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S1 Theoretical Proofs25

S1.1 Proof of Proposition 126

Proposition 1 shows that sr
t , which has directed paths to rt+τ (for τ ≥ 0), is minimally sufficient for27

policy learning that aims to maximize the future reward and can be characterized by conditional28

dependence with the cumulative reward variable Rt.29

Proposition 1. Under the assumption that the graphical representation, corresponding to the30

environment model, is Markov and faithful to the measured data, sr
t ⊆ st is a minimal subset of state31

dimensions that are sufficient for policy learning, and si,t ∈ sr
t if and only if si,t ⊥̸⊥ Rt |at−1, sr

t−1.32

We first give the definitions of the Markov condition and the faithfulness assumption, which will be33

used in the proof.34

Definition 1 (Global Markov Condition [1, 2]). The distribution p over a set of variables V satisfies35

the global Markov property on graph G if for any partition (A, B,C) such that if B d-separates A36

from C, then p(A,C|B) = p(A|B)p(C|B).37

Definition 2 (Faithfulness Assumption [1, 2]). There are no independencies between variables that38

are not entailed by the Markov Condition in the graph.39

Below, we give the proof of Proposition 1.40

Proof. The proof contains the following three steps.41

• In step 1, we show that a state dimension si,t is in sr
t , that is, it has a directed path to rt+τ, if42

and only if si,t ⊥̸⊥ Rt |at−1, st−1.43

• In step 2, we show that for si,t with si,t ⊥̸⊥ Rt |at−1, st−1, if and only if si,t ⊥̸⊥ Rt |at−1, sr
t−1.44

• In step 3, we show that sr
t are minimally sufficient for policy learning.45

Step 1: We first show that if a state dimension si,t is in sr
t , then si,t ⊥̸⊥ Rt |at−1, st−1.46

We prove it by contradiction. Suppose that si,t is independent of Rt given at−1 and st−1. Then according47

to the faithfulness assumption, we can see from the graph that si,t does not have a directed path to rt+τ,48

which contradicts the assumption, because, otherwise, at−1 and st−1 cannot break the paths between49

si,t and Rt which leads to the dependence.50

We next show that if si,t ⊥̸⊥ Rt |at−1, st−1, then si,t ∈ sr
t .51

Similarly, by contradiction suppose that si,t does not have a directed path to rt+τ. From the graph, it is52

easy to see that at−1 and st−1 must d-separate the path between si,t and Rt. According to the Markov53

assumption, si,t is independent of Rt given at−1 and st−1, which contradicts to the assumption. Since54

we have a contradiction, it must be that si,t has a directed path to rt+τ, i.e. si,t ∈ sr
t .55

Step 2: In step 1, we have shown that si,t ⊥̸⊥ Rt |at−1, st−1, if and only if it has a directed path to rt+τ.56

From the graph, it is easy to see that for those state dimensions which have a directed path to rt+τ,57

at−1 and st−1 cannot break the path between si,t and Rt. Moreover, for those state dimensions which58

do not have a directed path to rt+τ, at−1 and sr
t−1 are enough to break the path between si,t and Rt.59

Therefore, for si,t, si,t ⊥̸⊥ Rt |at−1, st−1, if and only if si,t ⊥̸⊥ Rt+1|at−1, sr
t−1.60

Step 3: In the previous steps, it has been shown that if a state dimension si,t is in sr
t , then si,t ⊥̸⊥61

Rt |at−1, sr
t−1, and if a state dimension si,t is not in sr

t , then si,t ⊥⊥ Rt |at−1, sr
t−1. This implies that sr

t are62

minimally sufficient for policy learning to maximize the future reward. □63

S1.2 Proof of Proposition 264

Moreover, the proposition below shows that sa
t , which receives an edge from at−1, can be directly65

controlled by actions and can be characterized by conditional dependence with the action variable.66
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Proposition 2. Under the assumption that the graphical representation, corresponding to the67

environment model, is Markov and faithful to the measured data, sa
t ⊆ st is a minimal subset of state68

dimensions that are sufficient for direct control, and si,t ∈ sa
t if and only if si,t ⊥̸⊥ at−1|st−1.69

Below, we give the proof of Proposition 2.70

Proof. The proof contains the following two steps.71

• In step 1, we show that a state dimension si,t is in sa
t , that is, it receives an edge from at−1, if72

and only if si,t ⊥̸⊥ at−1|st−1.73

• In step 2, we show that sa
t contains a minimally sufficient subset of state dimensions that can74

be directly controlled by actions.75

Step 1: We first show that if a state dimension si,t is in sa
t , then si,t ⊥̸⊥ at−1|st−1.76

We prove it by contradiction. Suppose that si,t is independent of at−1 given st−1. Then according to77

the faithfulness assumption, we can see from the graph that si,t does not receive an edge from at−1,78

which contradicts the assumption, because, otherwise, st−1 cannot break the paths between si,t and79

at−1 which leads to the dependence.80

We next show that if si,t ⊥̸⊥ at−1|st−1, then si,t ∈ sa
t .81

Similarly, by contradiction suppose that si,t does not receive an edge from at−1. From the graph,82

it is easy to see that st−1 must break the path between si,t and at−1. According to the Markov83

assumption, si,t is independent of at−1 given st−1, which contradicts to the assumption. Since we have84

a contradiction, it must be that si,t has an edge from at−1.85

Step 2: In the previous steps, it has been shown that if a state dimension si,t is in sa
t , then si,t ⊥̸86

⊥ at−1|st−1, and if a state dimension si,t is not in sa
t , then si,t ⊥⊥ at−1|st−1. This implies that sa

t is87

minimally sufficient for one-step direct control. □88

S1.3 Proof of Proposition 389

Furthermore, based on Proposition 1 and Proposition 2, we can further differentiate sar
t , s

ār
t , s

ar̄
t from90

sr
t and sa

t , which is given in the following proposition.91

Proposition 3. Under the assumption that the graphical representation, corresponding to the92

environment model, is Markov and faithful to the measured data, we can build a connection between93

the graph structure and statistical independence of causal variables in the RL system, with (1) si,t ∈ sar
t94

if and only if si,t ⊥̸⊥ Rt |at−1, sr
t−1 and si,t ⊥̸⊥ at−1|st−1, (2) si,t ∈ sār

t if and only if si,t ⊥̸⊥ Rt |at−1, sr
t−1 and95

si,t ⊥⊥ at−1|st−1, (3) si,t ∈ sar̄
t if and only if si,t ⊥⊥ Rt |at−1, sr

t−1 and si,t ⊥̸⊥ at−1|st−1, and (4) si,t ∈ sār̄
t if96

and only if si,t ⊥⊥ Rt |at−1, sr
t−1 and si,t ⊥⊥ at−1|st−1.97

Proof. This proposition can be easily proved by levering the results from Propositions 1 and 2. □98

S1.4 Proof of Theorem 199

According to the causal process in the RL system (as described in Eq.1 in [3]), we can build the100

following mapping from latent state variables st to observed variables ot and future cumulative reward101

Rt:102

[ot,Rt] = f (sr
t , s

r̄
t , ηt), (1)

where103

ot = f1(sr
t , s

r̄
t ),

Rt = f2(sr
t , ηt).

(2)

Here, note that to recover sr
t , it is essential to take into account all future rewards rt:T , because any104

state dimension si,t ∈ st that has a directed path to the future reward rt+τ, for τ > 0, is involved in105

sr
t . Hence, we consider the mapping from sr

t to the future cumulative reward Rt, and ηt represents106

residuals, except sr
t , that have an effect to Rt.107
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The following theorem shows that the different types of states sar
t , sār

t , sar̄
t , and sār̄

t are blockwise108

identifiable from observed image variable ot, reward variable rt, and action variable at, under109

reasonable and weak assumptions.110

Theorem 1. Suppose that the causal process in the RL system and the four categories of latent state111

variables can be described as that in Section 2 and illustrated in Figure 1(c). Under the following112

assumptions113

A1. The mapping f in Eq. 1 is smooth and invertible with smooth inverse.114

A2. For all i ∈ {1, . . . , do + dR} and j ∈ Fi,:, there exist {s̃(l)
t }
|Fi,: |

l=1 , so that span{J f (s̃(l)
t )i,:}

|Fi,: |

l=1 =115

Rds̃
Fi,:

, and there exists a matrix T with its support identical to that of J−1
f̂

(ˆ̃st)J f (s̃t), so that116 [
J f (s̃(l)

t )T
]

j,: ∈ R
ds̃

F̂i,:
.117

Then, reward-relevant and controllable states sar
t , reward-relevant but not controllable states sār

t ,118

reward-irrelevant but controllable states sar̄
t , and noise sār̄

t , are blockwise identifiable.119

In the theorem presented above, Assumption A1 only assumes the invertibility of function f , while120

functions f1 and f2 are considered general and not necessarily invertible. Since the function f is the121

mapping from all (latent) variables, including noise factors, that influence the observed variables,122

the invertibility assumption holds reasonably. However, note that it is not reasonable to assume the123

invertibility of the function f2 since usually, the reward function is not invertible. Assumption A2,124

which is also given in [4, 5], aims to establish a more generic condition that rules out certain sets of125

parameters to prevent ill-posed conditions. Specifically, it ensures that the Jacobian is not partially126

constant. This condition is typically satisfied asymptotically, and it is necessary to avoid undesirable127

situations where the problem becomes ill-posed.128

Proof. The proof consists of four steps.129

1. In step 1, we show that sa
t = sar

t ∪ sar̄
t is blockwise identifiable, by using the characterization130

that the action variable at only directly influences sar
t and sar̄

t .131

2. In step 2, we show that sr
t = sar

t ∪ sār
t is blockwise identifiable, by using the characterization132

that the future cumulative reward Rt is only influenced by sar
t and sār

t .133

3. In step 3, we show that sar
t is blockwise identifiable, by using the identifiability of sar

t ∪ sar̄
t134

and sar
t ∪ sār

t .135

4. In step 4, we further show the blockwise identifiability of sār
t , sar̄

t , and sār̄
t .136

Step 1: prove the block identifiability of sa
t .137

138

For simplicity of notation, below, we omit the subscript t.139

Let h := f −1 ◦ f̂ . We have140

ŝ = h(s), (3)

where h = f −1 ◦ f̂ is the transformation between the true latent variable and the estimated one, and141

f̂ : S → X denotes the estimated invertible generating function. Note that as both f −1 and f̂ are142

smooth and invertible, h and h−1 is smooth and invertible.143

Since h(·) is smooth over S, its Jocobian can be written as follows:144

Jh−1 =

[
A := ∂sā

∂ŝā B := ∂sā

∂ŝa

C := ∂sa

∂ŝā D := ∂sa

∂ŝa

]
(4)

The invertibility of h−1 implies that Jh−1 is full rank. Since sa has changing distributions over the145

action variable a while sā has invariant distributions over different values of a, we can derive that146

C = 0. Furthermore, because Jh−1 is full rank and C is a zero matrix, D must be of full rank, which147

implies h
′−1
a is invertible, where h

′−1
a denotes the first derivative of h−1

a . Therefore, sa is blockwise148

identifiable up to invertible transformations.149
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Step 2: prove the blockwise identifiability of sr
t .150

151

Recall that we have the following mapping:152

[ot,Rt] = f (sr
t , s

r̄
t , ηt),

where153

ot = f1(sr
t , s

r̄
t ),

Rt = f2(sr
t , ηt).

Note that here to recover sr
t , we need to take into account all future rewards, because sr

t contains154

all those state dimensions that have a directed path to future rewards rt+1:T . ηt represents all other155

factors, except sr
t , that influence Rt at time instance t. Further note here we assume the invertibility of156

f , while f1 and f2 are general functions not necessarily invertible.157

We denote by s̃ = (sr, sr̄, η). We further denote by the dimension of sr by dsr , the dimension of sr̄ by158

dsr̄ , the dimension of s̃ by ds̃, the dimension of o by do, and the dimension of Rt by dR.159

We denote by F the support of J f (s), by F̂ the support of J f̂ (ŝ), and by T the support of T(s). We160

also denote T as a matrix with the same support as T . The proof technique is similar to that in [4, 5].161

Since h := f̂ −1 ◦ f , we have f̂ = f ◦ h−1(s̃). By applying the chain rule repeatedly, we have162

J f̂ (ˆ̃s) = J f (s̃) · Jh−1 (h(s̃)). (5)

With Assumption A2, for any i ∈ {1, . . . , do + dR}, there exists {s̃(l)}
|Fi,: |

l=1 , s.t. span({J f (s̃(l))i,:}
|Fi,: |

l=1 ) = Rds̃
Fi,:

.163

Since {J f (s̃(l))i,:}
|Fi,: |

l=1 forms a basis of Rds̃
Fi,:

, for any j0 ∈ Fi,:, we can write canonical basis vector164

e j0 ∈ R
ds̃
Fi,:

as:165

e j0 =
∑
l∈Fi,:

αl · Jg(s̃(l))i,:, (6)

where αl ∈ R is a coefficient.166

Then, following Assumption A2, there exists a deterministic matrix T such that167

T j0,: = e⊤j0 T =
∑
l∈Fi,:

αl · Jg(s̃(l))i,:T ∈ R
ds̃

F̂i,:
, (7)

where ∈ is due to that each element in the summation belongs to Rds̃

F̂i,:
.168

Therefore,169

∀ j ∈ Fi,:,T j,: ∈ R
ds̃

F̂i,:
.

Equivalently, we have:170

∀(i, j) ∈ F , {i} × T j,: ⊂ F̂ . (8)

We would like to show that ŝr does not depend on sr̄ and η, that is, Ti, j = 0 for i ∈ {1, . . . , dsr } and171

j ∈ {dsr + 1, . . . , ds̃}.172

We prove it by contradiction. Suppose that ŝr had dependence on sr̄, that is, ∃( jsr , jsr̄ ) ∈ T with173

jsr ∈ {1, . . . , dsr } and jsr̄ ∈ {dsr + 1, . . . , dsr + dsr̄ }.174

Hence, there must exist ir ∈ {do + 1, . . . , do + dR}, such that, (ir, jsr̄ ) ∈ F .175

It follows from Equation 8 that:176

{ir} × T jsr̄ ,: ∈ F̂ =⇒ (ir, jsr̄ ) ∈ F̂ . (9)

However, due to the structure of f̂2, [J f̂2 ]ir , jsr̄ = 0, which results in a contradiction. Therefore,177

such (ir, jsr̄ ) does not exist and ŝr does not depend on sr̄. The same reasoning implies that ŝr does178

not dependent on η. Thus, ŝr does not depend on (sr̄, η). In conclusion, ŝr does not contain extra179

information beyond sr.180

Similarly, we can show that (ŝr̄, η̂) does not contain information of sr.181

Therefore, there is a one-to-one mapping between sr and ŝr.182
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Step 3: prove the blockwise identifiability of sar
t .183

184

In Step 1 and Step 2, we have shown that both sa and sr are blockwise identifiable. That is,185

ŝr = hr(sr),
ŝa = ha(sa), (10)

where ha and hr are invertible functions.186

According to the invariance relation of sar, We have the following relations:187

ŝar = hr(sr)1:dsar = ha(sa)1:dsar . (11)

It remains to show that both h̃r := hr(·)1:dsar and h̃a := ha(·)1:dsar do not depend on sār and sar̄ in their188

arguments.189

We will prove this by contradiction. Without loss of generality, we suppose ∃l ∈ {1, · · · , dsār },190

sr∗ ∈ Sr, s.t., ∂h̃r
∂sār

l
(sr∗) , 0. As h is smooth, it has continuous partial derivatives. Thus, ∂h̃r

∂sār
l
, 0 holds191

true in a neighbourhood of sr∗, i.e.,192

∃η > 0, s.t., sār
l → h̃r(sar∗, (sār

−l
∗
, sār

l
∗)) is strictly monotonic on (sār

l
∗
− η, sār

l
∗
+ η), (12)

where sār
−l denotes variable sār excluding the dimension l.193

We further define an auxiliary function ψ : Sar × Sār × Sar̄ → R≥0 as follows:194

ψ(sar, sār, sar̄) := |h̃r(sr) − h̃a(sa)|. (13)

To obtain the contradiction to the invariance, it remains to show that ψ > 0 with a probability greater195

than zero w.r.t. the true generating process.196

There are two situations at (sar∗, sār∗, sar̄∗) where sār∗ is an arbitrary point in Sār:197

• situation 1: ψ(sar∗, sār∗, sar̄∗) > 0;198

• situation 2: ψ(sar∗, sār∗, sar̄∗) = 0.199

In situation 1, we have identified a specific point ψ(sar∗, sār∗, sar̄∗) that makes ψ > 0.200

In situation 2, Eq. 12 implies that ∀sār
l ∈ (sar

l
∗, sar

l
∗ + η)201

ψ(sar∗, (sār
−l
∗
, sār

l ), sar̄∗) > 0.

Thus, in both situations, we can locate a point (sar∗, sār∗′ , sar̄∗) such that ψ(sar∗, sār∗′ , sar̄∗) > 0, where202

sār∗′ = sār∗ in case 1 and sār
l
∗′

∈ (sar
l
∗, sar

l
∗ + η), sar

−l
∗′ = sar

−l
∗ in situation 2.203

Since ψ is a composition of continuous functions, it is continuous. As pre-image of open sets are204

always open for continuous functions, the open set R>0 has an open set U ∈ Sar × Sār × Sar̄ as205

its preimage. Due to (sar∗, sār∗′ , sar̄∗) ∈ U, U is nonempty. AsU is nonempty and open, U has a206

Lebesgue measure of greater than zero.207

As we assume that psar ,sār ,sar̄ is fully supported over the entire domain Sar ×Sār ×Sar̄, we can deduce208

that Pp[U] > 0. That is, ψ > 0 with a probability greater than zero, which contradicts the invariance209

condition, Therefore, it has been shown that ĥr(sr) does not depend on sār. This proof technique is210

related to that in [6].211

Similarly, we can show that ĥa(sa) does not depend on sar̄.212

Finally, the smoothness and invertibility of ĥr and ĥa follow from the smoothness and invertibility of213

hr and ha over the entire domain.214

Therefore, hr(ha) is a smooth invertible mapping between sar and ŝar. That is, sar is blockwise215

invertible.216
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Step 4: prove the blockwise identifiability of sār
t , sar̄

t , and sār̄
t .217

218

We can use the same technique in Step 3 to show the identifiability of sār and sar̄. Specifically,219

since sr and sar are identifiable, we can show that sār is identifiable. Similarly, since sa and sar are220

identifiable, we can show that sar̄ is identifiable. Furthermore, since sar, sār, and sar̄ are identifiable,221

we can show that sār̄ is identifiable □222

S2 Derivation of the objective function223

We start by defining the components of the world mode as follows:224


Observation Model: pθ (ot | st)
Reward Model: pθ

(
rt | sr

t
)

Transition Model: pγ (st | st−1, at−1)
Representation Model: qϕ (st | ot, st−1, at−1)

(14)

The latent dynamics can be disentangled into four catogories:225

Disentangled Transition Model: Disentangled Representation Model:
pγ1

(
sar

t | s
r
t−1, at−1

)
pγ2

(
sār

t | s
r
t−1

)
pγ3

(
sar̄

t | st−1, at−1
)

pγ4

(
sār̄

t | st−1
)


qϕ1

(
sar

t | ot, sr
t−1, at−1

)
qϕ2

(
sār

t | ot, sr
t−1

)
qϕ3

(
sar̄

t | ot, st−1, at−1
)

qϕ4

(
sār̄

t | ot, st−1
) (15)

We define the information bottleneck objective for latent dynamics models [7, 8]226

max I (s1:T; (o1:T , r1:T ) | a1:T ) − β · I (s1:T, i1:T | a1:T ) , (16)

where β is scalar and it are dataset indices that determine the observations p(ot |it) = δ(ot − ōt) as in227

[9].228

Maximizing the objective leads to model states that can predict the sequence of observations and229

rewards while limiting the amount of information extracted at each time step. We derive the lower230

bound of the first term in Equation 16:231

I (s1:T; (o1:T , r1:T ) | a1:T )

=Eq(o1:T ,r1:T ,s1:T,a1:T )

∑
t

ln p (o1:T , r1:T | s1:T, a1:T ) − ln p (o1:T , r1:T | a1:T )}


±E

∑
t

ln p (o1:T , r1:T | s1:T, a1:T )


≥E

∑
t

ln p (o1:T , r1:T | s1:T, a1:T )

 − KL

p (o1:T , r1:T | s1:T, a1:T ) ∥
∏

t

pθ (ot | st) pθ
(
rt | sr

t
)

=E

∑
t

ln pθ (ot | st) + ln pθ
(
rt | sr

t
) .

(17)

Thus, we obtain the objective function:232

J t
O = ln pθ (ot | st) J t

R = ln pθ
(
rt | sr

t
)

(18)
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For the second term in Equation 16, we use the non-negativity of the KL divergence to obtain an233

upper bound,234

I (s1:T; i1:T | a1:T )

=Eq(o1:T ,r1:T ,s1:T,a1:T ,i1:T )

∑
t

ln q (st | st−1, at−1, it) − ln p (st | st−1, at−1)


=E

∑
t

ln qϕ (st | st−1, at−1, ot) − ln p (st | st−1, at−1)


≤E

∑
t

ln qϕ (st | st−1, at−1, ot) − ln pγ (st | st−1, at−1)


=E

∑
t

KL
(
qϕ (st | st−1, at−1, ot) ∥pγ (st | st−1, at−1)

) .

(19)

According to equation 15, we have pγ = pγ1 · pγ2 · pγ3 · pγ4 and qϕ = qϕ1 · qϕ2 · qϕ3 · qϕ4 .235

KL(qϕ∥pγ) = KL(qϕ1 · qϕ2 · qϕ3 · qϕ4∥pγ1 · pγ2 · pγ3 · pγ4 )

= Eqϕ

(
ln

qϕ1

pγ1

+ ln
qϕ2

pγ2

+ ln
qϕ3

pγ3

+ ln
qϕ4

pγ4

)
= KL(qϕ1∥pγ1 ) + KL(qϕ2∥pγ2 ) + KL(qϕ3∥pγ3 ) + KL(qϕ4∥pγ4 )

(20)

We introduce additional hyperparameters to regulate the amount of information contained within236

each category of variables:237

J t
D = −β1KL

(
qϕ1∥pγ1

)
− β2KL

(
qϕ2∥pγ2

)
− β3KL

(
qϕ3∥pγ3

)
− β4KL

(
qϕ4∥pγ4

)
. (21)

Additionally, we introduce two supplementary objectives to explicitly capture the distinctive char-238

acteristics of the four distinct representation categories. Specifically, we characterize the reward-239

relevant representations by measuring the dependence between sr
t and Rt, given at−1 and sr

t−1, that240

is I(sr
t ,Rt |at−1, sr

t−1) (see Figure 7(a). Note that if there exists an directed edge from sr
t to at in241

the graphical model, at should also be conditioned). To ensure that sr
t are minimally sufficient for242

policy training, we maximize I(sr
t ,Rt |at−1, sr

t−1) while minimizing I(sr̄
t ,Rt |at−1, sr

t−1) to discourage the243

inclusion of redundant information in sr̄t concerning the rewards:244

I(sr
t ; Rt | at−1, sr

t−1) − I(sr̄
t ; Rt | at−1, sr

t−1). (22)

The conditional mutual information can be expressed as the disparity between two mutual information245

values.246
I(sr

t ; Rt | at−1, sr
t−1) = I(Rt; sr

t , at−1, sr
t−1) − I(Rt; at−1, sr

t−1),

I(sr̄
t ; Rt | at−1, sr

t−1) = I(Rt; sr̄
t , at−1, sr

t−1) − I(Rt; at−1, sr
t−1).

(23)

Combining the above two equations, we eliminated the identical terms, ultimately yielding the247

following formula248

I(Rt; sr
t , at−1, sr

t−1) − I(Rt; sr̄
t , at−1, sr

t−1). (24)

We use the Donsker-Varadhan representation to express mutual information as a supremum over249

functions,250

I(X; Y) = DKL(p(x, y)∥p(x)p(y))

= sup
T∈T
Ep(x,y)[T (x, y)] − logEp(x)p(y)[eT (x,y)]. (25)

We employ mutual information neural estimation [10] to approximate the mutual information value.251

We represent the function T using a neural network that accepts variables (x, y) as inputs and is252

parameterized by α. The neural network is optimized through stochastic gradient ascent to find the253

supremum. Substituting x and y with variables defined in Equation 24, our objective is reformulated254

as follows:255

J t
RS = λ1 ·

{
Iα1 (Rt; sr

t , at−1, sg(sr
t−1)) − Iα2 (Rt; sr̄

t , at−1, sg(sr
t−1))

}
. (26)
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To incorporate the conditions from the original objective, we apply the stop_gradient operation to256

the variable sr
t−1. Similarly, to ensure that the representations sa

t are directly controllable by actions,257

while sā
t are not, we maximize the following objective:258

I(sa
t ; at−1 | st−1) − I(sā

t , at−1|st−1), (27)

By splitting the conditional mutual information and eliminating identical terms, we obtain the259

following objective function:260

J t
AS = λ2 ·

{
Iα3 (at−1; sa

t , sg(st−1)) − Iα4 (at−1; sā
t , sg(st−1))

}
. (28)

where α1, α2, α3, α4 can be obtained by maximizing Equation 25. Intuitively, these two objective261

functions ensure that sr
t is predictive of the reward, while sr̄

t is not; similarly, sa
t can be predicted by262

the action, whereas sā
t cannot.263

Combine the equation 18, equation 21, equation 26 and equation 28, the total objective function is:264

JTOTAL = max
ϕ,θ,γ,α1,α3

min
α2α4

Eqϕ

∑
t

(
J t

O +J
t
R +J

t
D +J

t
RS +J

t
AS

) + const

= max
ϕ,θ,γ,α1,α3

min
α2,α4
Eqϕ

{
log pθ(ot | st) + log pθ(rt | sr

t )

−

4∑
i=1

βi · KL
(
qϕi∥pγi

)
+ λ1 · (Iα1 − Iα2 ) + λ2 · (Iα3 − Iα4 )

}
+ const .

(29)

The expectation is computed over the dataset and the representation model. Throughout the model265

learning process, the objectives for estimating mutual information and learning the world model are266

alternately optimized.267

S2.1 Discussions268

In this subsection, we examine the mutual information constraints in equation 26 and equation 28 and269

their relationship with other objectives. Our findings reveal that while other objectives partially fulfill270

the desired functionality of the mutual information constraints, incorporating both mutual information271

objectives is essential for certain environments.272

The objective functions can be summarized as follows::273

J t
O = ln pθ (ot | st) , J t

R = ln pθ
(
rt | sr

t
)
, J t

D = −KL
(
qϕ∥pγ)

)
,

J t
RS = λ1 ·

{
Iα1 (Rt; sr

t , at−1, sg(sr
t−1)) − Iα2 (Rt; sr̄

t , at−1, sg(sr
t−1))

}
,

J t
AS = λ2 ·

{
Iα3 (at−1; sa

t , sg(st−1)) − Iα4 (at−1; sā
t , sg(st−1))

}
,

(30)

and the KL divergence term can be further decomposed into 4 components:274

J t
D1
= −β1 · KL(qϕ1

(
sar

t | ot, sr
t−1, at−1

)
∥pγ1

(
sar

t | s
r
t−1, at−1

)
)

J t
D2
= −β2 · KL(qϕ2

(
sār

t | ot, sr
t−1

)
∥pγ2

(
sār

t | s
r
t−1

)
)

J t
D3
= −β3 · KL(qϕ3

(
sar̄

t | ot, st−1, at−1

)
∥pγ3

(
sar̄

t | st−1, at−1

)
)

J t
D4
= −β4 · KL(qϕ4

(
sār̄

t | ot, st−1
)
∥pγ4

(
sār̄

t | st−1
)
).

(31)

Specifically, maximizing Iα1 in J t
RS enhances the predictability of Rt based on the current state sr

t−1275

conditioning on (sr
t−1, at−1). However, notice that this objective can be partially accomplished by276

optimizing J t
R. When learning the world model, both the transition function and the reward function277

are trained: the reward function predicts the current reward rt using sr
t , while the transition model278

predicts the next state. These combined predictions contribute to the overall prediction of Rt.279

Minimizing Iα2 in J t
RS eliminates extraneous reward-related information present in sr̄

t . According to280

our formulation, sr̄
t can still be predictive of Rt as long as it does not introduce additional predictability281
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Figure 1: Ablation of the mutual information constraints in the Reacher environment with video
background and jittering camera. The dashed brown line illustrates the policy performance of
Denoised MDP after 1 million environment steps.

beyond what is already captured by (sr
t−1, at−1). This is because we only assume that sr̄

t is conditionally282

independent from Rt when conditioning on sr
t−1. If we don’t condition on sr

t−1, it introduces sr
t−1283

as the confounding factor between sr̄
t and Rt, establishing association between sr̄

t and Rt (refer to284

Figure 7(a)). Note that the KL divergence constraints govern the information amount within each285

state category. By amplifying the weight of the KL constraints on sr̄
t , the value of Iα2 can indirectly286

be diminished.287

By maximizing Iα3 and minimizing Iα4 inJ t
AS , we ensure that sa

t can be predicted based on (at−1, st−1)288

while sā
t cannot. The KL constraints on sar

t and sar̄
t incorporate the action at−1 into the prior and289

posterior, implicitly requiring that sa
t should be predictable given at−1. Conversely, the KL constraints290

on sār
t and sār̄

t do not include the action at−1 in the prior and posterior, implicitly requiring that291

sa
t should not be predictable based on at−1. However, relying solely on indirect constraints can292

sometimes be ineffective, as it may lead to entangled representations that negatively impact policy293

performance (see Figure 5).294

Ablation of the mutual information constraints. The inclusion of both J t
RS and J t

AS is essential295

in certain environments to promote disentanglement and enhance policy performance, despite sharing296

some common objectives. We have observed improved training stability in the variant of Robodesk297

environment (see Figure 4) and significant performance gains in the Reacher environment with video298

background and camera jittering (see Figure 1). When two mutual information objectives are removed,299

we notice that entangled representations emerged in these environments, as depicted in Figure 5. We300

assign values of 0.1 to λ1 and λ2 in the environment of modified Cartpole, variant of Robodesk and301

Reacher with video background and jittering camera. Empirically, a value of 0.1 has been found to302

be preferable for both λ1 and λ2. Using a higher value for regularization might negatively impact303

the learning of representation and transition model. In other DMC environments, the ELBO loss304

alone has proven effective due to the inherent structure of our disentangled latent dynamics. The305

choice of hyperparameters (β1, β2, β3, β4) depends on the specific goals of representation learning and306

the extent of noise interference in the task. If the objective is to accurately recover the true latent307

variables for understanding the environment, it is often effective to assign equal weights to the four308

KL divergence terms (for experiments on synthetic data and modified cartpole). When the aim is309

to enhance policy training stability by mitigating noise, it is recommended to set the values of β1310

and β2 higher than β3 and β4 (for experiments on variants of Robodesk and DMC). Moreover, in311

environments with higher levels of noise, it is advisable to increase the discrepancy in values between312

the hyperparameters.313
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S3 Environment descriptions314

S3.1 Synthetic data315

For the sake of simplicity, we consider one lag for the latent processes in Section 4. Our identifiability316

proof can actually be applied for arbitrary lags directly because the identifiability does not rely on the317

number of previous states. We extend the latent dynamics of the synthetic environment to incorporate318

a general time-delayed causal effect with τ ≥ 1 in the synthetic environment. When τ = 1, it reduces319

to a common MDP. The ground-truth generative model of the environment is as follows::320


Observation Model: pθ (ot | st)
Reward Model: pθ

(
rt | sr

t
)

Transition Model: pγ (st | st−τ:t−1, at−τ:t−1)
Transition :


pγ1

(
sar

t | s
r
t−τ:t−1, at−τ:t−1

)
pγ2

(
sār

t | s
r
t−τ:t−1

)
pγ3

(
sar̄

t | st−τ:t−1, at−τ:t−1
)

pγ4

(
sār̄

t | st−τ:t−1
)

(32)
321

Data Generation We generate synthetic datasets with 100, 000 data points according to the322

generating process in Equation 32, which satisfies the identifiability conditions stated in Theorem323

1. The latent variables st have 8 dimensions, where sar
t = sār

t = sar̄
t = sār̄

t = 2. At each timestep,324

a one-hot action of dimension 5, denoted as at, is taken. The lag number of the process is set to325

τ = 2. The observation model pθ (ot, | st) is implemented using a random three-layer MLPs with326

LeakyReLU units. The reward model pθ
(
rt, | sr

t
)

is represented by a random one-layer MLP. It’s worth327

noting that the reward model is not invertible due to the scalar nature of rt. Four distinct transition328

functions, namely pγ1 , pγ2 , pγ3 , and pγ4 , are employed and modeled using random one-layer MLP329

with LeakyReLU units. The process noise is sampled from an i.i.d. Gaussian distribution with a330

standard deviation of σ = 0.1. To simulate nonstationary noise for various latent variables in RL, the331

process noise terms are coupled with the historical information by multiplying them with the average332

value of all the time-lagged latent variables, as suggested in [11].333

S3.2 Modified Cartpole334

We have modified the original Cartpole environment by introducing two distractors. The first distractor335

is an uncontrollable Cartpole located in the upper portion of the image, which does not affect the336

rewards. The second distractor is a controllable green light positioned below the reward-relevant337

Cartpole in the lower part of the image, but it is not associated with any rewards. The task-irrelevant338

cartpole undergoes random actions at each time step and stops moving when its angle exceeds 45339

degrees or goes beyond the screen boundaries. The action space consists of three independent degrees340

of freedom: direction (left or right), force magnitude (10N or 20N), and green light intensity (lighter341

or darker). This results in an 8-dimensional one-hot vector. The objective of this variant is to maintain342

balance for the reward-relevant cartpole by applying suitable forces.343

S3.3 Variant of Robodesk344

The RoboDesk environment with noise distractors [12] is a control task designed to simulate realistic345

sources of noise, such as flickering lights and shaky cameras. Within the environment, there is a large346

TV that displays natural RGB videos. On the desk, there is a green button that controls both the hue347

of the TV and a light. The agent’s objective is to manipulate this button in order to change the TV’s348

Reacher Easy Cheetah Run Walker WalkModified Cartpole Robodesk

Figure 2: Visualization of the environments used in our experiments.
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Ctrl + Rew Ctrl + Rew Ctrl + Rew Ctrl + Rew

Modified Cartpole Agent Agent Green Light Distractor cartpole

Robodesk
Agent, Button,
Light on desk

TV content,
Button sensor noise

Blocks on desk,
Handle on desk,

Other movable objects
(Green hue of TV)

Jittering and
flickering

environment
lighting,

Jittering camera

DMC

Noiseless Agent (Agent) — —

Video Background Agent (Agent) — Background

Video Background
+ Noisy Sensor Agent

(Agent)
Background — —

Video Background
+ Camera Jittering Agent (Agent) —

Background
Jittering camera

Table 1: Categorization of various types of information in the environments we evaluated. We use the
red color to emphasize the categorization difference between IFactor and Denoised MDP. Unlike De-
noised MDP that assumes independent latent processes, IFactor allows for causally-related processes.
Therefore, in this paper, the term "controllable" refers specifically to one-step controllability, while
"reward-relevant" is characterized by the conditional dependence between s∗t and the cumulative
reward variable Rt when conditioning on (st−1, at−1). Following this categorization, certain agent
information can be classified as (one-step) uncontrollable (including indirectly controllable and
uncontrollable factors) but reward-relevant factors, such as some position information determined
by the position and velocity in the previous time-step rather than the action. On the other hand,
the green hue of TV in Robodesk is classified as controllable but reward-irrelevant factors, as they
are independent of the reward given the state of the robot arm and green button, aligning with the
definition of sar̄

t .

hue to green. The agent’s reward is determined based on the greenness of the TV image. In this349

environment, all four types of information are present (see Table 1).350

S3.4 Variants of DeepMind Control Suite351

Four variants [12] are introduced for each DMC task:352

• Noiseless: Original environment without distractors.353

• Video Background: Replacing noiseless background with natural videos [13] (Ctrl+Rew).354

• Video Background+ Sensor Noise: Imperfect sensors sensitive to intensity of a background355

patch (Ctrl + Rew).356

• Video Background + Camera Jittering: Shifting the observation by a smooth random357

walk (Ctrl + Rew).358

The video background in the environment incorporates grayscale videos from Kinetics-400, where359

pixels with high blue channel values are replaced. Camera jittering is introduced through a smooth360

random walk shift using Gaussian-perturbing acceleration, velocity decay, and pulling force. Sensor361

noise is added by perturbing a specific sensor based on the intensity of a patch in the background video.362

The perturbation involves adding the average patch value minus 0.5. Different sensors are perturbed363

for different environments. These sensor values undergo non-linear transformations, primarily piece-364

wise linear, to compute rewards. While the additive reward noise model may not capture sensor365

behavior perfectly, it is generally sufficient as long as the values remain within moderate ranges and366

stay within one linear region. (Note: the variants of Robodesk and DMC are not the contributions367

of this paper. We kindly refer readers to the paper of Denoised MDP [12] for a more detailed368

introduction.)369
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S4 Experimental Details370

Computing Hardware We used a machine with the following CPU specifications: Intel(R) Xeon(R)371

Silver 4110 CPU @ 2.10GHz; 32 CPUs, eight physical cores per CPU, a total of 256 logical CPU372

units. The machine has two GeForce RTX 2080 Ti GPUs with 11GB GPU memory.373

Reproducibility We’ve included the code for the framework and all experiments in the supplement.374

We plan to release our code under the MIT License after the paper review period.375

S4.1 Synthetic Dataset376

Hyperparameter Selection and Network Structure We adopt a similar experimental setup to377

TDRL [11], while extending it by decomposing the dynamics into four causally related latent378

processes proposed in this paper (refer to Equation 32). For all experiments, we assign β1 = β2 =379

β3 = β4 = 0.003 as the weights for the KL divergence terms. In this particular experiment, we set λ1380

and λ2 to 0 because the utilization of the ELBO loss alone has effectively maximized Jt
RS and Jt

AS,381

as illustrated in Figure 3. Here, Jt
RS represents Iα1 − Iα2 , and Jt

AS represents Iα3 − Iα4 . The network382

structure employed in this experiment is presented in Table 2.383

Training Details The models are implemented in PyTorch 1.13.1. The VAE network is trained384

using AdamW optimizer for 100 epochs. A learning rate of 0.001 and a mini-batch size of 64 are385

used. We have used three random seeds in each experiment and reported the mean performance with386

standard deviation averaged across random seeds.387

Table 2: Architecture details. BS: batch size, T: length of time series, o_dim: observation dimension,
s_dim: latent dimension, sar

t _dim: latent dimension for sar
t , sār

t _dim: latent dimension for sār
t , sar̄

t _dim:
latent dimension for sar̄

t , sār̄
t _dim: latent dimension for sar

t ( s_dim = sar
t _dim + sār

t _dim + sar̄
t _dim +

sār̄
t _dim ), LeakyReLU: Leaky Rectified Linear Unit.

Configuration Description Output

1. MLP-Obs-Encoder Observation Encoder for Synthetic Data
Input: o1:T Observed time series BS × T × o_dim
Dense 128 neurons, LeakyReLU BS × T × 128
Dense 128 neurons, LeakyReLU BS × T × 128
Dense 128 neurons, LeakyReLU BS × T × 128
Dense Temporal embeddings BS × T × s_dim

2. MLP-Obs-Decoder Observation Decoder for Synthetic Data
Input: ŝ1:T Sampled latent variables BS × T × s_dim
Dense 128 neurons, LeakyReLU BS × T × 128
Dense 128 neurons, LeakyReLU BS × T × 128
Dense o_dim neurons, reconstructed ô1:T BS × T × o_dim

3. MLP-Reward-Decoder Reward Decoder for Synthetic Data
Input: ŝ1:T Sampled latent variables BS × T × s_dim
Dense 1 neurons, LeakyReLU BS × T × 1

4. Disentangled Prior for sar
t Nonlinear Transition Prior Network

Input Sampled latents and actionssr
1:T , a1:T BS × T ×( sr

t _dim + a_dim)
Dense sar

t _dim neurons, prior output BS × T × sar
t _dim

5. Disentangled Prior for sār
t Nonlinear Transition Prior Network

Input Sampled latent variable sequence sr
1:T BS × T × sr

t _dim
Dense sār

t _dim neurons, prior output BS × T × sār
t _dim

6. Disentangled Prior for sar̄
t Nonlinear Transition Prior Network

Input Sampled latents and actions s1:T, a1:T BS × T × (s_dim + a_dim)
Dense sar̄

t _dim neurons, prior output BS × T × sar̄
t _dim

7. Disentangled Prior for sār̄
t Nonlinear Transition Prior Network

Input Sampled latent variable sequence s1:T BS × T × s_dim
Dense sār̄

t _dim neurons, prior output BS × T × sār̄
t _dim
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S4.1.1 Extra Results.388

During the training process, we record the estimation value of four mutual information (MI) terms.389

The corresponding results are presented in Figure 3. Despite not being explicitly incorporated into390

the objective function, the terms Iα1 − Iα2 and Iα3 − Iα4 exhibit significant maximization. Furthermore,391

the estimation values of Iα2 and Iα2 are found to be close to 0. These findings indicate that the state392

variable sr̄
t contains little information about the reward, and the predictability of sā

t by the action is393

also low.
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Figure 3: Estimation of the value of four mutual information terms and their differences in experiments
on synthetic data.

.394

S4.2 Modified Cartpole395

In the modified Cartpole environment, we configure the values as follows: β1 = β2 = β3 = β4 = 0.1396

and λ1 = λ2 = 0.1. Recurrent State Space Model (RSSM) uses a deterministic part and a stochastic397

part to represent latent variables. The deterministic state size for four dynamics are set to be (15, 15,398

15, 15), and the stochastic state size are set to be (2, 2, 1, 4). The architecture of the encoder and399

decoder for observation is shown in Table 3 and Table 4 (64 × 64 resolution). Reward model uses400

3-layer MLPs with hidden size to be 100 and four mutual information neural estimators are 4-layer401

MLPs with hidden size to be 128.402

S4.3 Variant of Robodesk403

In the variant of Robodesk, we conduct experiments with the following hyperparameter settings:404

β1 = β2 = 2, β3 = β4 = 0.25, and λ1 = λ2 = 0.1. For the four dynamics, we set the deterministic405

state sizes to (120, 40, 40, 40), and the stochastic state sizes to (30, 10, 10, 10). Denoised MDP406

utilizes two latent processes with deterministic state sizes [120, 120] and stochastic state sizes [20,407

10]. For the mutual information neural estimators, we employ 4-layer MLPs with a hidden size of408

128. To ensure a fair comparison, we align the remaining hyperparameters and network structure409

with those in the Denoised MDP. We reproduce the results of the Denoised MDP using their released410

code, maintaining consistency with their paper by employing the default hyperparameters. In order to411

evaluate the impact of the Mutual Information (MI) constraints, we conduct an ablation study. The412

results are shown is Figure 4. The constraints J t
RS and J t

AS are observed to stabilize the training413

process of IFactor. The results of IFactor are areaveraged over 5 runs, while the results of Denoised414

MDP and IFactor without MI are averaged over three runs.415

Policy learning based on the learned representations by IFactor We retrain policies using the416

Soft Actor-Critic algorithm [14] with various combinations of the four learned latent categories417

as input. We wrap the original environment with visual output using our representation model to418

obtain compact features. In this process, both deterministic states and stochastic states are utilized419
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Figure 4: Comparison between IFactor and Denoised MDP in the variant of Robodesk environment.

to form the feature. For instance, when referring to sr
t , we use both the deterministic states and420

stochastic states of sr
t . The implementation of SAC algorithm is based on Stableb-Baselines3[15],421

with a learning rate of 0.0002. Both the policy network and Q network consist of 4-layer MLPs422

with a hidden size of 256. We use the default hyperparameter settings in Stable-Baselines3 for other423

parameters.424

S4.4 Variants of Deep Mind Control Suite425

In the noiseless DMC environments, we set β1 = β2 = β3 = β4 = 1. For the DMC environments426

with video background, we set β1 = β2 = 1 and β3 = β4 = 0.25. In the DMC environments with427

video background and noisy sensor, we set β1 = β2 = 2 and β3 = β4 = 0.25. Lastly, for the DMC428

environments with video background and jittering camera, we set β1 = β2 = 1 and β3 = β4 = 0.25.429

Regarding the Reacher environment with video background and jittering camera, we set λ1 = λ2 = 0.1430

for our experiments. For the other environments, we set λ1 = λ2 = 0. The deterministic state sizes for431

the four dynamics are set to (120, 120, 60, 60), while the stochastic state sizes are set to (20, 20, 10,432

10). The four mutual information neural estimators utilize a 4-layer MLPs with a hidden size of 128.433

We align the other hyperparameters and network structure with those used in the Denoised MDP for434

a fair comparison.435

Operator
Input
Shape

Kernel
Size Stride Padding

Input [3, 96, 96] — — —

Conv. + ReLU [32, 47, 47] 4 2 0

Conv. + ReLU [64, 22, 22] 4 2 0

Conv. + ReLU [128, 10, 10] 4 2 0

Conv. + ReLU [256, 4, 4] 4 2 0

Conv. + ReLU * [256, 2, 2] 3 1 0

Reshape + FC [1024] — — —

Table 3: The encoder architecture designed for observation resolution of (96 × 96). Its output is then
fed into other networks for posterior inference. The default activation function used in the network is
RELU. For observations with a resolution of (64 × 64), the last convolutional layer(*) is removed.

S4.4.1 Extra Results.436

Figure 1 demonstrates the notable improvement in policy performance in the Reacher environment437

with video background and jittering camera due to the inclusion of the constraints Jt
RS and Jt

AS . To438
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Operator
Input
Shape

Kernel
Size Stride Padding

Input [input_size] — — —

FC + ReLU + Reshape [1024, 1, 1] — — —

Conv. Transpose + ReLU * [128, 3, 3] 3 1 0

Conv. Transpose + ReLU [128, 9, 9] 5 2 0

Conv. Transpose + ReLU [64, 21, 21] 5 2 0

Conv. Transpose + ReLU [32, 46, 46] 6 2 0

Conv. Transpose + ReLU [3, 96, 96] 6 2 0

Table 4: The decoder architecture designed for (96 × 96)-resolution observation. For (64 × 64)-
resolution observation, the first transpose convolutional layer(*) is removed.

Environment
Steps

Action
Repeat

Train
Every

Collection
Intervals

Batch
Size

Sequence
Length Horizon

Modified Cartpole 200,000 1 5 5 20 30 8
Robodesk 1,000,000 2 1000 100 50 50 15

DMC 1,000,000 2 1000 100 25 50 12

Table 5: Some hyperparameters of our method in the environment of Modified Cartpole, Robodesk
and DMC. Environment Steps represents the number of interactions between the agent and the
environment. Action Repeat determines how many times an agent repeats an action in a step. Train
Every specifies the environment step between adjacent training iterations. Collection Intervals defines
the number of times the model is trained in each training iteration (including world models, policy
networks and value networks). Batch Size refers to the number of trajectories in each mini-batch.
Sequence Length denotes the length of the chuck used in training the world models. Horizon
determines the length of dreaming when training the policy using the world model. Hyperparameters
are aligned with those used in the Denoised MDP for fair comparison.

further investigate how they affects the model learning, we record the estimation values of four Mutual439

Information terms throughout the training process, as depicted in Figure 5. The results indicate that440

both Iα1 − Iα2 and Iα3 − Iα4 are maximized for both IFactor and IFactor without MI. However, IFactor441

exhibits a significantly higher rate of maximizing Iα3 − Iα4 compared to IFactor without MI. This442

increased maximization leads to greater predictability of sa
t by the action, ultimately contributing to443

the observed performance gain.444

S4.5 Visualization for DMC445

In this experiment, we investigate five types of representations, which can be derived from the446

combination of four original disentangled representation categories. Specifically, sa
t is the controllable447

and reward relevant representation. sr
t = (sar

t , s
ār
t ) is the reward-relevant representation. sār̄

t is the448

controllable but reward-irrelevant representation. sār̄
t is the uncontrollable and reward-irrelevant449

representation (noise). sr̄
t = (sar̄

t , s
ār̄
t ) is the reward-irrelevant representation. Only representations450

of sr
t are used for policy optimization. We retrain 5 extra observation decoders to reconstruct the451

original image, which can precisely characterize what kind of information each type of representation452

contains, surpassing the limitations of the original decoder that is used in latent traversal. The453

visualization results are shown in Figure 6. It can be observed that sar
t captures the movement of454

the agent partially but not well enough; sr
t captures the movement of the agent precisely but sr̄

t455

fails (Reacher and Cheetah) or captures extra information of the background (Walker). This finding456

suggests that sr
t contains sufficient information within the original noisy observation for effective457

control, while effectively excluding other sources of noise.458
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Figure 5: Estimation of the value of four mutual information terms and their differences in the
Reacher Easy environment with video background and jittering camera.
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Figure 6: Visualization of the DMC variants and the factorization learned by IFactor.

17



S5 Comparison between IFactor and Denoised MDP459

While both IFactor and Denoised MDP share the common aspect of factorizing latent variables460

based on controllability and reward relevance, it is crucial to recognize the numerous fundamental461

distinctions between them.462
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Figure 7: Graphical illustration of our world model and Denoised MDP.

First and foremost, Denoised MDP adopts a rather stringent assumption by solely considering three463

types of latent variables and assuming independent latent processes for xt and yt. However, this strict464

assumption may not hold in many scenarios where uncontrollable yet reward-relevant factors exhibit465

dependencies on controllable and reward-relevant factors. Take, for instance, the case of car driving:466

the agent lacks control over surrounding vehicles, yet their behaviors are indirectly influenced by the467

agent’s actions. In contrast, our approach encompasses four types of causally related latent variables468

while only assuming conditional independence when conditioning on the state in the previous time469

step. This assumption holds true naturally within the MDP framework.470

Secondly, Denoised MDP is limited to factoring out additive rewards solely for xt, disregarding the471

possibility of non-additive effects in many uncontrollable yet reward-relevant factors. In contrast, our472

method embraces the inclusion of non-additive effects of sār
t on the reward, which is more general.473

Thirdly, Denoised MDP uses only controllable and reward-relevant latent variables for policy opti-474

mization, which we show in the theoretical analysis that it is generally insufficient. In contrast, our475

method utilize both controllable and uncontrollable reward-relevant factors for policy training.476

Finally, Denoised MDP makes the assumption of an intermediate causal effect from xt to zt and477

from yt to zt, which is inherently unidentifiable without further intervention. It is worth noting that478

imposing interventions on the latent states is unrealistic in most control tasks, as agents can only479

choose actions at specific states and cannot directly intervene on the state itself. In contrast, our480

method assumes that there exists no intermediate causal effect for latent variables. In conjunction with481

several weak assumptions, we provide a proof of block-wise identifiability for our four categories482

of latent variables. This property serves two important purposes: (1) it ensures the removal of483

reward-irrelevant factors and the utilization of minimal and sufficient reward-relevant variables for484

policy optimization, and (2) it provides a potential means for humans to comprehend the learned485

representations within the reinforcement learning (RL) framework. Through latent traversal of the486

four types of latent variables, humans can gain insights into the specific kind of information that each487

category of representation contains within the image.488

From the perspective of model structure, it is worth highlighting that the architecture of both the489

transition model (prior) and the representation model (posterior) in IFactor differs from that of490

Denoised MDP. The structure of prior and posterior of IFactor is shown as follows:491

Prior: Posterior:
pγ1

(
sar

t | s
r
t−1, at−1

)
pγ2

(
sār

t | s
r
t−1

)
pγ3

(
sar̄

t | st−1, at−1
)

pγ4

(
sār̄

t | st−1
)


qϕ1

(
sar

t | ot, sr
t−1, at−1

)
qϕ2

(
sār

t | ot, sr
t−1

)
qϕ3

(
sar̄

t | ot, st−1, at−1
)

qϕ4

(
sār̄

t | ot, st−1
) (33)

While Denoised MDP has the following prior and posterior:492
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Prior: Posterior:
pγ1 (xt | xt−1, at−1)
pγ2 (yt | yt−1)
pγ3 (zt | xt, yt, zt−1)


pϕ1 (xt | xt−1, yt−1, zt−1, ot, at−1)
pϕ2 (yt | xt−1, yt−1, zt−1, ot, at−1)
pϕ3 (zt | xt, yt, ot, at−1)

(34)

A notable distinction can be observed between Denoised MDP and IFactor in terms of the assumptions493

made for the prior and posterior structures. Denoised MDP assumes independent priors for xt494

and yt, whereas IFactor only incorporates conditional independence, utilizing sr
t−1 as input for the495

transition of both sar
t and sār

t . Moreover, the posterior of yt receives at−1 as input, potentially496

implying controllability. Similarly, the posterior of xt incorporates zt−1 as input, which may introduce497

noise from zt−1 into xt. These implementation details can deviate from the original concept. In498

contrast, our implementation ensures consistency between the prior and posterior, facilitating a clean499

disentanglement in our factored model.500

From the perspective of the objective function, IFactor incorporates two supplementary mutual501

information constraints, namely J t
RS and J t

AS, to promote disentanglement and improve policy502

performance.503
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