPC solution
space, simulating a Markov chain for generation with many steps. The incurred time overhead for
unproductive solution sampling is a critical bottleneck in applying diffusion solvers to real-world
instances, especially when dealing with large problem scales (Xu et al., 2018).

We contend that the potential of diffusion models in addressing large-scale CO problems has yet to
be fully discovered. We propose DISCO, an efficient DIffusion Solver for large-scale Combinatorial
Optimization problems. DISCO improves solution quality by restricting the sampling space to a
more meaningful domain, guided by solution residues, and enables rapid solution generation with
minimal denoising steps. DISCO delivers strong performance on large-scale TSP instances and
challenging Maximal Independent Set (MIS) benchmarks, with inference duration up to 5.28 times
faster than other diffusion solver alternatives. Through further leveraging the multi-modal property
and efficiency of DISCO, we can well generalize it to solve unseen-scale instances with a traditional
divide-and-conquer strategy (Fu et al., 2021; Ye et al., 2024b) off the shelf, even outperforming
models specifically trained for corresponding scales.

2 RELATED WORK

Combinatorial Optimization Combinatorial optimization (CO) problems have garnered consid-
erable attention over the years due to their extensive applicability across diverse domains such as
logistics (Bello et al., 2016; Kool et al., 2019), production scheduling (Ye et al., 2024a; Zhang et al.,
2024), and resource allocation (Zhao et al., 2021a; 2022). However, the exponential growth of the
solution space, as the problem scale escalates for these NPC problems (Garey & Johnson, 1979),
poses a formidable challenge for finding an optimal solution within a polynomial time frame. Tradi-
tional solvers for CO problems can be classified into exact algorithms, approximation algorithms, and
heuristic methods. Exact algorithms (Lawler & Wood, 1966; Schrijver et al., 2003), such as dynamic
programming (Cormen et al., 2022) and cutting-plane methods (Wolsey & Nemhauser, 2014), aim to
exactly find the optimal solution for each test instance. However, they only suit small to medium-
sized problems due to the inherent heavy computational complexity. Approximation (Hochba, 1997;
Vazirani, 2001) and heuristic (Glover & Kochenberger, 2006; Michalewicz & Fogel, 2013) methods,
on the other hand, are used when the problem scale is large or time constraints exist for finding
solutions. These methods can find solutions within an acceptable time cost. However, they typically
heavily rely on expert knowledge (Helsgaun, 2017; Taillard & Helsgaun, 2019) and cannot guarantee
the high quality of the final discoveries.

Learning for Combinatorial Optimization With the blossoming of deep learning mechanisms
that do not heavily rely on expert knowledge and can be easily adapted to various automated search
processes, researchers have widely explored neural solvers for CO problems. These approaches
encompass both supervised learning (SL) (Vinyals et al., 2015) and reinforcement learning (RL) (Mnih
et al., 2015). From a practical perspective, the choice between SL and RL depends on the availability
of problem data. For online operation problems (Seiden, 2002; Borodin & El-Yaniv, 2005), the input
data is progressively revealed, and decisions must be made immediately upon data arrival. Such
problems require algorithms to make decisions without fully understanding the problem, typically
modeled as Markov Decision processes and solved through trial-and-error methods using RL (Zhao
et al., 2021b; 2023). Conversely, for offline problems (Papadimitriou & Steiglitz, 1998), all input
data and all constraints are fully provided before solving the problems. The decision-makers can
fully utilize all relevant information for comprehensive analysis and iteratively improve solution
quality. Providing an initial solution by SL and further refining it by decoding strategies (Croes,
1958; Kool et al., 2019; Graikos et al., 2022) has become a common practice (Deudon et al., 2018).
Most CO problems can be modeled as decision problems on graphs (Yolcu & Póczos, 2019; Li &
Si, 2022; Zhang et al., 2024). Notably, TSP (Bi et al., 2022) and MIS (Darvariu et al., 2021) stand
out as two foundations regarding edge and node decision problems. DISCO leverages anisotropic
GNNs (Bresson & Laurent, 2018; Joshi et al., 2022) as the backbone to produce embeddings for both
graph edges and nodes, adequately demonstrating its superiority on both large-scale TSP and MIS
instances through extensive evaluations.

Diffusion Probabilistic Model Diffusion probabilistic models (DPMs) (Ho et al., 2020; Song et al.,
2021a) are primarily utilized for high-quality generation and have exhibited robust capabilities in
generating images (Huang et al., 2023c), audios (Luo et al., 2024), and videos (Ho et al., 2022). This

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

impressive method was initially formulated by Sohl-Dickstein et al. (2015) and further extended by Ho
et al. (2020) through the proposal of a general generation framework. Its principle involves simulating
a forward process of gradually introducing noise, followed by training a reverse noise removal model
to generate data. These models can further adjust the conditional variables (Dhariwal & Nichol, 2021)
during the reverse process to generate data samples that satisfy specific attributes or conditions. In
comparison to other generative models such as Generative Adversarial Networks (Goodfellow et al.,
2014; Radford et al., 2015), diffusion models demonstrate higher stability during training. This is
attributed to their avoidance of adversarial training and they gradually approach the true distribution
of the data by learning to remove noise.

Diffusion for Combinatorial Optimization In addition to stable and high-quality generation,
DPMs have exhibited a promising prospect for generating a wide variety of distributions (Huang et al.,
2023b). This multi-modal property particularly benefits CO problem solving, where multiple optimal
solutions may exist and confront the limited expressiveness of previous neural solvers (Gu et al.,
2018; Li et al., 2018). Some attempts have been made. Graikos et al. (2022) convert TSP instances
into low-resolution greyscale images encoded by CNN. Sun & Yang (2023) propose DIFUSCO to
incorporate GNN for problem representation while Li et al. (2024) further develop DIFUSCO with
an objective-guided, gradient-based search during deployment. These efforts overlook the inefficient
solution sampling from enormous NPC solution space and the slow reverse process of diffusion
models, which significantly hampers their practicality for large-scale real-world applications (Xu
et al., 2018). DISCO differentiates itself by developing a specialized diffusion process tailored for
CO, optimizing both forward and reverse processes. Specifically, DISCO employs an analytical
denoising process (Huang et al., 2023a) to quickly produce high-quality solutions with very few
denoising steps, while reducing solution space associated with NPC problems by introducing solution
residues (Liu et al., 2024). This enhanced efficiency on both solution quality and inference speed
further amplifies DISCO’s advantages in generalizing to the CO challenge of unseen scales.

3 PRELIMINARY

Combinatorial optimization can generically be framed as the task of finding a valid solution Xs from
a discrete solution space Xs = {0, 1}N for a given instance s, while minimizing the task-specific
cost function cost(Xs) (Papadimitriou & Steiglitz, 1998). The optimal solution X∗

s is defined as:

argmin
Xs∈Xs

cost(Xs). (1)

Taking TSP instances as an example, N represents the edge number, Xi ∈ Xs indicates whether the
i-th edge is selected, and costs(X) means the tour length of X. Parameterized solvers, denoted as
p(·|s), are trained to predict the probability distribution over each problem variable. Either supervised
learning (Vinyals et al., 2015; Sun & Yang, 2023) or reinforcement learning (Bello et al., 2016; Kool
et al., 2019) mechanisms have been extensively explored.

While previous neural CO solvers have shown promising results, they usually suffer from the
expressiveness limitation when confronted with multiple optimal solutions for the same graph (Khalil
et al., 2017; Gu et al., 2018). Thanks to recent advances in generative models, DPMs have exhibited
promising prospects for generating a wide variety of distributions (Ho et al., 2020; Huang et al.,
2023b) suitable for CO solving.

DPMs view the input-to-noise process as a parameterized Markov chain that gradually adds noise to
the original data x0 until the signal is completely corrupted, this forward process is first formulated
by Sohl-Dickstein et al. (2015) with the definition:

q(xt | x0) = N
(
xt;αtx0, β

2
t I
)
, (2)

where αt and βt are the differentiable functions of time t with bounded derivatives, xt is noisy data,
and I is the identity matrix. Song et al. (2021b) give proof that this Markov chain can be represented
by the following stochastic differential equation:

dxt = htxt dt+ g(t) dwt, x0 ∼ q(x0), (3)

where ht = d logαt

dt , g2t =
dβ2

t

dt − 2htβ
2
t , and wt denotes the standard Wiener process (Einstein,

1905).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Residue-Constrained

Solution Space

Residue

Mixed-Quality

Solution Space

Noise Degraded Solution

Noise

𝑿𝑆 𝑿𝑆

(a) Traditional denoising process. (b) Ours.

Figure 1: In comparing DISCO’s solution sampling with traditional diffusion methods. We define darker
colors to represent higher solution quality. (a) Traditional diffusion generation indiscriminately spans the entire
mixed-quality solution space, i.e., a significant proportion of the samples do not satisfy problem constraints. (b)
DISCO constrains the generations close to the high-quality label Xs by introducing residues, resulting in a more
meaningful, yet smaller, solution space, while preserving the multi-modal properties of the output distributions.

4 METHOD

At the outset, we introduce solution residues in Sec. 4.1, which restricts the sampling space for large-
scale CO problems to a more meaningful domain, ensuring solution effectiveness while preserving
diversity. In Sec. 4.2, we present our analytical denoising process to generate high-quality solutions
with minimal reverse-time steps. In Sec. 4.3, we further leverage the multi-modal property and
efficiency of DISCO to generalize it to unseen scales with a traditional divide-and-conquer strategy.

4.1 RESIDUE-CONSTRAINED SOLUTION GENERATION

The NPC solution space grows exponentially with CO problem scales. The reverse generation
covering such an enormous space is inefficient since many samples do not even adhere to problem
constraints, as depicted in Fig. 1 (a). We propose our DISCO method to restrict the sampling from
the entire NPC space to a more meaningful domain while still preserving the multi-modal property of
output distributions. We achieve this by introducing solution residues (Liu et al., 2024) to prioritize
certainty besides noises to emphasize diversity, as shown in Fig. 1 (b). The reversed process starts
from both noise and an exceedingly economical degraded solution, confining the generated samples
close to the high-quality input data. Driving a high-quality solution from a degraded or heuristic one
has been verified as effective and is widely adopted in solving various CO problems (Zhao et al.,
2022; Zhang et al., 2024). Conditional guidance can decrease the unconditional likelihood of the
sample while increasing the conditional likelihood, leading to higher sample quality (Ho & Salimans,
2022).

Given problem instance s, parameterized DPM p(·|s) generates conditionally independent probability
distribution x0 for each problem variable, also known as heatmap scores (Fu et al., 2021; Sun &
Yang, 2023). Subsequently, task-specific decoding processes (Croes, 1958; Kool et al., 2019) are
employed to transform predicted x0 into discrete solution Xs. We denote Xd a readily obtainable
degraded solution that satisfies problem constraints and solution residues xres = Xd − x0. Take
TSP as an example, Xd can be obtained by connecting vertices in the graph in a sequential order to
form a tour. By introducing the residue xres, the forward diffusion process is the mapping from the
high-quality solution to the mixture of noise and degraded solution:

xt = x0 + (1− αt)xres + βtϵ, ϵ ∼ N (ϵ;0, I), (4)

where x0 = Xs denotes the high-quality solution label and xt is the noisy solution. According to the
reversed process of DDPM (Ho et al., 2020), we can derive the transition probability of the reversed
process that is defined as:

q(xt−1|xt,x0) ∝ exp

{
− (xt−1 − u)2

2σ2I

}
,

u =
αt−1αtβ

2
t−1 + α2

t−1 − α2
t

αt−1β2
t

xt +
(α2

t − α2
t−1)(1− αt)

αt−1β2
t

xres +
α2
t − α2

t−1

αt−1βt
ϵ,

σ2 =
(α2

t−1 − α2
t)β

2
t−1

α2
t−1β

2
t

.

(5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The residue prioritizes certainty while the noise emphasizes diversity, so that the solution space for
sampling is effectively constrained. For the learning process, the diffusion model only needs to learn
the residue between the high-quality label Xs and the proposed degraded solutions Xd rather than
the original Xs, which simplifies the learning. For the inference process, the generations are confined
close to the high-quality label Xs by introducing residues, allowing the model to efficiently find
high-quality solutions while leveraging this meaningful diversity to further improvement.

4.2 ANALYTICALLY SOLVABLE DENOISING PROCESS

The residue-constrained denoising process allows for the efficient generation of high-quality solutions;
however, typical DDPM usually takes 900∼1000 sampling steps for the inference. The slow solving
speed significantly limits the practical application of diffusion solvers in real-world CO problems,
particularly considering many time-sensitive demands, such as on-call routing (Ghiani et al., 2003)
and on-demand hailing service (Xu et al., 2018), not to mention the large-scale operation challenges.

To avoid time-consuming numerical integration and generate high-quality solutions with fewer steps,
we substitute the numerical integration process with an analytically solvable form. Inspired by
decoupled diffusion models (DDMs) (Huang et al., 2023a), the original mapping in Eq. 4 can be
decoupled into an analytical high-quality solution to degraded solution and a zero-to-noise mapping:

xt = x0 +

∫ t

0

xresdt+
√
tϵ, ϵ ∼ N (ϵ;0, I), (6)

where x0 +
∫ t

0
xresdt represents the solution to degradation, and

√
tϵ denotes the zero-to-noise

process. More importantly, since there is an analytical solution-to-degradation in the forward process,
we can derive the corresponding reversed process with a similar analytical form. In this way, the
efficiency of the reversed process can be improved by much fewer evaluation steps, e.g., inference
with 1 or 2 steps. More specifically, we employ continuous-time Markov chain with the smallest
time step ∆t → 0+ and use conditional distribution q(xt−∆t | xt,x0) to approximate q(xt−∆t | xt),
which is formulated by:

q(xt−∆t|xt,x0) ∝ exp

{
− (xt−∆t − u)2

2σ2I

}
,

u = xt −
∫ t

t−∆t

xresdt−∆tϵ/
√
t, σ2 = ∆t(t−∆t)/t,

(7)

where ϵ ∼ N (0, I). Benefiting from the analytical solution to degradation, we avoid the numerical
integration-based denoising and instead directly sample heatmap x0 with an arbitrary step size, which
significantly reduces the inference time.

We provide a theoretical analysis of the equivalence between DISCO and DDM in App. A, supporting
the effectiveness of our method. It is important to note that DDMs are not directly adopted by DISCO.
We integrate our residue-constrained design with DDMs, leading to refined diffusion processes and
training objectives. DISCO can efficiently achieve high-quality solutions by sampling from the
constrained solution space with fewer denoising steps, meeting the requirements of large-scale CO.

Training We adopt anisotropic GNNs (Bresson & Laurent, 2018; Joshi et al., 2022) as the network
architecture of DISCO. Unlike typical GNNs such as GCN (Kipf & Welling, 2016) or GAT (Velickovic
et al., 2017) designed for node-only embedding, anisotropic GNNs produce embeddings for both
nodes and edges, which are then fed into the diffusion model to generate heatmaps. Practically, we
input the noisy solution xt, the nodes and edges of Xd, and the time t into the anisotropic GNN
with parameter θ, predicting the parameterized residue xθ

res and noise ϵθ simultaneously. Specific
implementation details are provided in App. G.

We focus on offline CO problems. Therefore, we train DISCO in an efficient and stable supervised
mechanism to discover common patterns from high-quality solutions available for each instance. This
also helps circumvent the challenges associated with scaling up and the latency in the inference that
arises from the sparse rewards and sample efficiency issues when learning in an RL framework (Ma
et al., 2021; Wu et al., 2021), especially at large scales. The training objective is defined as:

min
θ

Eq(Xs)Eq(ϵ)

[
∥xθ

res − xres∥2 + ∥ϵθ − ϵ∥2
]
. (8)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Input 𝐺

𝑔1 𝒉1

𝑔2 𝒉2

𝑔𝑚 𝒉𝑚

𝒄1

𝒄2

𝒄𝑛

𝑿1

𝑿2

𝑿𝑛

Graph

Splitting

DISCO

DISCO

DISCO

arg minSampling

Subgraphs Heatmaps Combinations Trials

Solution 𝑿

M & D

M & D

M & D

Figure 2: Our multi-modal graph search method, illustrated using a TSP instance for simplicity. M & D denotes
merging a combination of heatmaps c to global heatmap H and decoding a trial X from H.

Once trained, the model can be applied to generate heatmaps for a virtually unlimited number of un-
seen graphs during deployment. These heatmaps are fed into decoding strategies like Greedy (Graikos
et al., 2022), Sample (Kool et al., 2019), 2-opt (Croes, 1958), to achieve the final solution.

Sampling Eq. 6 shows the endpoint of the forward process is the mixture of the degraded solution
and noise, therefore, we start from the mixture in the sampling process. Given a degraded solution
Xd and a noise ϵ sampled from the normal distribution, we set x1 = Xd + ϵ (t = 1). Sampling from
x1 instead of ϵ constrains the sample space from the entire noise domain into a smaller one, ensuring
an effective solution. For a K-step sampling, we set the step size of each sampling to 1/K. At each
sampling step, we utilize the anisotropic GNN to predict the estimated residue xθ

res and noise ϵθ . In
this way, we can solve the reversed process via Eq. 7 iteratively, obtaining the high-quality solution
x0 until t = 0. After we sample a probability distribution x0 from pθ(s) for instance s, we adopt the
same operation as Sun & Yang (2023) to obtain the normalized heatmap score h = 0.5(x0 + 1).

4.3 MULTI-MODAL GRAPH SEARCH

Parameterized solvers trained on specific scales often struggle to generalize well to test instances of
different scales (Fu et al., 2021). Training a model from scratch on the target scale or fine-tuning the
model includes additional training time within the decision loop, making it impractical for real-world
applications that demand an off-the-shelf response. We aim to develop the generalization ability
of DISCO to unseen-scale instances. DISCO demonstrates efficiency advantages in both solution
quality and inference speed. Its multi-modal output can be further leveraged to enhance solution
diversity through a novel divide-and-conquer approach. In contrast, traditional divide-and-conquer
strategies (Fu et al., 2021; Ye et al., 2024b) can only produce a single deterministic solution for
each sub-problem. Increasing the solution diversity broadens the exploration of the solution space,
decreasing the likelihood of getting stuck in sub-optimal solutions (Zhang et al., 2015) and improving
generalization performance.

Algorithm 1 Multi-Modal Graph Search

Input: A graph problem G to be solved
Process:

1: Pre-train DISCO model pθ on a small scale
2: Split G into a set of subgraphs g
3: for g ∈ g do
4: Sample heatmap set H from pθ(g) with q

different noise xt

5: end for
6: Initialize trial set X = ∅
7: for k = 1, 2, 3, . . . , n do
8: Sample h from each H as combination ck
9: Merge ck as a global heatmap Hk

10: Decode trial Xk from Hk, add it to X
11: end for
12: Select a final trial with argminX∈X cost(X)

Specifically, we leverage a model pθ trained on a
smaller scale as a base to construct heatmaps for
sub-problems g, which are decomposed from
the original graph G. The scale of sub-problem
g ∈ g is fixed and close to the training scale of
pθ, thereby we can better solve g and smoothly
generalize pθ to the original scale. A detailed
pipeline is provided in Fig. 2. For sub-problem
decomposition, we adopt a vector ov record-
ing the occurrence number of each node of G
in all existing subgraphs. In each iteration, we
choose the node with the index argmin(ov) as
the cluster center and select the remaining nodes
with the k-nearest neighbor rule (Cover & Hart,
1967), forming a subgraph g. This process con-
tinues until min(ov) exceeds a certain threshold
ω. For each g ∈ g, we resize it to a uniform size.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Leveraging trained DISCO model pθ, we can generate sub-heatmap score h for g. The solution for
the original graph G is obtained by merging all sub-heatmaps, which jointly cover G at least ω times,
through mean aggregation. The merged global heatmap H is:

Hij =
1

oij
×

|g|∑
l=1

ϕ(hl, i, j), (9)

where ϕ(hl, i, j) represents the heatmap value contributed by hl corresponding to index ij of H,
with ϕ(hl, i, j) = 0 if no correspondence. The scalar oij records the occurrence count of edge ij
across all subgraphs. Subsequently, we decode the merged heatmap H into the final solution X. A
comparison of various graph merging methods, along with evidence that our graph splitting method
helps avoid local optima, is also provided in App. H.

We leverage the multi-modal output of DISCO to enhance the solution diversity and avoid the final
solution from getting stuck in the sub-optimum. For each subgraph g ∈ g, we repeatedly sample
a set of heatmaps H with q different noise xt. We randomly sample one heatmap h from each H,
combining as a set c with |c| = |g|, merging as a global heatmap H, and decoding a solution trial X
from H. This sample process is repeated n times, generating multiple trials as X . We decide the final
solution with the minimum cost from X , i.e., argminX∈X cost(X). Although there can be expq(|g|)
possible trial combination, we observe that performance asymptotically converges, so we limit the
sampling to finite n trials. A detailed description of our algorithm is provided in Alg. 1.

5 EXPERIMENTS

We provide extensive experimental results to demonstrate the superiority of DISCO. We begin by
detailing the experimental settings in Sec. 5.1, followed by comparisons with state-of-the-art CO
solvers on well-studied TSP problems in Sec. 5.2. Subsequently, we conduct ablations on DISCO
components in Sec. 5.3, verify its generalization ability to unseen problem scales in Sec. 5.4, and
assess its scalability in solving MIS problems in Sec. 5.5.

5.1 EXPERIMENTAL SETTINGS

Metrics While DISCO is generically applicable to various NPC problems, our evaluations primarily
focus on the most representative TSP problem, as it is a common challenge in the machine learning
community with established competitors, providing a solid benchmark to demonstrate our method’s
superiority. Our evaluation metrics include the average length (Length) of tours and the clock time
(Time) required for solving all test instances, presented in seconds (s), minutes (m), or hours (h). We
also report the performance gap (Gap), which is the average of the relative decrease in performance
compared to a baseline method.

Baselines We conduct an extensive comparison of DISCO with a diverse set of baselines, includ-
ing exact solvers, heuristic solvers, and state-of-the-art learning methods. For exact solvers, our
comparisons include Concorde (Applegate et al., 2006) and Gurobi (LLC Gurobi Optimization,
2018). Regarding heuristic solvers, we evaluate against LKH-3 (Helsgaun, 2017), 2-opt (Croes,
1958) and a simple Farthest Insertion principle (Cook et al., 2011). In terms of learning-based
methods, we compare with recent advances including AM (Kool et al., 2019), ELG-POMO (Gao
et al., 2023), BQ-NCO (Drakulic et al., 2024), and GLOP (Ye et al., 2024b), and diffusion-based
solvers DIFUSCO (Sun & Yang, 2023) and T2T (Li et al., 2024). Note that, T2T is currently the
most powerful neural solver for TSP problems.

We label the large-scale training instances using the LKH-3 heuristic solver (Helsgaun, 2017) and
generate the test instances following the same principle as Fu et al. (2021) and Sun & Yang (2023).
All experiments are conducted on a single NVIDIA A100 GPU, paired by AMD EPYC 7662 CPUs
@ 2.00GHz. Some learning-based solvers struggle with large problem scales; for instance, Image
Diffusion (Graikos et al., 2022) only operates on a 64× 64 greyscale image. To ensure fairness, we
compare them on small-scale instances. The results are provided in App. C, along with comparisons
with GCN (Joshi et al., 2019), Transformer (Bresson & Laurent, 2021), POMO (Kwon et al., 2020),
Sym-NCO (Kim et al., 2022), DPDP (Ma et al., 2021), and MDAM (Xin et al., 2021). Our codes,
the mentioned baselines, pre-trained models, and documentation are provided in the Supplementary
Material and will be publicly released upon acceptance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparisons on large-scale TSP problems. G, S, and BS denotes Greedy decoding, Sampling decoding,
and Beam Search (Sutskever et al., 2014), respectively. The symbol * indicates the baseline for computing the
performance gap. The symbol † denotes that the diffusion model samples once. N/A indicates that results could
not be produced within 24 hours (Qiu et al., 2022), and OOM signifies running out of 80GB GPU memory.

ALGORITHM TYPE
TSP-5000 TSP-8000 TSP-10000

LENGTH ↓ GAP ↓ TIME ↓ LENGTH ↓ GAP ↓ TIME ↓ LENGTH ↓ GAP ↓ TIME ↓
CONCORDE EXACT N/A N/A N/A N/A N/A N/A N/A N/A N/A
GUROBI EXACT N/A N/A N/A N/A N/A N/A N/A N/A N/A
LKH-3 (DEFAULT) HEURISTICS 51.94∗ — 6.57m 65.21∗ — 16.23m 71.77∗ — 8.8h
LKH-3 (LESS TRIALS) HEURISTICS 52.22 0.54% 5.17m 66.11 1.38% 13.83m 71.79 0.03% 51.27m
RAW 2-OPT HEURISTICS 58.99 13.57% 6.16m 79.29 21.59% 14.15m 91.16 27.02% 28.49m
FARTHEST INSERTION HEURISTICS 57.20 10.13% 0.97m 72.28 10.84% 5.78m 80.59 12.29% 13.25m

BQ-NCO RL+G 175.34 237.58% 75.72m 725.67 1012.82% 4.98h OOM
AM RL+G 89.35 72.03% 1.68m 122.42 87.73% 3.95m 141.51 97.17% 7.68m
ELG-POMO RL+G 59.96 15.44% 51.18m 76.71 17.64% 2.02h OOM
GLOP RL+G 53.39 2.79% 0.51m 67.51 3.53% 0.53m 75.29 4.90% 1.90m
DIFUSCO SL+G† 53.31 2.64% 8.65m 67.51 3.53% 19.38m 73.99 3.10% 35.38m
T2T SL+G† 53.17 2.37% 25.88m 67.43 3.40% 1.11h 73.87 2.92% 1.52h
DISCO (OURS) SL+G† 52.48 1.04% 5.72m 66.11 1.38% 14.32m 73.85 2.90% 25.12m

AM RL+BS 83.93 61.59% 19.07m 114.82 76.08% 1.13h 129.40 80.28% 1.81h
GLOP RL+S 53.28 2.58% 0.54m 67.41 3.37% 0.59m 75.27 4.88% 5.96m
DIFUSCO SL+S 53.15 2.33% 21.07m 67.41 3.37% 50.18m 73.90 2.97% 1.83h
T2T SL+S 53.10 2.23% 47.85m 67.40 3.36% 1.86h 73.81 2.84% 2.47h
DISCO (OURS) SL+S 52.44 0.96% 9.06m 66.06 1.30% 22.82m 73.81 2.84% 48.77m

5.2 COMPREHENSIVE COMPARISONS

We compare DISCO to alternative NPC solvers across various large-scale problem instances, in-
cluding TSP-5000, TSP-8000, and TSP-10000. Given that generating heatmaps with parameterized
solvers and transforming them into solutions through decoding strategies has become standard prac-
tice (Deudon et al., 2018), we report parameterized solvers’ performance decoding with different
strategies. Xia et al. (2024) highlight that the MCTS strategy (Fu et al., 2021) heavily relies on
TSP-specific heuristics, and is less suited to other problem types. Therefore, we focus on general
decoding strategies, including Greedy (Graikos et al., 2022), Sampling (Kool et al., 2019), and
2-opt (Croes, 1958), which represents local search, to evaluate each method’s general CO-solving
capability. These strategies are introduced in App. F. The performance comparisons with the TSP-
specific MCTS strategy can be found in App. H. We align DISCO’s decoding settings with DIFUSCO
and T2T to demonstrate its superiority as a diffusion solver. To ensure fairness, we apply 2-opt to all
learning-based methods, as some solvers like DIFUSCO and T2T use it while others do not. Follow
Graikos et al. (2022), we use the Greedy+2-opt strategy by default, and Sampling is conducted 4
times across all problem scales. Unless otherwise noted, DISCO’s denoising steps are set to 1 to
highlight its efficiency, while DIFUSCO uses 50 steps and T2T uses 20 steps in inference and 3
iterations × 10 steps in gradient search. Additional details are provided in App. G.

The comprehensive results are summarized in Tab. 1. We observe that DISCO outperforms all the
previous methods on all problem scales, including T2T which is the current state-of-the-art solver
for TSP problems. Diffusion-based methods generally outperform other learning-based approaches,
highlighting the significance of diffusion as a choice. Its inherent multi-modal expressiveness makes
it particularly well-suited for optimization problems. Notably, beyond its performance advantage,
DISCO also demonstrates a significant advantage in inference speed compared to the other two
diffusion alternatives, DIFUSCO and T2T, with its inference duration achieving up to 5.28 times
speedup, better satisfying many real-world applications that require time-sensitive responses. Since
T2T requires gradient-based search during deployment, its computational resource demands are
obviously higher than DISCO and DIFUSCO. A detailed comparison is provided in App. H. We also
evaluate DISCO on real-world TSP scenarios from TSPLIB (Reinelt, 1991) in App. E. DISCO is the
best performer in 28 out of 29 test cases while its inference speed surpasses all compared algorithms,
further validating the practicality of our method.

We provide comparisons of DISCO with more recent learning-based methods which are only trainable
on small-scale instances in App. C and App. H, with DISCO consistently maintaining its performance
advantage. We provide more evidence in App. H to demonstrate the impact of DISCO’s multi-modal
property on improving solution quality. To facilitate a better understanding of our approach, we
provide visual comparisons of denoising results in App. D. These include the evolution of generated
heatmaps throughout the denoising process and the correlation between the final solution quality
and the total number of diffusion steps. We further test the generalization ability of DISCO as a
probabilistic solver to unseen degraded solutions and unseen problem distributions in App. H.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.3 ABLATIONS ON DISCO COMPONENTS

We conduct ablation experiments on two key modules of DISCO: the analytical denoising process
and residue constraints. The results are summarized in Tab. 2. We can observe that for the version
without these two modules, which can also be regarded as an equal implementation of DIFUSCO,
its reverse process requires 50 steps to achieve satisfactory results; otherwise, the solution quality
suffers. In contrast, with the analytical denoising process, we can obtain a satisfactory solution with
just 1 step, significantly improving inference speed. Moreover, the presence of residue constraints
notably enhances the quality of generated heatmaps, as evident from a direct example in Fig. 3. The
improvement in predicted heatmap quality naturally translates into higher solution quality, ultimately
reflecting the efficacy of DISCO motivation.

(a) W/o residue. (b) W/ residue.
Figure 3: Akin to inner loops in a gener-
ated TSP heatmap (a), the denoised sam-
ples without residues span an enormous
NPC space, leading to frequent failures in
satisfying problem constraints as (b).

Table 2: Ablations on DISCO components. Step denotes the de-
noising step number. A and R represent the analytical diffusion
process and residue constraints. Note that, DISCO w/o A&R can
be regarded as an equal implementation of DIFUSCO.

ALGORITHM STEPS
TSP-8000 TSP-10000

LENGTH↓ GAP(%)↓ TIME ↓ LENGTH ↓ GAP(%)↓ TIME ↓
G

R
E

E
D

Y W/O A&R 50 67.51 3.53% 19.38m 73.99 3.10% 35.38m
W/O A&R 1 69.43 6.47% 17.23m 77.67 8.22% 26.80m
W/O R 1 66.65 2.21% 15.85m 76.27 6.27% 27.27m
DISCO 1 66.11 1.38% 14.32m 73.85 2.90% 25.12m

S
A

M
P

L
IN

G W/O A&R 50 67.41 3.37% 50.18m 73.90 2.97% 1.83h
W/O A&R 1 69.20 6.12% 38.80m 77.47 7.94% 1.01h
W/O R 1 66.49 1.96% 29.20m 76.17 6.13% 1.00h
DISCO 1 66.06 1.30% 22.82m 73.81 2.84% 48.77m

5.4 MULTI-MODAL GRAPH SEARCH FOR GENERALIZATION

Benefiting from DISCO’s verified advantage in both solution quality and inference speed, we can
generalize a pre-trained DISCO model pθ to solve the unseen-scale problem instances off the shelf
by a traditional divide-and-conquer strategy. We train the base model pθ on TSP-100 instances and
transfer it to TSP-5000/8000/10000 instances. The decomposed sub-problems g should jointly cover
the global graph problem G at least ω = 1 time. For each sub-problem g ∈ g, we generate a set of
heatmaps H with q = 2 different noises. The results are summarized in Tab. 3. We organize the
experiments in the following logic: First, we test diffusion models trained on different problem scales
to verify the existence of performance degradation. In addition, we validate that the multi-modal
graph search method allows trained models to transfer to unseen problem scales off the shelf. Finally,
we propose potential methods to further enhance the performance of our graph search approach.

Table 3: Results on multi-modal graph search. GS means graph search. T indicates training on the corresponding
problem scale. ‘Best Inter.’ refers to selecting the best intermediate h with the greedily decoded solution from
heatmap set H for each subgraph g, rather than random selection to maintain trial diversity.

ALGORITHM TYPE TRIAL
TSP-5000 TSP-8000 TSP-10000

LENGTH ↓ GAP ↓ TIME ↓ LENGTH ↓ GAP ↓ TIME ↓ LENGTH ↓ GAP ↓ TIME ↓
LKH-3 (DEFAULT) HEURISTICS 10000 51.94∗ — 6.57m 65.21∗ — 16.23m 71.77∗ — 8.8h
ATT-GCN SL+MCTS 1 52.76 1.58% 13.30m 66.77 2.40% 25.95m 74.60 4.86% 37.97m
GLOP RL 1 53.39 2.79% 0.51m 67.51 3.53% 0.53m 75.29 4.90% 1.90m

DISCO (TSP-5000, T) SL+G† 1 52.48 1.04% 5.72m 67.42 3.39% 17.52m 74.98 4.47% 25.37m
DISCO (TSP-8000, T) SL+G† 1 52.97 1.98% 5.10m 66.11 1.38% 17.32m 74.60 3.94% 25.70m
DISCO (TSP-10000, T) SL+G† 1 53.21 2.44% 5.82m 67.27 3.16% 17.46m 73.85 2.90% 25.12m

DIFUSCO (BEST INTER.) SL+GS+G† 1 52.78 1.62% 1.31h 66.86 2.53% 2.16h 74.33 3.57% 4.91h
DIFUSCO SL+GS+G† 50 52.67 1.41% 2.11h 66.61 2.15% 4.81h 74.35 3.60% 5.93h
DISCO (BEST INTER.) SL+GS+G† 1 52.77 1.60% 8.12m 66.56 2.07% 19.82m 74.45 3.73% 36.43m
DISCO SL+GS+G† 50 52.65 1.37% 32.40m 66.52 2.01% 1.34h 74.24 3.44% 1.82h

DISCO SL+GS+G† 100 52.62 1.31% 57.53m 66.52 2.01% 2.31h 74.22 3.41% 3.76h
DISCO (ω = 4) SL+GS+G† 50 52.60 1.27% 35.45m 66.48 1.95% 1.40h 74.23 3.43% 2.18h
DISCO SL+GS+MCTS 50 52.32 0.73% 41.98m 66.12 1.40% 1.59h 73.69 2.68% 2.10h

We can observe that when testing a trained model on a different problem scale, although DISCO
generalizes decently, it performs less effectively compared to models trained on the equivalent scale.
Meanwhile, our multi-modal graph search algorithm, combined with pθ trained only on TSP-100,
exhibits better performance than direct generalization. Att-GCN (Fu et al., 2021) and GLOP (Ye
et al., 2024b) also adopt the divide-and-conquer mechanism for generalization. However, their
parameterized solver lacks the ability to generate diverse trials, which causes the final solution
may get stuck in the sub-optimum. Our DISCO method increases the diversity of solution samples
and broadens exploration in the solution space, enhancing the likelihood of finding higher-quality

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

solutions and being more effective than Att-GCN and GLOP. Although DIFUSCO also possesses the
multi-modal property, its inference speed is prohibitively slow. DISCO achieves at least 3.26 times
faster inference speed than DIFUSCO for graph search, while also delivering superior results.

While our graph search approach offers expq(|g|) possibilities for enriching solution diversity, its
performance asymptotically converges to the number of sampled trials, as confirmed by the general-
ization results on TSP-1000 in Fig. 4. The required trial number increases with solution variance,
which is controlled by the number of denoising steps. We recommend 2-step denoising for better
practice. We also compare our method with a variant that does not generate diverse trials—specifically,
selecting the best intermediate h with the greedily decoded solution from heatmap set H for each
subgraph g—and find that this version generally performs worse. This amplifies the importance of
solution diversity for solving CO problems. DISCO’s performance can be further enhanced by trading
off time costs through various means such as increasing sampled trials, augmenting the subgraph
number |g| by controlling ω, and re-decoding the merged heatmap combinations corresponding to
the most promising trial with more sophisticated strategies like MCTS. These enhancements can even
lead to better performance than models trained on the corresponding scale. These conclusions are
corroborated in Table 3.

10 50 100 150 200 250 300 350 400 450 500
Trials

2.0

2.4

2.8

3.2

Ga
p(

%
)

Step=1
Step=2
Step=5
Step=10

Figure 4: Asymptotic performance of multi-
modal graph search with trial number.

Table 4: Results on MIS problems. TS denotes tree search.

METHOD TYPE
SATLIB ER-[700-800]

SIZE ↑ GAP ↓ TIME ↓ SIZE ↑ GAP ↓ TIME ↓
KAMIS HEURISTICS 425.96∗ — 37.58m 44.87∗ — 52.13m
GUROBI EXACT 425.95 0.00% 26.00m 41.38 7.78% 50.00m

DGL SL+TS N/A N/A N/A 37.26 16.96% 22.71m
INTEL SL+TS N/A N/A N/A 38.80 13.43% 20.00m
INTEL SL+G 420.66 1.48% 23.05m 34.86 22.31% 6.06m
DIMES RL+G 421.24 1.11% 24.17m 38.24 14.78% 6.12m
DIFUSCO SL+G 424.50 0.34% 13.00m 38.83 12.40% 8.80m
T2T RL+G 425.02 0.22% 14.30m 39.56 11.83% 8.53m
DISCO (OURS) SL+G 424.58 0.32% 10.32m 40.30 10.17% 9.00m

LWD RL+S 422.22 0.88% 18.83m 41.17 8.25% 6.33m
DIMES RL+S 423.28 0.63% 20.26m 42.06 6.26% 12.01m
GFLOWNET UL+S 423.54 0.57% 23.22m 41.14 8.53% 2.92m
DIFUSCO SL+S 425.04 0.22% 26.09m 40.70 9.29% 17.33m
T2T SL+S 425.06 0.21% 24.56m 41.37 7.81% 29.73m
DISCO (OURS) SL+S 425.06 0.21% 25.38m 42.21 5.93% 16.93m

5.5 EVALUATIONS ON MAXIMAL INDEPENDENT SET

Besides TSP, we evaluate DISCO on commonly studied MIS problems, both of which are ade-
quately representative of edge-based and node-based NPC problems. Evaluations are conducted on
SATLIB (Hoos & Stützle, 2000) and Erdős-Rényi (ER) (Erdős & Rényi, 1960) graph sets, which
exhibit challenge for recent learning-based solvers (Li et al., 2018; Ahn et al., 2020; Böther et al.,
2022; Qiu et al., 2022; Zhang et al., 2023). Training instances are labeled using the KaMIS heuristic
solver (Lamm et al., 2016), with test instances aligned with Qiu et al. (2022). We adopt the same 50
denoising steps and 4 sample times as DIFUSCO to distinguish model capabilities. Details of experi-
mental settings and baselines can be found in App. B. We report the average size of the independent
set (Size) in Tab. 4. DISCO exhibits a clear performance advantage over most competitors.

6 CONCLUSION

We propose DISCO, an efficient diffusion solver for large-scale CO problems. DISCO obtains
improved solution quality by restricting the sampling space to a more meaningful domain guided
by solution residues, and enables rapid solution generation with minimal denoising steps. DISCO
delivers strong performance on large-scale TSP instances and challenging MIS benchmarks SATLIB
and Erdős-Rényi, with inference duration up to 5.28 times faster than existing diffusion solver
alternatives. Through further combining a traditional divide-and-conquer strategy, DISCO can be
generalized to solve unseen-scale problem instances off the shelf, even outperforming models trained
specifically on those scales.

This work has two limitations. First, DISCO relies on supervised learning and decoding strategies to
transform output heatmaps, limiting it to offline operations where iterative optimization is feasible.
For online operations, DISCO must generate immediate high-quality solutions across the NPC
problem space. Future work should explore integrating trial-and-error methods for online applications.
Second, DISCO’s multi-modal graph search can lead to exponential growth in trial variance. While
this variance aids in exploring the solution space and finding optimal solutions, it also increases
computational costs. Developing a lightweight policy for smarter trail sampling is promising.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 CODE OF ETHICS

Our proposed DISCO method is a general-purpose parameterized solver for CO problems. DISCO
leverages diffusion technologies to address the multi-modal nature of CO problems effectively.
DISCO optimizes both its forward and reverse processes more efficiently for solution generation, and
significantly excels in both inference speed and solution quality. This improved efficiency further
enhances DISCO’s capabilities to generalize to arbitrary-scale instances off the shelf. We believe
that such efficient, learnable neural solvers for NPC problems will have a positive impact on a broad
range of real-world applications (Ghiani et al., 2003; Xu et al., 2018).

8 REPRODUCIBILITY

We provide detailed descriptions of the experiment settings in Sec. 5.1, more implementation details
can be found in App. B and App. G. The code for DISCO, the mentioned baselines, pre-trained
models, and detailed accompanying documentation are also included in the Supplementary Material
to ensure reproducibility.

REFERENCES

Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for maximum independent
sets. In International Conference on Machine Learning, 2020.

Diogo V Andrade, Mauricio GC Resende, and Renato F Werneck. Fast local search for the maximum
independent set problem. Journal of Heuristics, 2012.

David Applegate, Ribert Bixby, Vasek Chvatal, and William Cook. Concorde tsp solver. https:
//www.math.uwaterloo.ca/tsp/concorde/index.html, 2006.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv Preprint arXiv:1611.09940, 2016.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
International Conference on Machine Learning, 2009.

Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng Chee.
Learning generalizable models for vehicle routing problems via knowledge distillation. Advances
in Neural Information Processing Systems, 2022.

Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 2005.

Maximilian Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen Seidel, and Tobias Friedrich.
What’s wrong with deep learning in tree search for combinatorial optimization. In International
Conference on Learning Representations, 2022.

Xavier Bresson and Thomas Laurent. An experimental study of neural networks for variable graphs.
2018.

Xavier Bresson and Thomas Laurent. The transformer network for the traveling salesman problem.
arXiv preprint arXiv:2103.03012, 2021.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization.
Advances in Neural Information Processing Systems, 2019.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Robotics: Science and
Systems, 2023.

Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney, and
Youngjune Gwon. Simulation-guided beam search for neural combinatorial optimization. Advances
in Neural Information Processing Systems, 2022.

11

https://www.math.uwaterloo.ca/tsp/concorde/index.html
https://www.math.uwaterloo.ca/tsp/concorde/index.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

William J Cook, David L Applegate, Robert E Bixby, and Vasek Chvátal. The Traveling Salesman
Problem: A Computational Study. Princeton University Press, 2011.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
Algorithms. MIT Press, 2022.

Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, 1967.

Georges A Croes. A method for solving traveling-salesman problems. Operations Research, 1958.

Paulo R d O Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. Learning 2-opt heuristics
for the traveling salesman problem via deep reinforcement learning. In Asian Conference on
Machine Learning, 2020.

Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Solving graph-based public
goods games with tree search and imitation learning. Advances in Neural Information Processing
Systems, 2021.

Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin Rousseau.
Learning heuristics for the tsp by policy gradient. In Integration of Constraint Programming,
Artificial Intelligence, and Operations Research, 2018.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in Neural Information Processing Systems, 2021.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco: Bisimu-
lation quotienting for efficient neural combinatorial optimization. Advances in Neural Information
Processing Systems, 36, 2024.

Albert Einstein. On the motion of small particles suspended in liquids at rest required by the
molecular-kinetic theory of heat. Annalen Der Physik, 1905.

Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publications of the Mathematical
Institute of the Hungarian Academy of Sciences, 1960.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large TSP instances. In AAAI Conference on Artificial Intelligence, 2021.

Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural
solvers for vehicle routing problems via ensemble with transferrable local policy. arXiv preprint
arXiv:2308.14104, 2023.

Michael R Garey and David S Johnson. Computers and Intractability. Freeman San Francisco, 1979.

Gianpaolo Ghiani, Francesca Guerriero, Gilbert Laporte, and Roberto Musmanno. Real-time vehicle
routing: Solution concepts, algorithms and parallel computing strategies. European Journal of
Operational Research, 2003.

Fred W Glover and Gary A Kochenberger. Handbook of Metaheuristics. Springer Science & Business
Media, 2006.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in Neural Information
Processing Systems, 2014.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains.
In International Joint Conference on Neural Networks, 2005.

Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, and Dimitris Samaras. Diffusion models as
plug-and-play priors. Advances in Neural Information Processing Systems, 2022.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O. K. Li, and Richard Socher. Non-autoregressive
neural machine translation. In International Conference on Learning Representation, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde University, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in Neural Information Processing Systems, 2022.

Dorit S Hochba. Approximation algorithms for np-hard problems. ACM Sigact News, 1997.

Holger H Hoos and Thomas Stützle. Satlib: An online resource for research on sat. Sat, 2000.

Yuhang Huang, Zheng Qin, Xinwang Liu, and Kai Xu. Decoupled diffusion models with explicit
transition probability. arXiv Preprint arXiv:2306.13720, 2023a.

Zhiao Huang, Litian Liang, Zhan Ling, Xuanlin Li, Chuang Gan, and Hao Su. Reparameterized
policy learning for multimodal trajectory optimization. In International Conference on Machine
Learning, 2023b.

Zhongzhan Huang, Pan Zhou, Shuicheng Yan, and Liang Lin. Scalelong: Towards more stable training
of diffusion model via scaling network long skip connection. Advances in Neural Information
Processing Systems, 2023c.

Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph neural network
guided local search for the traveling salesperson problem. In International Conference on Learning
Representations, 2022.

Edwin T Jaynes. Probability Theory: The Logic of Science. Cambridge University Press, 2003.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning the
travelling salesperson problem requires rethinking generalization. Constraints, 2022.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in Neural Information Processing Systems, 2017.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural
combinatorial optimization. Advances in Neural Information Processing Systems, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 2020.

Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F Werneck. Finding
near-optimal independent sets at scale. In Workshop on Algorithm Engineering and Experiments,
2016.

Eugene L Lawler and David E Wood. Branch-and-bound methods: A survey. Operations Research,
1966.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 1998.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training
to gradient search in testing for combinatorial optimization. Advances in Neural Information
Processing Systems, 2024.

Zhaoyu Li and Xujie Si. Nsnet: A general neural probabilistic framework for satisfiability problems.
Advances in Neural Information Processing Systems, 2022.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional
networks and guided tree search. Advances in Neural Information Processing Systems, 2018.

Jiawei Liu, Qiang Wang, Huijie Fan, Yinong Wang, Yandong Tang, and Liangqiong Qu. Residual
denoising diffusion models. In Computer Vision and Pattern Recognition, 2024.

LLC Gurobi Optimization. Gurobi Optimizer Reference Manual, 2018.

Simian Luo, Chuanhao Yan, Chenxu Hu, and Hang Zhao. Diff-foley: Synchronized video-to-audio
synthesis with latent diffusion models. Advances in Neural Information Processing Systems, 2024.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to iteratively solve routing problems with dual-aspect collaborative transformer. Advances
in Neural Information Processing Systems, 2021.

Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and infeasible regions
of routing problems with flexible neural k-opt. In Advances in Neural Information Processing
Systems, 2023.

Silvano Martello, David Pisinger, and Daniele Vigo. The three-dimensional bin packing problem.
Operations Research, 2000.

Zbigniew Michalewicz and David B Fogel. How to Solve It: Modern Heuristics. Springer Science &
Business Media, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 2015.

Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Courier Corporation, 1998.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A differentiable meta solver for combinatorial
optimization problems. In Advances in Neural Information Processing Systems, 2022.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA Journal on Computing, 1991.

Alexander Schrijver et al. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.

Steven S Seiden. On the online bin packing problem. Journal of the ACM, 2002.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning,
2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations, 2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021b.

Zhiqing Sun and Yiming Yang. DIFUSCO: graph-based diffusion solvers for combinatorial optimiza-
tion. In Advances in Neural Information Processing Systems, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
Advances in Neural Information Processing Systems, 2014.

Éric D Taillard and Keld Helsgaun. Popmusic for the travelling salesman problem. European Journal
of Operational Research, 2019.

Vijay V Vazirani. Approximation Algorithms. Springer, 2001.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio,
et al. Graph attention networks. Stat, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in Neural
Information Processing Systems, 2015.

Laurence A Wolsey and George L Nemhauser. Integer and Combinatorial Optimization. John Wiley
& Sons, 2014.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuristics
for solving routing problems. IEEE Transactions on Neural Networks and Learning Systems,
2021.

Yifan Xia, Xianliang Yang, Zichuan Liu, Zhihao Liu, Lei Song, and Jiang Bian. Position: Rethinking
post-hoc search-based neural approaches for solving large-scale traveling salesman problems. In
International Conference on Machine Learning, 2024.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In AAAI Conference on Artificial Intelligence,
2021.

Zhe Xu, Zhixin Li, Qingwen Guan, Dingshui Zhang, Qiang Li, Junxiao Nan, Chunyang Liu, Wei
Bian, and Jieping Ye. Large-scale order dispatch in on-demand ride-hailing platforms: A learning
and planning approach. In ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2018.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. Deepaco: Neural-enhanced
ant systems for combinatorial optimization. Advances in Neural Information Processing Systems,
2024a.

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop: Learning
global partition and local construction for solving large-scale routing problems in real-time. In
AAAI Conference on Artificial Intelligence, volume 38, pp. 20284–20292, 2024b.

Emre Yolcu and Barnabás Póczos. Learning local search heuristics for boolean satisfiability. Advances
in Neural Information Processing Systems, 2019.

Cong Zhang, Zhiguang Cao, Wen Song, Yaoxin Wu, and Jie Zhang. Deep reinforcement learning
guided improvement heuristic for job shop scheduling. In International Conference on Learning
Representations, 2024.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and Ling Pan.
Let the flows tell: Solving graph combinatorial problems with gflownets. Advances in Neural
Information Processing Systems, 36:11952–11969, 2023.

Yudong Zhang, Shuihua Wang, Genlin Ji, et al. A comprehensive survey on particle swarm optimiza-
tion algorithm and its applications. Mathematical Problems in Engineering, 2015.

Hang Zhao, Qijin She, Chenyang Zhu, Yin Yang, and Kai Xu. Online 3D bin packing with constrained
deep reinforcement learning. In AAAI Conference on Artificial Intelligence, 2021a.

Hang Zhao, Yang Yu, and Kai Xu. Learning efficient online 3D bin packing on packing configuration
trees. In International Conference on Learning Representations, 2021b.

Hang Zhao, Chenyang Zhu, Xin Xu, Hui Huang, and Kai Xu. Learning practically feasible policies
for online 3D bin packing. Science China Information Sciences, 2022.

Hang Zhao, Zherong Pan, Yang Yu, and Kai Xu. Learning physically realizable skills for online
packing of general 3D shapes. ACM Transactions on Graphics, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

APPENDIX

A EQUIVALENCE ANALYSIS BETWEEN DDM AND DISCO

Real-world combinatorial optimization (CO) problems often require the rapid generation of high-
quality solutions Xs for problem instance s. Previous neural solvers have suffered from the expres-
siveness limitation when confronted with multiple optimal solutions for the same graph (Khalil et al.,
2017; Gu et al., 2018; Li et al., 2018). In contrast, diffusion probabilistic models (DPMs) (Ho et al.,
2020) have shown promising prospects for generating a wide variety of distributions suitable for
CO solving. An obvious bottleneck is the slow inference speed of DPMs. This is due to DPMs
employing numerical integration during the reverse process, requiring multiple steps of accumulation
and solving and significantly incurring time overhead.

Inspired by decoupled diffusion models (DDMs) (Huang et al., 2023a), we substitute the time-
consuming numerical integration process with an analytically solvable form. The original solution-to-
noise mapping can be decoupled into solution-to-zero and zero-to-noise mapping:

xt = x0 +

∫ t

0

ftdt+

∫ t

0

dwt, x0 ∼ q(x0), (10)

where x0 +
∫ t

0
ftdt describes the solution attenuation and

∫ t

0
dwt describes the noise accumulation.

Since ft can be designed analytically, the efficiency of the reversed process can be improved by much
fewer evaluation steps, e.g., inference steps = 1 or 2. The distribution of xt conditioned on x0 is
defined as:

q(xt | x0) = N (xt;x0 + Ft, tI), (11)
where Ft =

∫ t

0
ftdt and we sample xt by xt = x0 + Ft +

√
tϵ with ϵ ∼ N (0, I).

For a reverse time, the sampling formula for x0 is based on the analytic attenuation function ft that
models image to zero transition. We employ continuous-time Markov chain with the smallest time
step δt → 0+ and use conditional distribution q(xt−∆t | xt,x0) to approximate q(xt−∆t | xt,x0).

q(xt−∆t | xt,x0) ∝ exp

{
− (xt−∆t − ũ)2

2σ̃2I

}
, (12)

where ϵ ∼ N (0, I), ũ = xt + Ft−∆t − Ft + ϵ∆t/
√
t, and σ̃2 = ∆t(t −∆t)/t. Since ft has an

analytic form, we can avoid the ordinary differential equation-based denoising and instead directly
sample x0 with an arbitrary step size, which significantly reduces the inference time.

Although the inference speed can benefit from the analytically solvable form, denoising methods still
require inefficient sampling from the entire NPC solution space of CO problems, which typically
grows exponentially with the number of problem scale N . We propose to constrain the sampling
space into a more meaningful one by introducing residues (Liu et al., 2024) to DDM, which is our
DISCO method, i.e., an efficient DIffusion Solver for large-scale CO problems. The reversed process
starts from both noise and an exceedingly cost-effective degraded solution, confining the generation
process in a more meaningful and smaller domain close to the high-quality labels. The residue
prioritizes certainty while the noise emphasizes diversity, so that to ensure solution effectiveness
while still maintaining their multi-modal property of output distributions.

Instead of the traditional forward process merely outputting noise, it is now a combination of noise
xt and a degraded solution Xd for generating residue constraints xres = Xd − x0. The degraded
solution Xd is an exceedingly cost-effective path but satisfies problem constants. For example,
0− 1− . . .− n− 0, connecting nodes in sequential order. Since DDM has already demonstrated its
equivalence to previous diffusion processes defined by Equation 3 (Huang et al., 2023a), we now
provide proof of the equivalence between our method and DDM to demonstrate the effectiveness of
DISCO in a theoretical aspect.

Forward Process The proposed forward formula considering residue is:

xt = x0 +

∫ t

0

xresdt+
√
tϵ. (13)

Compared with the original forward formulation of DDM (Eq. 10), the proposed forward formulation
utilizes a different function xres substituting the attenuation function ft, which means the two
diffusion processes are equivalent.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Reversed Process In the reversed process, we need to parameterize two components: xθ
res and ϵθ ,

which estimate the residue xres and the noise ϵ, respectively. From Eq. 6, we have:

x0 = xt −
∫ t

0

xresdt−
√
tϵ. (14)

Thus, the reverse process can be defined as:

pθ(xt−∆t | xt) := q(xt−∆t | xt,x0). (15)

Applying Bayes’ theorem (Jaynes, 2003), we obtain:

q(xt−∆t | xt,x0) =
q(xt | xt−∆t)q(xt−∆t | xt)

q(xt | x0)
(16)

=
q(xt | xt−∆t)N (xt−∆t;x0 +Ht−∆t, (t−∆t)I)

N (xt;x0 + Ft, tI)
.

Eq. 16 aligns with the reverse process in DDM, thus the reverse process formula is:

q(xt−∆t | xt,x0) ∝ exp

(
− (xt−∆t − u)2

2σ2I

)
, (17)

where ũ = xt −
∫ t

t−∆t
htdt− ∆t√

t
ϵ, σ̃2 = ∆t(t−∆t)

t , equivalent to the reverse formula of DDM.

B MAXIMAL INDEPENDENT SET

Besides the TSP problem, we also evaluate DISCO on commonly studied MIS problems, both of
which are adequately representative of edge-based and node-based NPC problems. We give specific
details of experimental settings in this section.

Datasets We conduct evaluations on SATLIB (Hoos & Stützle, 2000) and Erdős-Rényi (ER) (Erdős
& Rényi, 1960) graph sets, which exhibit challenge for recent learning-based solvers (Li et al., 2018;
Ahn et al., 2020; Böther et al., 2022; Qiu et al., 2022; Zhang et al., 2023). The training instances
are labeled by the KaMIS heuristic solver (Lamm et al., 2016). The split of test instances on SAT
datasets and the random-generated ER test graphs are taken from (Qiu et al., 2022).

Metrics We compare the performance of different probabilistic solvers by the average size (Size) of
the predicted maximal independent set for each test instance; larger sizes indicate better performance.
We also use the same Gap and Time definitions as in the TSP case. We adopt the same denoising steps
and sample times as DIFUSCO (Sun & Yang, 2023) to distinguish model capabilities. Specifically,
we use 50 steps for denoising heatmap and generate 4 times for sampling strategies. Following the
principle of efficiency, we randomly sample a set of nodes from the original graph with a probability
of 50% to obtain the degraded solution.

Baselines We compare DISCO with 9 other MIS solvers on the same test sets, including two
traditional OR methods and seven learning-based approaches. For the traditional methods, we use
Gurobi and KaMIS (Lamm et al., 2016) as baselines. For the learning-based methods, we compare
with LwD (Ahn et al., 2020), Intel (Li et al., 2018), DGL (Böther et al., 2022), DIMES (Qiu et al.,
2022), GFlowNet (Zhang et al., 2023), DIFUSCO (Sun & Yang, 2023), and T2T (Li et al., 2024).

C COMPARISONS ON SMALL-SCALE TSP INSTANCES

Some learning-based solvers struggle with large problem scales, we compare them on small-scale in-
stances for fairness. Specifically, we compare with learning-based methods Image Diffusion (Graikos
et al., 2022), GCN (Joshi et al., 2019), Transformer (Bresson & Laurent, 2021), POMO (Kwon
et al., 2020), Sym-NCO (Kim et al., 2022), DPDP (Ma et al., 2021), and MDAM (Xin et al., 2021).
Along with the learning-based methods works on large scales including AM (Kool et al., 2019),
DIFUSCO (Sun & Yang, 2023), and T2T (Li et al., 2024). We compare with traditional operation
methods including Concorde (Applegate et al., 2006) and Gurobi (LLC Gurobi Optimization, 2018),

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: Comparisons on TSP-50 and TSP-100. The symbol ∗ denotes the baseline for computing the perfor-
mance gap. The symbol † indicates that the diffusion model samples once.

ALGORITHM TYPE
TSP-50 TSP-100

LENGTH↓ GAP(%)↓ LENGTH ↓ GAP(%)↓
CONCORDE EXACT 5.69∗ 0.00 7.76∗ 0.00
2-OPT HEURISTICS 5.86 2.95 8.03 3.54

AM GREEDY 5.80 1.76 8.12 4.53
GCN GREEDY 5.87 3.10 8.41 8.38
TRANSFORMER GREEDY 5.71 0.31 7.88 1.42
POMO GREEDY 5.73 0.64 7.84 1.07
SYM-NCO GREEDY - - 7.84 0.94
DPDP 1k-IMPROVEMENTS 5.70 0.14 7.89 1.62
IMAGE DIFFUSION GREEDY† 5.76 1.23 7.92 2.11
DIFUSCO GREEDY† 5.70 0.10 7.78 0.24
T2T GREEDY† 5.69 0.04 7.77 0.18
DISCO (OURS) GREEDY† 5.70 0.16 7.80 0.58

AM 1k×SAMPLING 5.73 0.52 7.94 2.26
GCN 2k×SAMPLING 5.70 0.01 7.87 1.39
TRANSFORMER 2k×SAMPLING 5.69 0.00 7.76 0.39
POMO 8×AUGMENT 5.69 0.03 7.77 0.14
SYM-NCO 100×SAMPLING - - 7.79 0.39
MDAM 50×SAMPLING 5.70 0.03 7.79 0.38
DPDP 100k-IMPROVEMENTS 5.70 0.00 7.77 0.00
DIFUSCO 16×SAMPLING 5.69 -0.01 7.76 -0.01
T2T 16×SAMPLING 5.69 -0.01 7.76 -0.01
DISCO (OURS) 16×SAMPLING 5.69 -0.01 7.76 0.03

LKH-3 (Helsgaun, 2017), 2-OPT (Croes, 1958), and Farthest Insertion (Cook et al., 2011). We label
the training instances using the Concorde solver for TSP-50/100 and we take the same test instances
as (Kool et al., 2019; Joshi et al., 2022). The comprehensive results are summarized in Tab. 5,
with DISCO consistently maintaining its performance advantage. We visualize the corresponding
denoising processes in Fig. 5.

D
IF

U
SC

O
D

IS
C

O
w

/o
R

D
IS

C
O

(O
ur

s)

Noise Step 1 Step 2 Step 3 Step 4 Step 5

Figure 5: Denoising processes on TSP-50. Decoding the final heatmap with Greedy+2-opt yields tour lengths of
5.95 for DIFUSCO, 5.77 for DISCO without residues (w/o R), and 5.75 for DISCO.

D QUALITATIVE RESULTS

D.1 DENOISING PROCESSES ON LARGE-SCALE INSTANCES

We illustrate the denoising processes of different diffusion methods on large-scale problems in
Figure 6, using TSP-1000 as an example for clarity. The analytical denoising design and introduction
of residues in DISCO ensure that high-quality solutions can be obtained with a few steps. In contrast,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

alternative methods generate solutions that frequently violate problem constraints, such as isolated
nodes, non-closed tours, and inner loops.

D
IF

U
SC

O
D

IS
C

O
w

/o
R

D
IS

C
O

(O
ur

s)

Noise Step 1 Step 2 Step 3 Step 4 Step 5

Figure 6: Denoising processes on TSP-1000. Decoding the final heatmap with Greedy+2-opt yields tour lengths
of 27.69 for DIFUSCO, 26.33 for DISCO without residues (w/o R), and 25.35 for DISCO.

D.2 PERFORMANCE WITH DIFFERENT DENOISING STEPS

Here, we demonstrate the final heatmaps x0 generated by different denoising steps with different
diffusion methods. The visualizations are summarized in Fig. 7, which still opt for TSP-1000 to
ensure readability. The corresponding decoded tour lengths are annotated directly below each plot. It
is evident that DISCO consistently produces high-quality solutions across various denoising steps.
Particularly for time-sensitive scenarios requiring few denoising steps, DISCO maintains a significant
advantage over the baselines.

D
IF

U
SC

O
D

IS
C

O
w

/o
R

D
IS

C
O

(O
ur

s)

28.42 28.28 27.69 27.25 25.14 24.84

28.20 27.91 26.33 25.64 25.06 24.79

27.72 27.43 25.35 25.05 24.44 24.39

Step 1 Step 2 Step 5 Step 10 Step 20 Step 50

Figure 7: Generated heatmaps on TSP 1000-instances under different denoising steps, with the final decoded tour
length captioned below. DISCO consistently produces higher-quality heatmaps that better satisfy the problem
constraints, leading to better decoding results with the same number of denoising steps.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

E GENERALIZATION TO REAL-WORLD INSTANCES

We evaluate DISCO on TSPLIB (Reinelt, 1991), a collection of real-world TSP scenarios, to assess
its effectiveness in transferring knowledge from the synthetically generated data to the real world.
We directly transfer the DISCO models trained on TSP-50 and TSP-100 to these real-world instances
without any fine-tuning. Each instance strictly follows the evaluation protocol proposed by TSPLIB.
The results are summarized in Tab. 6. We can observe that DISCO is the best performer in 28 out of
29 test cases. Notably, as a diffusion-based algorithm, DISCO’s solving speed is the fastest among all
compared algorithms across all cases, further demonstrating its efficiency advantage and practicality.
The test code and models for this part are provided in the Supplementary Material for reproducibility.
We also provide visualizations of each solution generated by DISCO in Fig. 8.

Table 6: TSPLIB performance. We indicate the training scales for DISCO/DIFUSCO in parentheses.

Method Kool et al. Joshi et al. d O Costa et al. Hudson et al. DIFUSCO (50) DIFUSCO (100) DISCO (50) DISCO (100)
Instance Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

eil51 0.125 1.628 3.026 8.339 28.051 0.067 10.074 0.000 0.482 0.000 0.519 0.117 0.049 0.000 0.049 0.000
berlin52 0.129 4.169 3.068 33.225 31.874 0.449 10.103 0.142 0.527 0.000 0.526 0.000 0.047 0.000 0.048 0.000
st70 0.200 1.737 4.037 24.785 23.964 0.040 10.053 0.764 0.663 0.000 0.670 0.000 0.062 -0.741 0.064 -0.741
eil76 0.225 1.992 4.303 27.411 26.551 0.096 10.155 0.163 0.788 0.000 0.788 0.174 0.076 -0.557 0.072 -0.557
pr76 0.226 0.816 4.378 27.793 39.485 1.228 10.049 0.039 0.765 0.000 0.785 0.187 0.074 -0.379 0.072 -0.379
rat99 0.347 2.645 5.559 17.633 32.188 0.123 9.948 0.550 1.236 1.187 1.192 0.000 0.115 0.000 0.103 -0.165
kroA100 0.352 4.017 5.705 28.828 42.095 18.313 10.255 0.728 1.259 0.741 1.217 0.000 0.110 -0.019 0.106 -0.019
kroB100 0.352 5.142 5.712 34.686 35.137 1.119 10.317 0.147 1.252 0.648 1.235 0.742 0.116 0.235 0.108 0.262
kroC100 0.352 0.972 5.641 35.506 34.333 0.349 10.172 1.571 1.199 1.712 1.168 0.000 0.108 0.029 0.103 -0.067
kroD100 0.352 2.717 5.621 38.018 25.772 0.866 10.375 0.572 1.226 0.000 1.175 0.000 0.118 -0.117 0.110 -0.117
kroE100 0.352 1.470 5.650 26.589 34.475 1.832 10.270 1.216 1.208 0.274 1.197 0.274 0.114 0.168 0.110 0.000
rd100 0.352 3.407 5.737 50.432 28.963 0.003 10.125 0.459 1.191 0.000 1.172 0.000 0.101 -0.733 0.097 -0.733
eil101 0.359 2.994 5.790 26.701 23.842 0.387 10.276 0.201 1.222 0.576 1.215 0.000 0.114 -0.318 0.107 -0.318
lin105 0.380 1.739 5.938 34.902 39.517 1.867 10.330 0.606 1.321 0.000 1.280 0.000 0.124 -0.306 0.107 -0.306
pr107 0.391 3.933 5.964 80.564 29.039 0.898 9.977 0.439 1.381 0.228 1.378 0.415 0.148 -0.199 0.144 -0.169
pr124 0.499 3.677 7.059 70.146 29.570 10.322 10.360 0.755 1.803 0.925 1.782 0.494 0.144 0.198 0.144 0.151
bier127 0.522 5.908 7.242 45.561 39.029 3.044 10.260 1.948 1.938 1.011 1.915 0.366 0.176 -0.379 0.169 -1.026
ch130 0.550 3.182 7.351 39.090 34.436 0.709 10.032 3.519 1.989 1.970 1.967 0.077 0.153 0.245 0.162 -0.016
pr136 0.585 5.064 7.727 58.673 31.056 0.000 10.379 3.387 2.184 2.490 2.142 0.000 0.146 0.069 0.180 -0.342
pr144 0.638 7.641 8.132 55.837 28.913 1.526 10.276 3.581 2.478 0.519 2.446 0.261 0.159 -0.063 0.186 -0.063
ch150 0.697 4.584 8.546 49.743 35.497 0.312 10.109 2.113 2.608 0.376 2.555 0.000 0.169 0.276 0.202 -0.061
kroA150 0.695 3.784 8.450 45.411 29.399 0.724 10.331 2.984 2.617 3.753 2.601 0.000 0.174 0.033 0.208 -0.098
kroB150 0.696 2.437 8.573 56.745 29.005 0.886 10.018 3.258 2.626 1.839 2.592 0.067 0.176 0.554 0.206 0.417
pr152 0.708 7.494 8.632 33.925 29.003 0.029 10.267 3.119 2.716 1.751 2.712 0.481 0.183 0.122 0.221 -0.062
u159 0.764 7.551 9.012 38.338 28.961 0.054 10.428 1.020 2.963 3.758 2.892 0.000 0.184 -0.067 0.196 -0.067
rat195 1.114 6.893 11.236 24.968 34.425 0.743 12.295 1.666 4.400 1.540 4.428 0.767 0.266 0.947 0.310 0.560
d198 1.153 373.020 11.519 62.351 30.864 0.522 12.596 4.772 4.615 4.832 4.153 3.337 0.297 0.330 0.375 0.292
kroA200 1.150 7.106 11.702 40.885 33.832 1.441 11.088 2.029 4.710 6.187 4.686 0.065 0.301 1.134 0.346 -0.398
kroB200 1.150 8.541 11.689 43.643 31.951 2.064 11.267 2.589 4.606 6.605 4.619 0.590 0.301 1.481 0.346 0.065

Mean 0.532 16.767 7.000 40.025 31.766 1.725 10.420 1.529 1.999 1.480 1.966 0.290 0.149 0.067 0.161 -0.136

F DECODING STRATEGY

For offline problems (Papadimitriou & Steiglitz, 1998; Martello et al., 2000), all input data and
all constraints are fully provided before solving the problems. The decision-makers can fully
utilize all relevant information for comprehensive analysis and iteratively improve solution quality.
Providing an initial solution by SL and further refining it by decoding strategies has become a
common practice (Deudon et al., 2018). We introduce the following decoding strategies combined
with DISCO, including Greedy (Graikos et al., 2022), Sampling (Kool et al., 2019), and 2-OPT
strategies (Croes, 1958).

Greedy Strategy We use a straightforward greedy strategy to decode solutions from heatmaps
produced by probabilistic models. Specifically, we iteratively add the highest-scoring candidates
among the remaining ones to the partial solution. We repeat this process until all relevant nodes/edges
are incorporated. For diffusion-based methods, we sample the initial solution once with a single noise
data xt. We set the denoising step as 1 for DISCO when executing this greedy strategy, allowing the
variance σ to approach zero (as described in Eq. 7) to generate more confident solutions.

Sampling Strategy Probabilistic solvers usually sample multiple solutions (Kool et al., 2019)
through various means and execute the best one. Statistically, increasing the number of samples can
enhance the breadth and depth while exploring the solution space, thereby increasing the probability
of finding higher-quality solutions (Zhang et al., 2015). Following this logic, we generate multiple
heatmaps from pθ(x0|s) with different noise data xt and then apply the greedy decoding algorithm
described above to each heatmap.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

eil51 berlin52 st70 eil76 pr76 rat99

kroA100 kroB100 kroC100 kroD100 kroE100 rd100

eil101 lin105 pr107 pr124 bier127 ch130

pr136 pr144 ch150 kroA150 kroB150 pr152

u159 rat195 d198 kroA200 kroB200

Figure 8: Visualization of DISCO’s generated solutions on TSPLIB instances.

2-opt Strategy We also adopt a 2-opt decoding strategy (Andrade et al., 2012) to refine the greedy
solutions of TSP tasks. Specifically, we iteratively swap two edges in the current solution to reduce
the total length of the tour. We repeat this process until no further improvement can be made. We
follow Graikos et al. (2022) and use the Greedy+2-opt strategy as the default.

We conduct DISCO combined with all these strategies on TSP instances to demonstrate its robustness.
Following instructions from Böther et al. (2022), we only conduct greedy strategy and sampling
strategy on MIS instances to fairly compare the capabilities of different parameterized solvers.

G IMPLEMENTATION DETAILS

Training Setting We adopt anisotropic GNNs (Velickovic et al., 2017) as the backbone of our
DISCO model. Anisotropic GNNs can produce embeddings for both nodes and edges, which exactly
match the CO problems most of which can be formulated as graph problems. Specifically, we
input the noisy solution xt, the node and edge features of Xd, and the time t into the anisotropic
GNN with parameter θ, predicting the parameterized residue xθ

res and noise ϵθ simultaneously with
two independent convolutional layers. We use a 12-layer anisotropic GNN with a width of 256 as
DIFUSCO (Sun & Yang, 2023) does. We adopt a linear schedule (Huang et al., 2023a) to gradually
reduce the noise during the model’s generation process.

Following Sun & Yang (2023), we implement sparsification in large-scale graph problems to diminish
computational complexity. We constrain each node to maintain only k edges connecting to its closest
neighbors. Specifically, we set k = 100. We also directly transfer the trained models to the same
graphs with different sparsifications without fine-tuning, the generalization results are summarized in
Tab. 7. We can observe that DISCO performs consistently stable while the sparsification changes,
indicating its robustness.

For TSP-5000 instances, we train DISCO with instances of 64000 and batch size of 12. For TSP-
8000/10000, the model is trained using 6,400 instances with a batch size of 4. Align with DIFUSCO,
we incorporate curriculum learning approach (Bengio et al., 2009) and begin the training process

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 7: Evaluation results on different sparsification k. The symbol ◦ indicates the sparsification used for
training, while the other lines are directly generalized results without fine-tuning.

ALGORITHM TYPE k
TSP-5000 TSP-8000 TSP-10000

LENGTH ↓ TIME ↓ LENGTH ↓ TIME ↓ LENGTH ↓ TIME ↓
DISCO SL+G† 50 52.36 5.03m 66.14 13.48m 73.85 24.80m
DISCO SL+G† 100 52.48◦ 5.72m 66.11◦ 14.32m 73.85◦ 25.12m

DISCO SL+S 50 52.34 7.51m 66.07 22.26m 73.82 40.17m
DISCO SL+S 100 52.44◦ 9.06m 66.06◦ 22.82m 73.81◦ 48.77m

from the TSP-100 checkpoint. For TSP-5000/8000/10000, we label training instances using the
LKH-3 heuristic solver (Helsgaun, 2017) with 1000 trials. For the TSP-50 and TSP-100 models used
for the checkpoint, we generate 1502000 random instances labeled by Concorde solver, training with
batch sizes of 256 and 128 respectively.

For the MIS instances, we use the training split of 49500 examples from SATLIB (Hoos & Stützle,
2000), training with a batch size of 64. For Erdős-Rényi graph sets (Erdős & Rényi, 1960), we use
60000 random instances from the ER-[700-800] variant and train DISCO with a batch size of 16. The
training instances are labeled by the KaMIS heuristic solver (Lamm et al., 2016).

Evaluation Details We conduct extensive evaluations on both TSP and MIS instances to demon-
strate the superiority of our DISCO model. We keep our experimental settings consistent with
previous literature (Qiu et al., 2022; Sun & Yang, 2023). For small-scale TSP instances, i.e., TSP-50
and TSP-100, we evaluate on 1280 instances, while for TSP-5000/8000/10000, we use 16 instances.
For MIS instances, we evaluate on 500 instances on SATLIB and 128 instances on ER-[700-800].

H ADDITIONAL RESULTS

H.1 GENERALIZATION TO UNSEEN PROBLEM DISTRIBUTIONS

We compare the generalization ability of our method to unseen problem distributions with that of the
diffusion solver DIFUSCO.

Both methods are trained on uniform distribution and tested on other different distributions for
TSP-10000 instances, including a normal distribution N (µ, σ2) and a cluster distribution proposed
by Bi et al. (2022). For the normal distribution, we set µ = 0.5 and σ2 = 0.1 to ensure a distinct
difference from the training. This generalization comparison does not include the diffusion solver
T2T, due to its use of active search during deployment. The comparisons are summarized in Tab. 8.

Table 8: Evaluation results on different problem distributions.

ALGORITHM TYPE
UNIFORM NORMAL CLUSTER

LENGTH ↓ TIME ↓ LENGTH ↓ TIME ↓ LENGTH ↓ TIME ↓
DIFUSCO SL+G† 73.99 35.38m 116.76 29.27m 37.84 30.25m
DISCO SL+G† 73.85 25.12m 116.34 25.57m 37.74 28.13m

H.2 RESOURCE CONSUMPTION COMPARISONS

We compare our algorithm with the state-of-the-art diffusion-based models, DIFUSCO and T2T, in
terms of computational resources on TSP-10000 instances as presented in Tab. 9.

Table 9: Comparisons on computational resources.

ALGORITHM TYPE LENGTH ↓ GAP ↓ TIME ↓ GPU MEMORY ↓ GPU HOURS ↓
DIFUSCO SL+G† 73.99 3.10% 35.38m 14G 0.59
T2T SL+G† 73.87 2.92% 91.32m 71G 1.52
DISCO SL+G† 73.85 2.90% 25.12m 14G 0.42

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

H.3 GENERALIZATION TO UNSEEN DEGRADED SOLUTIONS

To validate our model’s generalization capability on the degraded solution Xd, we conduct experi-
ments using a degraded solution that differs from the training one. The following configurations of
degraded solutions are tested:

• Training: We adopt the same Xd used during the training process, i.e., connecting vertices
in the graph sequentially to form a tour.

• Greedy: The nearest unvisited node to the current node is selected as the next step, ensuring
the partial solution remains valid. This process is repeated iteratively until a complete path
is constructed.

• Far Ins: The farthest insertion algorithm proposed by Cook et al. (2011) is applied to
construct the degraded solution. This method iteratively inserts the farthest unvisited node
into the tour.

• LKH-3: The degraded solution is generated using the LKH-3 heuristic solver (Helsgaun,
2017) with 1000 trials and 10 runs.

We conduct the comparison on TSP-5000, and the results are presented in Tab. 10. These results
demonstrate that our model generalizes effectively across various Xd configurations.

Table 10: Comparisons on various degraded solution configurations.

Xd TYPE TRAINING GREEDY FAR INS LKH-3

PERFORMANCE SL+G† 52.48, 1.04% 52.47, 1.02% 52.48, 1.04% 52.39, 0.87%

H.4 CLARIFICATION ON HOW DISCO AVOIDS SUB-OPTIMAL

The graph-splitting approach prevents DISCO from falling into local optima by sampling overlapped
subgraphs. This overlap mechanism ensures the same edge can be evaluated from multiple sub-
problem views, avoiding local optima caused by a purely single sub-problem view. Then, the
generated sub-heatmaps are effectively merged for finally achieving a high-quality solution.

As described in Sec. 4.3, each node is included and evaluated by at least ω subgraphs simultaneously,
which means overlap exists among subgraphs. We design comparative experiments to analyze
the effect of this overlap mechanism. As shown in Tab. 11, when there is no overlap between the
subgraphs, the model’s performance significantly decreases. We also provide a Venn graph illustrating
relationships between overlapped subgraphs and an illustration of subgraphs without overlap in Fig. 9.

Table 11: Comparisons of graph splitting with and without overlap.

ALGORITHM TYPE TSP-5000 TSP-8000 TSP-10000

DISCO W/O OVERLAP SL+GS+G 55.60, 7.05% 70.42, 7.99% 82.29, 14.66%
DISCO W/ OVERLAP SL+GS+G 52.77, 1.60% 66.56, 2.07% 74.45, 3.73%

We also compare different graph merging methods in our multi-modal graph search. In this divide-
and-conquer process, each edge may be shared by multiple subgraphs, with corresponding heatmaps
sampled for each subgraph. To leverage this information, we employ various merging methods to
determine the final value for each edge. Following the notations in Sec. 4.3, we describe each merging
method as follows:

• "Min" (or "Max") selects the minimum (or maximum) value for each edge from all corre-
sponding heatmaps, i.e. min|g| ϕ(hl, i, j) (or max|g| ϕ(hl, i, j)).

• "Argmin" (or "Argmax") ranks the edge values within each heatmap it belongs to. The value
in the final merged heatmap is chosen based on the heatmap where edge ij ranks the lowest
(or highest), i.e. ϕ(hargmin|g| ϕ(hl,i,j), i, j) (or ϕ(hargmax|g| ϕ(hl,i,j), i, j)).

• "Mean" calculates the average of all occurrences of each edge across the heatmaps, i.e.
1
oij

×
∑|g|

l=1 ϕ(hl, i, j).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(a) W/ overlap (b) W/o overlap
Figure 9: Illustrations of subgraphs with overlap (a) and without overlap (b). For clarity, in Figure (a), the
subgraph boundary is shown as the convex hull of its vertex set, while in Figure (b), it is represented by
connecting its boundary points.

Figure 10: Decoding with the MCTS strat-
egy.

Table 13: Comparisons of three diffusion-based solvers using
MCTS as the decoding strategy on TSP-5000, 8000, and 10000.
LKH-3 is the baseline for computing the performance gap.

METHOD
TSP-5000 TSP-8000 TSP-10000

LENGTH ↓ GAP ↓ LENGTH ↓ GAP ↓ LENGTH ↓ GAP ↓
LKH-3 51.94∗ — 65.21∗ — 71.77∗ —

DIFUSCO 52.55 1.17% 66.46 1.92% 73.62 2.58%
T2T 52.66 1.13% 66.48 1.95% 73.90 2.97%
DISCO (OURS) 52.13 0.37% 65.71 0.77% 73.56 2.49%

We conduct a comparison of various merging methods on TSP-5000 in terms of Length↓ and Gap(%)↓.
The results are summarized in Tab. 12.

Table 12: Comparisons on various merging methods.

MERGING METHOD TYPE MIN MAX ARGMIN ARGMAX MEAN

PERFORMANCE SL+G† 79.08, 52.25% 53.05, 2.14% 79.15, 52.39% 52.94, 1.93% 52.77, 1.60%

H.5 COMPARISONS USING MCTS AS DECODING STRATEGY

We compare our method with recent diffusion solvers DIFUSCO (Sun & Yang, 2023) and T2T (Li
et al., 2024), taking MCTS as the decoding strategy. The results are presented in Tab. 13. A bar chart
illustrating the performance discrepancy among each method is also provided in Fig. 10. Our method
outperforms the others across all three scales.

H.6 RESULTS ON TSP-500 AND TSP-1000

We provide more comprehensive comparisons on TSP-500 and TSP-1000. We extensively compare
DISCO with various baselines, including exact solvers, heuristic solvers, and recent non-diffusion-
based learning methods. For exact solvers, our comparisons include Concorde (Applegate et al.,
2006) and Gurobi (LLC Gurobi Optimization, 2018). Regarding heuristic solvers, we evaluate against
LKH-3 (Helsgaun, 2017) and 2-opt (Croes, 1958). In terms of learning-based methods, we compare
with recent non-diffusion neural solvers including AM (Kool et al., 2019), GCN (Joshi et al., 2019),
ELG-POMO (Gao et al., 2023), BQ-NCO (Drakulic et al., 2024), and GLOP (Ye et al., 2024b). The
results are shown in Tab. 14

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 14: Comparisons on TSP-500 and TSP-1000. G denotes Greedy decoding. The symbol * indicates the
baseline for computing the performance gap. The symbol † denotes that the diffusion model samples once.

ALGORITHM TYPE
TSP-500 TSP-1000

LENGTH ↓ GAP ↓ TIME ↓ LENGTH ↓ GAP ↓ TIME ↓
CONCORDE EXACT 16.55∗ — 37.66m 23.12∗ — 6.65h
GUROBI EXACT 16.55 0.00% 45.63h N/A N/A N/A
LKH-3 (DEFAULT) HEURISTICS 16.55 0.00% 46.28m 23.12 0.00% 2.57h
RAW 2-OPT HEURISTICS 17.99 8.68% 0.33m 25.24 9.16% 1.08m

AM RL+G 19.99 20.79% 1.08m 31.12 34.60% 1.15m
GCN SL+G 29.72 79.61% 6.67m 48.62 110.29% 28.52m
BQ-NCO RL+G 16.97 2.54% 1.56m 23.92 3.48% 11.03m
ELG-POMO RL+G 17.66 6.71% 3.88m 25.65 10.94% 22.87m
GLOP RL+G 16.91 1.99% 1.50m 23.84 3.11% 3.00m
DISCO (OURS) SL+G† 16.86 1.87% 0.25m 23.65 2.29% 1.12m

Figure 11: Solution quality improves as the
number of samples increases.

Table 15: Comparisons of performances in terms of number of
samples. LKH-3 is the baseline for computing the performance gap.

SAMPLE
TSP-5000 TSP-8000 TSP-10000

LENGTH ↓ GAP ↓ LENGTH ↓ GAP ↓ LENGTH ↓ GAP ↓
LKH-3 51.94∗ — 65.21∗ — 71.77∗ —

1 52.48 1.04% 66.11 1.38% 73.85 2.90%
2 52.66 1.13% 66.48 1.95% 73.90 2.97%
4 52.44 0.96% 66.06 1.30% 73.81 2.84%
8 52.39 0.87% 65.95 1.13% 73.77 2.79%
16 52.36 0.81% 65.91 1.07% 73.74 2.74%
32 52.31 0.71% 65.87 1.01% 73.73 2.73%
64 52.27 0.64% 65.84 0.97% 73.67 2.65%

H.7 ENHANCING SOLUTION QUALITY THROUGH MULTI-MODAL PROPERTIES

We conduct a direct experiment to demonstrate the impact of the multi-modal property on improving
solution quality. We vary the number of noises for sampling solutions. We present a line chart in
Fig. 11 with the number of samples as the x-axis and Gap(%)↓ as the y-axis to visually demonstrate
how the multi-modal property enhances model performance. The detailed comparison results are
outlined in Tab. 15.

25

	Introduction
	Related Work
	Preliminary
	Method
	Residue-Constrained Solution Generation
	Analytically Solvable Denoising Process
	Multi-Modal Graph Search

	Experiments
	Experimental Settings
	Comprehensive Comparisons
	Ablations on DISCO Components
	Multi-Modal Graph Search for Generalization
	Evaluations on Maximal Independent Set

	Conclusion
	Code Of Ethics
	Reproducibility
	Equivalence Analysis between DDM and DISCO
	Maximal Independent Set
	Comparisons on Small-Scale TSP Instances
	Qualitative Results
	Denoising Processes on Large-Scale Instances
	Performance with Different Denoising Steps

	Generalization to Real-World Instances
	Decoding Strategy
	Implementation Details
	Additional Results
	Generalization to Unseen Problem Distributions
	Resource Consumption Comparisons
	Generalization to Unseen Degraded Solutions
	Clarification on how DISCO Avoids Sub-optimal
	Comparisons using MCTS as Decoding Strategy
	Results on TSP-500 and TSP-1000
	Enhancing Solution Quality through Multi-modal Properties

