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Abstract

This paper serves as a user guide to the framework KaMIS (Karlsruhe Maximum Independent Sets). The
framework computes high quality independent sets and vertex in huge sparse graphs. We give a rough overview
of the techniques used within the framework and describe the user interface as well as the file formats used. Since
version 2.0 of our framework, we also include techniques for weighted independent sets (and vertex cover).
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1 Introduction

The maximum independent set problem is an NP-hard problem that has attracted much attention in the combina-
torial optimization community, due to its difficulty and its importance in many fields. Given a graph G = (V, E),
the goal of the maximum independent set problem is to compute a maximum cardinality set of vertices Z C V,
such that no vertices in Z are adjacent to one another. Such a set is called a maximum independent set (MIS). The
maximum independent set problem has applications spanning many disciplines, including classification theory,
information retrieval, and computer vision [4]. Independent sets are also used in efficient strategies for labeling
maps [7], computing shortest paths on road networks [16], (via the complementary minimum vertex cover problem)
computing mesh edge traversal ordering for rendering [23], and (via the complementary maximum clique problem)
have applications in biology [5], sociology [11], and e-commerce [28].

It is easy to see that the complement of an independent set Z is a vertex cover V'\Z and an independent set in
G is a clique in the complement graph G. Since all of these problems are NP-hard [6], heuristic algorithms are
used in practice to efficiently compute solutions of high quality on large graphs [2, 9]. However, small graphs with
hundreds to thousands of vertices may often be solved in practice with traditional branch-and-bound methods [21,
22, 26], and medium-sized instances can be solved exactly in practice using reduction rules to kernelize the graph.
Recently, Akiba and Iwata [1] used advanced reduction rules with a measure and conquer approach to solve the
minimum vertex cover problem for medium-scale sparse graphs exactly in practice. Thus, their algorithm also finds
the maximum independent set for these instances. However, none of these exact algorithms can handle huge sparse
graphs. Furthermore, our experiments suggest that the quality of existing heuristic-based solutions tends to degrade
at scale for inputs such as Web graphs and road networks. Therefore, we need new techniques to find high-quality
independent sets in these graphs.

With KaMIS we provide a framework for computing high quality independent sets in huge sparse graphs.
So far our framework contains the ReduMIS algorithm which is an advanced evolutionary algorithm based on
graph partitioning and incorporates kernelization techniques to compute large independent sets. Our algorithm
uses reduction techniques and recursively chooses vertices that are likely to be in a large independent set (using
an evolutionary approach), to then further kernelize the graph. This opens up the reduction space — which not
only speeds up the computation of large independent sets drastically, but also enables us to compute high-quality
independent sets on massive instances.

2 Algorithmic components within KaMIS

We now give a rough overview over the algorithmic components implemented in our framework. For details on the
individual components, we refer the interested reader to the corresponding papers.

ARW. There is a wide range of heuristics and local search algorithms for the maximum clique problem (see for
example [3, 10, 8, 15, 20, 9]). They typically maintain a single solution and try to improve it by performing node
deletions, insertions, and swaps, as well as plateau search. For the independent set problem, Andrade et al. [2]
extended the notion of swaps to (j, k)-swaps, which remove j nodes from the current solution and insert & nodes.
One iteration of the ARW algorithm consists of a perturbation and a local search step. The ARW local search
algorithm uses simple 2-improvements or (1, 2)-swaps to gradually improve a single current solution. The simple
version of the local search iterates over all nodes of the graph and looks for a (1, 2)-swap. By using a data structure
that allows insertion and removal operations on nodes in time proportional to their degree, this procedure can find
a valid (1, 2)-swap in O(m) time, if it exists. An even faster incremental version of the algorithm (which we use
here) maintains a list of candidates, which are nodes that may be involved in (1, 2)-swaps. It ensures a node is not
examined twice unless there is some change in its neighborhood.



EvoMIS. EvoMIS is a very natural evolutionary algorithm proposed by Lamm et al. [17]. It uses combination
operations that are based on graph partitioning and ARW local search. They employ the partitioning framework
KaHIP [25] to derive operations that make it possible to quickly exchange whole blocks of given independent sets.

The basic idea of the combine operations is to use a partition of the graph to exchange whole blocks of solution
nodes and use local search afterwards to turn the solution into a maximal one. We explain one of the combine
operations based on 2-way node separators in more detail. In its simplest form, the operator starts by computing a
2-way node separator V' = V; U Vo U S of the input graph. The separator S is then used as a crossover point for
the operation. The operator generates two children, O = (V1 NZ;) U (VaNZy) and O2 = (Vi NZo) U (Vo NZy).
In other words, whole parts of independent sets are exchanged from the blocks V; and V5 of the node separator.
Note that the exchange can be implemented in time linear in the number of nodes. Recall that a node separator
ensures that there are no edges between V; and V5. Hence, the computed children are independent sets, but may
not be maximal since separator nodes have been ignored and potentially some of them can be added to the solution.
Therefore, the child is made maximal by using a greedy algorithm. The operator finishes with one iteration of the
ARW algorithm to ensure that a local optimum is reached and to add diversification.

Reduction Techniques. Our algorithm uses exact and inexact reduction techniques to shrink the search space.
Each reduction allows us to choose vertices that are in some MIS by following simple rules. If an MIS is found on
the kernel graph /C, then each reduction may be undone, producing an MIS in the original graph. Refer to Akiba
and Iwata [1] for a more thorough discussion, including implementation details. With these facts in mind, we apply
the evolutionary algorithm on the kernelized graph instead of on the input graph, thus boosting its performance.
We use intermediate solutions of the evolutionary algorithm to select good solution candidates (independent set
vertices), remove them and their incident neighbors from the graph, and finally repeat the whole process. For more
details on the algorithm, we refer the reader to [29]. We also include recently proposed faster kernelization routines
(enabled as a default) [31].

Weighted Branch and Reduce / Local Search. We developed a full suite of new reductions for the maximum
weight independent set problem and provide extensive experiments to show their effectiveness in practice on real-
world graphs of up to millions of vertices and edges. While existing exact algorithms are only able to solve graphs
with hundreds of vertices, our experiments show that our approach is able to exactly solve real-world label conflict
graphs with thousands of vertices, and other larger networks with synthetically generated vertex weights—all of
which are infeasible for state-of-the-art solvers. Further, our branch-and-reduce algorithm is able to solve a large
number of instances up to two orders of magnitude faster than existing inexact local search algorithms—solving
the majority of instances within 15 minutes. For those instances remaining infeasible, we show that combining
kernelization with local search produces higher-quality solutions than local search alone. We provide both of the
implementations in our framework. For more details about the algorithms see [30].

3 Graph Format

3.1 Input File Format

The graph format used by our partitioning programs is the same as used by Metis [14], Chaco [12] and the graph
format that has been used during the 10th DIMACS Implementation Challenge on Graph Clustering and Partition-
ing. The input graph has to be undirected, without self-loops and without parallel edges.

To give a description of the graph format, we follow the description of the Metis 4.0 user guide very closely.
A graph G = (V, E) with n vertices and m edges is stored in a plain text file that contains n + 1 lines (excluding
comment lines). The first line contains information about the size and the type of the graph, while the remaining n
lines contain information for each vertex of G. Any line that starts with % is a comment line and is skipped.



The first line in the file contains either two integers, n m, or three integers, n m f. The first two integers are
the number of vertices n and the number of undirected edges of the graph, respectively. Note that in determining
the number of edges m, an edge between any pair of vertices v and u is counted only once and not twice, i.e. we
do not count the edge (v, u) from (u, v) separately. The third integer f is used to specify whether or not the graph
has weights associated with its vertices, its edges or both. If the graph is unweighted then this parameter can be
omitted. It should be set to 1 if the graph has edge weights, 10 if the graph has node weights and 11 if the graph
has edge and node weights.

The remaining n lines of the file store information about the actual structure of the graph. In particular, the ith
line (again excluding comment lines) contains information about the ith vertex. Depending on the value of f, the
information stored in each line is somewhat different. In the most general form (when f = 11, i.e. we have node
and edge weights) each line has the following structure:

CU1 W1 V2W2 ...V WE

where c is the vertex weight associated with this vertex, vy, ..., v are the vertices adjacent to this vertex, and
wi, . . ., wy are the weights of the edges. Note that the vertices are numbered starting from 1 (not from 0). Further-
more, the vertex-weights must be integers greater or equal to 0, whereas the edge-weights must be strictly greater
than 0. Note that the adjacencies have to be sorted, i.e. for a vertex it must hold that v; < vy < ... < vg. If this
is not the case in your input you can use one of our tools to convert your input. Also note that in principle you
can specify edge weights, however since they are not relevant to the weighted independent set problem they will be
ignored.
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Figure 1: An example graph and its representation in the graph format. The IDs of the vertices are drawn within
the cycle, the vertex weight is shown next to the circle (red) and the edge weight is plotted next to the edge (blue).

3.2 OQOutput File Formats

The output format is basically a text file that represents the independent set. This file contains n lines. Each line
indicates if the corresponding vertex is part of the independent set (1) or not (0), i.e. line i indicates if vertex i (here
the vertices are numbered from 0 to n — 1) is part of the independent set.



3.3 Troubleshooting

KaMIS should not crash! If KaMIS crashes it is mostly due to the following reasons: the provided graph contains
self-loops or parallel edges, the edges are not sorted, there exists a forward edge but the backward edge is missing,
or the number of vertices or edges specified does not match the number of vertices or edges provided in the file.
To sort the edges of an unsorted graph please use the sort_metis.py script in misc/conversion or the
sort_adjacencies tool. Please use the graphchecker tool provided in our package to verify whether your graph has
the right input format. If our graphchecker tool tells you that the graph that you provided has the correct format
and KaMIS crashes anyway, please write us an email.

4 User Interface

KaMIS contains the program redumis to compute an independent set. To compile this program you need to
have Argtable, g++, OpenMP and smake installed (we use argtable-2.10, g++-4.8.0). Once you have that you can
execute compile_withcmake. sh in the main folder of the release. When the process is finished the binaries
can be found in the folder deploy. We now explain the parameters of each of the programs briefly.

4.1 ReduMIS

Description: This is the evolutionary algorithm based on graph partitioning and reduction techniques.

Usage:
redumis [--help] FILE [--seed=<int>] [--config=VARIANT] [--time_limit=<double>]
[--output=<string>] [--console_log] [--all_reductions] [--red_thres=<int>]

Options:
FILE Path to graph file.
—help Print help.
—seed=<int> Seed to use for the PRNG.

—config=VARIANT Use a preconfiguration. (Default: standard) [standardlsociallfull_standardlfull_social].
Standard/social use different graph partitioning modes.
"full" configurations use more time consuming parameters.

—time_limit=<double> Time limit. (Default: 1000s)

—output=<string> Path to output file.

—console_log Print verbose output to the console.

—disable_checks Disable sortedness check during I/0O.

—-red_thres=<int> Number of unsuccessful iterations of EA before reduction (Default: 350).

4.2 OnlineMIS
Description: This is a local search algorithm that uses (online) reductions to speed up local search.
Usage:

online_mis [--help] FILE [--seed=<int>] [--time_limit=<double>]
[--output=<string>] [--console_log] [--adaptive_greedy] [--disable_checks]



Options:

FILE Path to graph file.

—help Print help.

—seed=<int> Seed to use for the PRNG.
—time_limit=<double> Time limit. (Default: 1000s)
—output=<string> Path to output file.

—disable_checks Disable sortedness check during 1/0.
—console_log Print verbose output to the console.
—adaptive_greedy Use adaptive greedy solution.

4.3 Weighted Branch and Reduce

Description: This is the branch and reduce algorithm for the weighted independent set problem.

Usage:
weighted_branch_reduce [--help] FILE [--seed=<int>] [--time_limit=<double>]
[--output=<string>] [--console_log] [--weight_source=<string>]
[--reduction_style=<string>] [--disable_checks]

Options:
FILE Path to graph file.
—help Print help.
—seed=<int> Seed to use for the PRNG.
—time_limit=<double> Time limit. (Default: 1000s)
—output=<string> Path to output file.
—console_log Print verbose output to the console.
—disable_checks Disable sortedness check during I/O.

—weight_source=<string> Choose how the weights are assigned.
Can be either: file (default), hybrid, uniform, geometric.
—reduction_style=<int> Choose the type of reductions appropriate for the input graph.
Can be either: normal/sparse (default), dense/osm.

4.4 Weighted Local Search

Description: This is the local search algorithm for the weighted independent set problem.

Usage:
weighted_local_search [--help] FILE [--seed=<int>] [--time_limit=<double>]
[--output=<string>] [--console_log] [--weight_source=<string>]
[--reduction_style=<string>] [--disable_checks]



Options:

FILE Path to graph file.

—help Print help.

—seed=<int> Seed to use for the PRNG.
—time_limit=<double> Time limit. (Default: 1000s)
—output=<string> Path to output file.

—console_log Print verbose output to the console.
—disable_checks Disable sortedness check during I/O.

—weight_source=<string> Choose how the weights are assigned.
Can be either: file (default), hybrid, uniform, geometric.
—reduction_style=<int> Choose the type of reductions appropriate for the input graph.
Can be either: normal/sparse (default), dense/osm.

4.5 Graph Format Checker

Description: This program checks if the graph specified in a given file is valid.

Usage:
graphchecker file

Options:

FILE Path to the graph file.

4.6 Sort Adjacencies

Description: The program reads a Metis file, sorts the neighborhood of each node and prints the graph to the
console. Note that the input to our algorithms requires the adjacencies to be sorted.

Usage:
sort_adjacencies file

Options:

FILE Path to the graph file.
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