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A Proof of the maximal inequality for IS weighted sequential empirical
processes

A.1 Preliminary lemmas

For any sequence g̃1, . . . , g̃T of conditional densities and any finite sequence ζ1:T := (ζt)
T
t=1 of

O → R functions, let

ρT,g̃1:T (ζ1:T ) :=

(
1

T

T∑
t=1

‖ζt‖22,g̃t

)1/2

.

For any conditional density g̃ : (a, x) ∈ A× X 7→ g̃(a | x), let

ρT,g̃(ζ1:T ) := ρT,g̃1:T (ζ1:T ),

where we set g̃t := g̃ for every t ∈ [T ].

Lemma 4. Any ρT,g̃1:T as defined above is a pseudonorm over the vector space (O → R)T .

Proof of Lemma 4. It is immediate that for any real number λ, and finite sequence ζ1:T of O → R
functions ρT,g̃1:T (λζ1:T ) = |λ|ρT,g̃1:T (ζ1:T ).

We now check that ρT,g̃1:T satisfies the triangle inequality. Let ζ(1)1:T and ζ(2)1:T be two sequences of
O → R functions. We have that

ρT,g̃1:T (ζ
(1)
1:T + ζ

(2)
1:T ) =

(
1

T

T∑
t=1

∥∥∥ζ(1)t + ζ
(2)
t

∥∥∥2
2,g̃t

)1/2

≤

(
1

T

T∑
t=1

(∥∥∥ζ(1)t

∥∥∥
2,g̃t

+
∥∥∥ζ(2)t

∥∥∥
2,g̃t

)2
)1/2

≤

(
1

T

T∑
t=1

∥∥∥ζ(1)t

∥∥∥2
2,g̃t

)1/2

+

(
1

T

T∑
t=1

∥∥∥ζ(2)t

∥∥∥
2,g̃t

)1/2

=ρT,g̃1:T (ζ
(1)
1:T ) + ρT,g̃1:T (ζ

(2)
1:T ),

where the second line above follows from the triangle inequality applied to the pseudonorms ‖ · ‖2,g̃t ,
t = 1, . . . , T , and where the third line follows from the triangle inequality applied to the Euclidean
norm x ∈ RT 7→ (

∑T
t=1 x

2
t )

1/2.

Lemma 5. Consider g∗ and g1, . . . , gT as defined in the main text. Suppose that assumption 1 holds.
Then, for any finite sequence of functions (ζt)

T
t=1 ∈ (O → R)T ,

ρT,g1:T

(
g∗

g1:T
ζ1:T

)
≤
√
γmax
T ρT,g∗(ζ1:T ).

If all elements of the sequence ζt are the same, that is, if there exists ζ : O → R such that ζt = ζ for
every t ∈ [T ], then

ρT,g1:T

(
g∗

g1:T
ζ1:T

)
≤
√
γavg
T ‖ζ‖2,g∗ .

14



Proof of Lemma 5. We have that

ρT,g1:T

(
g∗

g1:T
ζ1:T

)
=

(
1

T

T∑
t=1

Pgt

(
g∗

gt
ζt

)2
)1/2

=

(
1

T

T∑
t=1

Pg∗

(
g∗

gt
ζ2t

))1/2

≤

(
1

T

T∑
t=1

γtPg∗ζ
2
t

)1/2

,

where the inequality follows from Assumption 1. If there exists ζ : O → R such that ζt = ζ for every
t = 1, . . . , T , then,

ρT,g1:T ≤

(
1

T

T∑
t=1

γtPg∗ζ
2
t

)1/2

=
√
γavg
T ‖ζ‖2,g∗ .

Otherwise, we have

ρT,g1:T ≤

(
1

T

T∑
t=1

γtPg∗ζ
2
t

)1/2

≤

(
max
t∈[T ]

γt
1

T

T∑
t=1

Pg∗ζ
2
t

)1/2

=
√
γmax
T ρT,g̃1:T (ζ1:T ).

The following lemma is a restatement under our notation of Corollary A.8 in van Handel [57].

Lemma 6. Let ζ11:T , . . . , ζ
N
1:T be N Ō1:T -predictable sequences of O → R functions, and let A be

an ŌT -measurable event. Then, for any r > 0 and any b > 0 such that maxi∈[N ],t∈[T ] ‖ζit‖∞ ≤ b, it
holds that

E

[
max
i∈[N ]

1

T

N∑
t=1

(δOt − Pgt)ζit1(ρT,g1:T (ζi1:T ) ≤ r) | A

]

.r

√
log(1 +N/P [A])

t
+
B

t
log(1 +N/P [A]).

A.2 Proof of Theorem 1

Proof of Theorem 1. We treat together both the general case where, for each f , ξ1:T (f) is an Ō1:T -
predictable sequence, and the case where, for every f , there exists a deterministic ξ(f) : O → R
such that ξt(f) = ξ(f) for every t ∈ [T ]. We refer to the former as case 1 and to the latter as case 2
in the rest of the proof. In case 1, we let ρ̃T := ρmax

T , and in case 2, we let ρ̃T := ρ̄T .

From a conditional expectation bound to a high probability bound. Let x > 0. We introduce
the following event:

A :=

{
sup
f∈F

MT (f) ≥ ψ(x)

}
,
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where

ψ(x) :=C

{
r− +

√
γ̃T
T

∫ r

r−

√
log(1 +N[ ](ε,ΞT , ρT,g∗))dε

+
Bγmax

T

T
log(1 +N[ ](r,ΞT , ρT,g∗))

r

√
x

T
+
γmax
T x

T

}
,

where C is a universal constant to be discussed further down. Suppose we can show that

E

[
sup
f∈F

MT (f) | A

]
≤ ψ

(
log

(
1 +

1

P [A]

))
.

Then, we will have that ψ(x) ≤ ψ(log(2/P [A])), that is P [A] ≤ 2e−x, which is the wished claim.

Setting up the chaining decomposition. Let ε0 := r, and, for every j ≥ 0, let εj := ε02−j . For
any j ≥ 0, let

Bj :=
{

(λj,ks , υj,kt )Tt=1 : k ∈ [Nj ]
}

be a minimal (εj , ρT,g∗)-sequential bracketing of ΞT . For any f ∈ F , let k(j, f) ∈ [Nj ] be such that

λj,k(j,f)s ≤ ξt(f) ≤ υj,k(j,f) for every t ∈ [T ],

and let ∆j,f
t := υ

j,k(j,f)
s − λj,k(j,f)s and uj,f := υ

j,k(j,f)
s . For any j ≥ 0, let N̄j :=

∏j
i=0Ni. For

any j ≥ 0, and t ∈ [T ] let

aj,t := εj

√
T

log(1 + N̄j/P [A])

√
γ̃T
γt

.

Let J ≥ 0 such that εJ+1 < r− ≤ εJ . The integer J will be the maximal depth of the chains in our
chaining decomposition. For any t ∈ [T ], f ∈ F , let

τt(f) := inf
{
j ≥ 0 : ∆j,f

t > aj,t

}
∧ J,

be the depth at which we truncate the chains, adaptively depending on the value of ∆j,f
t , so that

∆j,f
t 1(τt(f) > j) is no larger than aj,t in supremum norm at any depth j.

For any f ∈ F and any t ∈ [T ], the following chaining decomposition holds:

ξt(f) =

J∑
j=0

(ξt(f)− uj,f ∧ uj−1,f )1(τt(f) = j)︸ ︷︷ ︸
tip of the chain

+

J∑
j=1

{
(uj,f ∧ uj−1,f − uj−1,f )1(τt(f) = j) + (uj,f − uj−1,f )1(τt(f) > j)

}
︸ ︷︷ ︸

links of the chain

+ u0,ft︸︷︷︸
root of then chain

.

Control of the tips.
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• Case j = J . We have that

1

T

T∑
t=1

(δOt − Pgt)
g∗

gt
(ξt(f)− uJ,ft ∧ uJ−1,ft )1(τt(f) = J)

≤ 1

T

T∑
t=1

Pgt
g∗

gt
∆J,f
t

=
1

T

T∑
t=1

‖∆J,f
t ‖1,g∗

≤

(
1

T

T∑
t=1

‖∆J,f
t ‖22,g∗

)1/2

≤εJ .
Therefore

E

[
sup
f∈F

1

T

T∑
t=1

(δOt−Pgt
g∗

gt
)(ξt(f)− uJ,ft ∧ uJ−1,ft )1(τt(f) = J) | A

]
≤ εJ .

• Case j < J .

1

T

T∑
t=1

(δOt − Pgt)
g∗

gt
(ξt(f)− uj,ft ∧ u

j−1,f
t )1(τt(f) = j)

≤ 1

T

T∑
t=1

Pgt
g∗

gt
∆j,f
t 1(τt(f) = j)

≤ 1

T

T∑
t=1

Pg∗
(∆j,f

t )2

aj,t

≤ε2j
1

T

T∑
t=1

1

aj,t

=εj

√
log(1 + N̄j/P [A])

T

1√
γ̃T

1

T

∑
t=1

γt

≤εj

√
γ̃T log(1 + N̄j/P [A])

T
.

(The last inequality is an equality in case 2).

Control of the links. We start with bounding the ρT,g1:T pseudo-norm of the IS weighted links.
We have that

ρT,g1:T

((
g∗

gt
(uj,ft ∧ u

j−1,f
t − uj−1,ft

)T
t=1

)

≤ρT,g1:T

((
g∗

gt
(uj,ft − u

j−1,f
t

)T
t=1

)
≤
√
γ̃T ρT,g∗

(
uj,f1:T − u

j−1,f
1:T

)
≤
√
γ̃T

{
ρT,g∗

(
uj,f1:T − ξ1:T (f)

)
+ ρT,g∗

(
ξ1:T (f)− uj−1,f1:T

)}
.
√
γ̃T εj ,

where we have used lemma 5 is the third line and where the fourth line above follows from the
triangle inequality.
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We now bound the supremum norm of the links. For every t ∈ [T ],

(uj,ft ∧ u
j−1,f
t − uj,ft )1(τt(f) = j)

=(uj,ft ∧ u
j−1,f
t − ξt(f))1(τt(f) = j)

− (uj−1,ft − ξ(f))1(τt(f) = j).

Using the definition of τt(f), we obtain

0 ≤ (uj,ft ∧ u
j−1,f
t − ξt(f))1(τt(f) = j) ≤ (uj−1,ft − ξt(f))1(τt(f) = j) ≤ aj−1,t . aj,t,

and

0 ≤ (uj−1,ft − ξt(f))1(τt(f) = j) ≤ aj−1,t . aj−1,t.

Therefore,

max
t∈[T ]

∥∥∥∥g∗gt
(
uj,ft ∧ u

j−1,f
t − uj−1,ft

)
1(τt(f) = j)

∥∥∥∥
∞

. γtaj,t = bj

where

bj := εj

√
T γ̃T

log(1 + N̄j/P [A])

Similarly, we have

0 ≤ (uj,ft − ξt(f))1(τt(f) > j) ≤ aj,t and 0 ≤ (uj−1,ft − ξt(f))1(τt(f) > j) ≤ aj−1,t,
and therefore, for every t ∈ [T ]∥∥∥∥g∗gt

(
uj−1,ft − uj−1,ft

)
1(τt(f) > j)

∥∥∥∥
∞

. γtaj,t = bj

Denote

vj,ft :=
g∗

gt

{
(uj,ft ∧ u

j−1,f
t − uj,ft )1(τt(f) = j) + (uj,ft − u

j−1,f
t )1(τt(f) > j)

}
.

Observe that as f varies over F , vj,f1:T varies over a collection of at most Nj ×Nj−1 ≤ N̄j elements.
Therefore, lemma 6 yields

E

[
sup
f∈F

1

T

T∑
t=1

(δOt − Pgt)
g∗

gt
vj,ft

]

.εj

√
γ̃T log(1 + N̄j/P [A])

T
+
bj
T

log(1 + N̄j/P [A])

.εj

√
γ̃T log(1 + N̄j/P [A])

T
.

Control of the root. For any f such that ρT,g∗((ξt(f))Tt=1) ≤ r, we have that

ρT,g1:T (((g∗/gt)u
0,f
t )Tt=1)

≤
√
γ̃T ρT,g∗(u0,f1:T )

≤
√
γ̃T (ρT,g∗(u0,f1:T − ξ1:T (f)) + ρT,g∗(ξ1:T (f)).

Without loss of generality, we can assume that maxt∈[T ] ‖u0,ft ‖∞ ≤ B, since thresholding to B
preserves the bracketing property. Therefore, maxt∈[T ] ‖(g∗/gt)u0,ft ‖∞ ≤ γmax

T Bε.

Then, from lemma 6,

E

[
sup

{
1

T

T∑
t=1

(δOt − Pgt)ξt(f) : f ∈ F , ρT,g∗((ξt(f))Tt=1) ≤ r

}]

≤
√
γ̃T
T

√
log

(
(1 +

N̄0

P [A]

)
+
Bγmax

T

T
log

(
1 +

N̄0

P [A]

)
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Adding up the bounds. We obtain

E

[
sup
f∈F

MT (f) | A

]
.

√
γ̃T
T

√
log

(
(1 +

N̄0

P [A]

)
+

B

δT
log

(
1 +

N̄0

P [A]

)
︸ ︷︷ ︸

root contribution

+

√
γ̃T
T

J∑
j=1

εj log

(
1 +

N̄j
P [A]

)
︸ ︷︷ ︸

links contribution

+

√
γ̃T
T

J−1∑
j=0

εj log

(
1 +

N̄j
P [A]

)
+ εJ︸ ︷︷ ︸

tip contribution

.εJ +

√
γ̃T
T

J∑
j=0

εj log

(
1 +

N̄j
P [A]

)
+
Bγmax

T

T
log

(
1 +

N̄0

P [A]

)
.

We use the classical technique from finite adaptive chaining proofs to bound the sum in the second
term with an integral [see e.g. 8, 57]. We obtain

J∑
j=0

εj log

(
1 +

N̄j
P [A]

)
.
∫ r

r−

√
log(1 +N[ ](ε,ΞT , ρT,g∗))dε+ log

(
1 +

1

P [A]

)
.

Therefore,

E

[
sup
f∈F

MT (f) | A

]
.r− +

√
γ̃T
T

∫ r

r−

√
log(1 +N[ ](ε,ΞT , ρT,g∗))dε

+
Bγmax

T

T
log(1 +N[ ](r,ΞT , ρT,g∗))

+

√
γ̃T
T

√
log

(
1 +

1

P [A]

)
+
Bγmax

T

T
log

(
1 +

1

P [A]

)
.

Therefore, for an appropriate choice of the universal constant C in the definition of ψ, we have that

E

[
sup
f∈F

MT (f) | A

]
≤ ψ

(
log

(
1 +

1

P [A]

))
,

which, from the first paragraph of the proof, implies the wished claim.

B Proof of the excess risk bounds for ISWERM

B.1 Proof of Theorem 2

Proof of Theorem 2. Let

MT (f) :=
1

T

T∑
t=1

(Pgt − δOt)(`(f)− `(f1)).

Since R̂T (f̂T )−R̂T (f1) ≤ 0, and from the diameter assumption 3, we have thatR∗(f̂T )−R∗(f1) ≤
sup{MT (f) : f ∈ F , ‖`(f)− `(f1)‖2,g∗ ≤ ρ0‖Λ‖2,g∗}. Therefore, from the diameter assumption
(Assumption 3), Theorem 1 yields, via the change of variable r = ρ‖Λ‖2,g∗ , for any x > 0,
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ρ− ∈ [0, ρ0/2], that it holds with probability at least 1− 2e−x that

R∗(f̂T )−R∗(f1) ≤ ‖Λ‖2,g∗
{
ρ− +

√
γavg
T

T

∫ ρ0

ρ−

√
log(1 +N[ ](ε‖Λ‖2,g∗ , `(F), ‖ · ‖2,g∗dε

+
b0γ

max
T

T
log(1 +N[ ](ρ0‖Λ‖2,g∗ , `(F), ‖ · ‖2,g∗))

+

√
γavg
T x

T
+
b0γ

max
T x

T

}
.

In the case p ∈ (0, 2), setting ρ− = 0 and x = log(1/δ), and plugging in the entropy assumption
(Assumption 2) immediately yield the claim. In the case p > 2, setting x = log(1/δ), plugging in
the entropy assumption and optimizing the value of ρ− yields the claim.

B.2 Proof of Theorem 3

Proof. From convexity of f 7→ `(f, ·) and of F , the following implication holds, for any r > 0:

∃f ∈ F , R∗(f)−R∗(f1) ≥ r2 andR̂T (f)− R̂T (f1) ≤ 0

=⇒ ∃f ∈ F , R∗(f)−R∗(f1) = r2 andR̂T (f)− R̂T (f1) ≤ 0.

Let

MT (f) :=
1

T

T∑
t=1

(Pgt − δOt)(`(f)− `(f1)).

Let ρ > 0. Since R̂T (f̂T )− R̂T (f1) ≤ 0, we have that

P
[
R∗(f̂T )−R∗(f1) ≥ ρ2‖Λ‖2,g∗‖2,g∗

]
≤P

[
∃f ∈ F , R∗(f)−R∗(f1) = ρ2‖Λ‖2,g∗ and R̂T (f)− R̂T (f1) ≤ 0

]
≤P [∃f ∈ F , sup {MT (f) : f ∈ F , ‖`(f)− `(f1)‖2,g∗} . ‖Λ‖2,g∗ρα] ,

where we have used the variance bound in the last line (Assumption 4). From theorem 1 and the loss
diameters assumption 3, we have, for any x, ρ > 0, that it holds with probability at least 1− 2e−x

that

sup {MT (f) : f ∈ F , ‖`(f)− `(f1)‖2,g∗} . ψT (ρ),

with

ψT (ρ) := ‖Λ‖2,g∗
{√

γavg
T

T

∫ ρα

0

√
log(1 +N[ ](ε‖Λ‖2,g∗ , `(F), ‖ · ‖2,g∗))dε

+
b0γ

max
T

T
log(1 +N[ ](ρ

α‖Λ‖2,g∗ , `(F), ‖ · ‖2,g∗)

+ ρα
√
γavg
T x

T
+
b0γ

max
T x

T

}
.

Therefore, if ρ is such that ρ2‖Λ‖2,g∗ ≥ ψT (ρ), then with probability at least 1− 2e−x,

R∗(f̂T )−R∗(f1) . ρ2‖Λ‖2,g∗ .
We therefore compute an upper bound on ψT (ρ). From the entropy assumption (2), we have that

ψT (ρ) . ‖Λ‖2,g∗
{√

γavg
T

T
ρα(1−p/2) +

b0γ
max
T

T
ρ−pα + ρα

√
γavg
T x

T
+
b0γ

max
T

T
x

}
.

Therefore, a sufficient condition for ρ2‖Λ‖2,g∗ ≥ ψT (ρ) is that

ρ2 ≥ max

{√
γavg
T

T
ρα(1−p/2),

b0γ
max
T

T
ρ−pα, ρα

√
γavg
T x

T
,
b0γ

max
T

T
x

}
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that is

ρ2 ≥ max

{(
γavg
T

T

) 1
2−α+pα/2

,

(
γavg
T

T

) 1
2−α

,

(
b0γ

max
T

T

) 1
1+pα/2

,
b0γ

max
T x

T

}
,

which immediately implies the wished claim.

C Proof of the results on least squares regression using ISWERM

Proof of lemma 2. For any o = (x, a, y) ∈ O, f, f ′ : O → R, we have

|`(f)(o)− `(f ′)(o)| =|2y − f(a, x)− f ′(a, x)||f(a, x)− f1(a, x)|
≤4
√
M |f(a, x)− f1(a, x)|,

which is the second claim. This inequality further gives that, for any f ∈ F

‖`(f)− `(f1)‖2,g∗ ≤ 4
√
M ‖f − f1‖2,g∗ .

We now show that ‖f−f1‖2,g∗ ≤ R∗(f)−R∗(f1). Recall the definition of µ: for any (a, x) ∈ A,X ,
µ(a, x) := EpY [Y | A = a,X = x]. From Pythagoras, R∗(f) = E[(Y −µ(A,X))2]+‖µ−f‖22,g∗ .
For any h1, h2 : A×X → R, denote 〈h1, h2〉 := EpX ,g∗ [h1(A,X)h2(A,X)]. We have that

R∗(f)−R∗(f1)− ‖f − f1‖2,g∗
= ‖f − µ‖22,g∗ − ‖f1 − µ‖

2
2,g∗ − ‖f − f1‖

2
2,g∗

=〈f − f1, f1 − µ〉
≥0,

since f1 is the projection for 〈·, ·〉 of µ onto the convex set F . This yields the first claim.

Proof of Theorem 4. From the definition of the range of the outcome and of the regression functions,
o 7→

√
M is an envelope for F and o 7→ 4M is an envelope for `(F). From Lemma 7, and the fact

that ` is 4
√
M -equiLipschitz w.r.t. its first argument,

N[ ](4Mε, `(F), ‖ · ‖2,g∗) . N[ ](
√
Mε,F , ‖ · ‖2,g∗) . ε−p,

where the last inequality follows from the fact that Assumption 6 holds forF with envelope o 7→
√
M .

Therefore, Assumption 2 holds for envelope Λ : o 7→ 4M . In addition, for this envelop definition,
Assumption 3 holds with ρ0 = b0 = 1. Finally, from lemma Lemma 2,

‖`(f)− `(f1)‖2,g∗ ≤ 4
√
M(R∗(f)−R∗(f1))1/2

= 2(4M)

(
R∗(f)−R∗(f1)

4M

) 1
2

,

that is Assumption 4 holds. Theorem 4 then follows directly by instantiating Theorem 2 and
Theorem 3, respectively in the case p > 2 and in the case p ∈ (0, 2), with Λ : o 7→ 4M , α = 1,
b0 = ρ0 = 1.

D Proof of the results on policy learning using ISWERM

Proof of Theorem 5 and Theorem 6. Note that since the outcome has range [−M,M ], ` is M -
equiLipschitz w.r.t. its first argument. Therefore, from Lemma 7 and the fact that F satisfies
Assumption 6 with envelope constant equal to 1, Assumption 2 holds with envelope Λ : o 7→M .

Furthermore, Assumption 3 holds for b0 = ρ0 = 1. Therefore, instantiating Theorem 2 with Λ = M ,
ρ0 = b0 = 1 yields Theorem 5.

Under realizability and Assumption 7, Lemma 3, gives us that Assumption 4 holds for α = ν/(ν+1).
Theorem 6 follows by instantiating Theorem 6 with α = ν/(ν + 1), b0 = ρ0 = 1.

21



E Technical lemmas

E.1 Long version of lemma 4 in [10]

We restate here under our notation the full version of lemma 4 in [10], of which we gave a short
version under the form of lemma 1.
Lemma 7 (Lemma 4 in [10], long version). Let ` : F × O → R. Suppose that there exists˜̀ : R×O → R such that

• it holds that ∀f : O → R, o ∈ O, `(f, o) = ˜̀(f(o), o),

• ˜̀is L-equiLipschitz w.r.t. its first argument, that is,

|˜̀(z2, o)− ˜̀(z1, o)| ≤ L|z1 − z2|,∀o ∈ O, z1, z2 ∈ R

• for every o ∈ O, z 7→ ˜̀(z, o) is unimodal.

Then, for any measure µ on O, any p ≥ 1, and ε > 0, it holds that

N[ ](Lε, `(F), ‖ · ‖µ,p) ≤ N[ ](ε,F , ‖ · ‖µ,p).

E.2 Proof of the variance bound under margin condition

Proof of Lemma 3. By assumption there exists f1 ∈ F such that R∗(f1) = EpXµ∗(X). Applying
Assumption 7 with u = 0 shows that we necessarily have |argmina∈A µ(X, a)| = 1 almost surely.
Therefore, almost surely, f1(X, a∗(X)) = 1 and f1(X, a) = 0 for a 6= a∗(X).

Now fix any f ∈ F . Given X , let A ∈ A be random variable draw from f(X, ·). We will henceforth
denote expectations and probabilities as wrt (X,A) ∼ pX × f . For brevity we will also denote
A∗ = a∗(X). Note that

‖`(f, ·)− `(f1, ·)‖22,g∗ ≤M2P (A∗ 6= A)

and that

‖Λ‖22,g∗
(
R∗(f)−R∗(f1)

‖Λ‖2,g∗

)α
= M2(E [µ(X,A)− µ(X,A∗)] /M)ν/(ν+1).

Denoting ∆ = mina∈A\{a∗(X)} µ(X, a)− µ∗(X), Assumption 7 says that for some κ > 0 we have
P (∆ ≤ u) ≤ (κu/M)ν , where 1∞ = 1 and x∞ = 0 for x ∈ [0, 1).

Fix u > 0. Then

E [µ(X,A)− µ(X,A∗)] = E [(µ(X,A)− µ(X,A∗))1(A 6= A∗)]

≥ E [(µ(X,A)− µ(X,A∗))1(A 6= A∗,∆ > u)]

≥ uP (A 6= A∗,∆ > u)

= u (P (A 6= A∗)− P (A 6= A∗,∆ ≤ u))

≥ u (P (A 6= A∗)− P (∆ ≤ u))

≥ u (P (A 6= A∗)− (κu/M)ν) .

Set u = ((ν + 1)κ/M)−1/νP (A 6= A∗)
1/ν and obtain

E [µ(X,A)− µ(X,A∗)] ≥ ν(ν + 1)−(ν+1)/ν(κ/M)−1P (A 6= A∗)
(ν+1)/ν

,

whence

P (A 6= A∗) ≤ ν−ν/(ν+1)(ν + 1) ((κ/M)E [µ(X,A)− µ(X,A∗)])
ν/(ν+1)

.

We conclude that

‖`(f, ·)− `(f1, ·)‖22,g∗ .M2 (E [µ(X,A)− µ(X,A∗)] /M)
ν/(ν+1)

as desired.
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F Additional Details and Results for the Empirical Investigation

Here we provide additional details and results for Section 6.

F.1 Contextual Bandit Data from Multi-Class Classification Datasets

To construct our data, we turn K-class classification tasks into a K-armed contextual bandit problems
[15, 17, 51], which has the benefits of reproducibility using public datasets and being able to make
uncontroversial comparisons using actual ground truth data with counterfactuals. We use the public
OpenML Curated Classification benchmarking suite 2018 (OpenML-CC18; BSD 3-Clause license)
[11], which has datasets that vary in domain, number of observations, number of classes and number
of features. Among these, we select the classification datasets which have less than 60 features. This
results in 51 classification datasets from OpenML-CC18 used for evaluation. Table 1 summarizes the
characteristics of the 51 OpenML datasets used.

Samples Count
< 1000 16

≥ 1000 and < 10000 25
≥ 10000 10

Classes Count
= 2 30

> 2 and < 10 15
≥ 10 6

Features Count
≥ 2 and < 10 14
≥ 10 and < 30 22
≥ 30 and ≤ 60 14

Table 1: Characteristics of the 51 OpenML-CC18 datasets used for evaluation.

Each dataset is a collection of pairs of covariates X and labels L ∈ {1, . . . ,K}. We transform each
dataset to the contextual bandit problem as follows. At each round, we draw Xt, Lt uniformly at
random with replacement from the dataset. We reveal the context Xt to the agent, and given an
arm pull At, we draw and return the reward Yt ∼ N (1{At = Lt}, 1). To generate our data, we set
T = 100000 and use the following ε-greedy procedure. We pull arms uniformly at random until each
arm has been pulled at least once. Then at each subsequent round t, we fit µ̂t−1 using the data up to
that time. Specifically, for each a, we take the data {(Xs, Ys) : 1 ≤ s ≤ t− 1, As = a} and pass it to
a regression algorithm in order to construct µ̂t−1(·, a). In Section 6, we presented results where we
use sklearn’s LinearRegression to fit µ̂t−1(·, a) (using sklearn defaults). In Appendix F.2, we
repeat the experiments where we instead use sklearn’s DecisionTreeRegressor (using sklearn
defaults). We set Ãt(x) = argmaxa=1,...,K µ̂t−1(a, x) and εt = t−1/3. We then let gt(a | x) =

εt/K for a 6= Ãt(x) and gt(Ãt(x) | x) = 1 − εt + εt/K. That is, with probability εt we pull a
random arm, and otherwise we pull Ãt(Xt).

F.2 Additional Results

In Section 6, we presented results where we use a linear-contextual ε-greedy bandit algorithm to
collect the data. Here, we repeat our experiments when the data are instead collected by a tree-
contextual ε-greedy bandit algorithm, as described in Appendix F.1 above. The results are shown
in Fig. 2. The conclusions are generally the same: ISWERM compares favorably for fitting linear
models, while all methods perform similarly for fitting tree models.

F.3 Code and Execution Details

The IPython notebook to reproduce the experimental results of the main paper and the appendix is
included as an attachment in the Supplemental Material. One needs to obtain an OpenML API key to
run this code (instructions can be found at https://docs.openml.org/Python-guide/) and replace the
string ’YOURKEY’ in summarize_openmlcc18() and in download_openmlcc18() functions with
it. After that, if the notebook is executed as is, it reproduces Figure 1 (38h 26min on a single Intel
Xeon machine with 32 physical cores/64 CPUs). Changing variable bandit_model from ’linear’
to ’tree’ reproduces Figure 2 (56h 45min on a single Intel Xeon machine with 32 physical cores/64
CPUs).

Checklist

1. For all authors...
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(a) LASSO outcome model with cross-validated regularization parameter.

(b) Ridge outcome model with cross-validated regularization parameter.

(c) CART outcome model with unrestricted tree depth.

Figure 2: Comparison of weighted regression run on contextual-bandit-collected data. Each dot is
one of 51 OpenML-CC18 datasets. Lines denote ±1 standard error. Dots are blue when ISWERM is
clearly better, red when clearly worse, and black when indistinguishable within one standard error.

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] In the
supplemental material with specifics in Section F.3 of the supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] In Section 6

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] In both Figure 1 and Figure 2

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] In Section F.3 of supplemental
material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] In Section F.1 of the

Supplemental Material.
(b) Did you mention the license of the assets? [Yes] In Section F.1 of the Supplemental

Material.
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(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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