
Supplementary Material: Distinguishing discrete and
continuous behavioral variability using warped

autoregressive HMMs

Julia C. Costacurta
Stanford University

jcostac@stanford.edu

Lea Duncker
Stanford University

lduncker@stanford.edu

Blue Sheffer
Stanford University

Winthrop Gillis
Harvard Medical School

Caleb Weinreb
Harvard Medical School

Jeffrey E. Markowitz
Georgia Institute of Technology, Emory University

Sandeep R. Datta
Harvard Medical School

Alex H. Williams
New York University, Flatiron Institute

alex.h.williams@nyu.edu

Scott W. Linderman
Stanford University

scott.linderman@stanford.edu

A Inference and Learning

We fit warped ARHMMs to behavioral measurements using the Expectation-Maximization (EM)
algorithm. Here, we provide additional details on performing posterior inference over the latent
variables z1:T and τ1:T (E-Step), and include details on closed-form parameter updates (M-Step).

A.1 Inference

Our inference approach is the same for both model classes of WARHMM presented in the main
text. Inference is performed using forward-backward message passing, with a slight twist to speed
inference over a large number of (z, τ) hidden state pairs. In particular, during message passing the
K discrete states and J warping variables are represented as K · J “paired” states, so inference via
message passing becomes very slow due to multiplication with a KJ ×KJ transition matrix. To
ease this bottleneck we enforced Kronecker structure on the KJ ×KJ transition matrix:

P(z,τ) = Pz ⊗ Pτ

Then, if we let αt, βt ∈ RK×J be the forward and backward messages defined on the grid of (z, τ)
values, the recursive calculations become:

αt = P(z,τ)vec(αt−1 � lt−1)→ αt = vec
(
P>z (αt−1 � lt−1)Pτ

)
βt = P(z,τ)vec(βt+1 � lt+1)→ βt = vec

(
Pz(βt+1 � lt+1)P>τ

)
,

where � denotes elementwise multiplication, lt ∈ RK×J denotes the likelihoods over the grid
of (z, τ) values at time t, and vec(·) denotes the vectorization operation which concatenates columns
of a matrix into a single column vector. This results in a complexity decrease of O(K2J2) to
O(K2 +J2) in the matrix-vector multiplication. The posterior marginal distributions are proportional
to the elementwise product, q(zt, τt) ∝ αt � lt � βt.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

A.2 Learning

In this section, we provide additional details on the parameter updates under each model class.

A.2.1 T-WARHMM

The closed form updates for the model parameters under the T-WARHMM model class are given by

A?
k =

(
T∑
t=2

∆xtx
>
t−1

)(
T∑
t=2

Eq(τt|zt=k)
[

1

τt

]
xt−1x

>
t−1

)−1
(1)

and

Q?
k =

1

T − 1

(T∑
t=2

Eq(τt|zt=k) [τt] ∆xt∆x>t −
(
A?
kxt−1∆x>t + ∆xtx

>
t−1A

?>
k

)
(2)

+Eq(τt|zt=k)
[

1

τt

]
A?
kxt−1x

>
t−1A

?>
k

)
(3)

where ∆xt = xt − xt−1.

A.2.2 Gaussian Process WARHMM

We place independent Gaussian priors over the transition dynamics

aijk ∼ N (0,Kθ) i, j = 1, . . . , D; aijk ∈ RJ (4)

The prior covariance is constructed via an exponetiated quadratic covariance function such that

Kθ[τ, τ
′] = ρ2 exp

(
− 1

2σ2
(τ − τ ′)2

)
is evaluated on the grid of τ values and θ = {ρ, σ}. The full set of autoregressive dynamics for the
different (zt, τt) pairs, A, is a D×D×K × J tensor. We will work with different reshapings of this
tensor to obtain to derive a closed form update.

Let Āk ∈ RD2×J denote the reshaping of the transition dynamics. Here, each column corresponds
to the vectorization of a D ×D slice of the tensor, and each column corresponds to a different value
on the τ grid. The prior over Āk can be expressed as a Matrix Normal distribution with identity row
covariance I and column covariance Kθ:

log p(Āk|θ) = −1

2
Tr[K−1θ Ā>k Āk]− D2

2
log |Kθ|+ constant (5)

To find the update for Āk, we need to maximize

〈P (x1:T , Ā1:K |θ)〉q(τ,z) = −1

2

T∑
t=1

〈
(∆xt −Azt(τt)xt−1))>Q−1k (∆xt −Azt(τt)xt−1))

〉
q

(6)

− 1

2

K∑
k=1

Tr[K−1θ Ā>k Āk]− D2

2
log |Kθ|+ constant (7)

We can rewrite Azt(τt)xt−1 as

vec(Azt=k(τt = j)xt−1) = (x>t−1 ⊗ I)(Azt=k(τt = j)) = (x>t−1 ⊗ I)Āk1{τt=j}

where 1{τt=j} is a length-J vector with binary entries, which selects the column from Āk for which
τt = j.

Letting q(zt = k, τt = j) = ωkjt, differentiating with respect to Āk and setting to zero, we obtain:

ĀkK−1θ +

T∑
t=1

(x>t−1 ⊗ I)>Q−1k (x>t−1 ⊗ I)ĀkΩkt =

T∑
t=1

(x>t−1 ⊗ I)>Q−1k ∆xtω
>
kt (8)

2

where Ωkt = diag(ωk1t, . . . , ωkJt) = diag(ωkt). We can show that

(x>t−1 ⊗ I)>Q−1k (x>t−1 ⊗ I) = (xt−1x
>
t−1 ⊗Q−1k) (9)

and
T∑
t=1

(x>t−1 ⊗ I)>Q−1k ∆xtω
>
kt =

T∑
t=1

vec(Q−1k ∆xtx
>
t−1)ω>kt (10)

Substituting these expressions into Equation (8), we obtain

ĀkK−1θ +

T∑
t=1

(xt−1x
>
t−1 ⊗Q−1k)ĀkΩkt =

T∑
t=1

vec(Q−1k ∆xtx
>
t−1)ω>kt (11)

To solve this equation for Āk in closed form, we can rewrite the above in terms of the the length
D2J vector āk = vec(Āk). We obtain the update equation

ā?k =

(
K−1θ ⊗ ID2 +

T∑
t=1

(
Ωkt ⊗ xt−1x

>
t−1 ⊗Q−1k

))−1
vec

(
T∑
t=1

vec(Q−1k ∆xtx
>
t−1)ω>kt

)
(12)

The update above can be expressed more efficiently in terms of expected sufficient statistics. Letting
Σ

(0)
t = xtx

>
t , Σ

(1)
t = ∆xtx

>
t and Σ

(2)
t = ∆xt∆x>t , we obtain the expected sufficient statistics

S(0) = Σ
(0)
dd′tωkjt S(1) = Σ

(1)
dd′tωkjt S(2) = Σ

(2)
dd′tωkjt (13)

where we have used tensor index notation to indicate a summation over the time index. S(0),(1),(2)

are D ×D ×K × J tensors. Precomputing and storing these statistics after each E-step allows for
efficient M-Step updates.

The update for Qk takes the closed form

Q?
k =

∑J
j=1

(
S
(2)
:,:,k,j −A:,:,k,jS

(1)
:,:,k,j

> − S
(1)
:,:,k,jA

>
:,:,k,j + A:,:,k,jS

(0)
:,:,k,jA

>
:,:,k,j

)
∑J
j=1

∑T
t=2 ωkjt

(14)

B Computing details

B.1 Code, data, and instructions

The code required to reproduce our main results is available at https://github.com/
lindermanlab/warhmm. In particular, twarhmm.py and warhmm_gp.py contain classes for the T-
WARHMM and GP-WARHMM models. Each model also has a training file: train.py and train_gp.py,
respectively. The main hyperparameters of each model are set in the hyperparameter_defaults variable
and can be easily changed for hyperparameter sweeps using Weights and Biases [1].

The MoSeq dataset is available in combination with the original MoSeq code at the following website:
https://dattalab.github.io/moseq2-website/. Synthetic data can be generated from the
T-WARHMM using the sample() function in twarhmm.py.

B.2 Training details

All of the models shown in the paper results were trained with 50 epochs of either EM (simulated
data) or stochastic EM (MoSeq dataset). The data was split 80/20 into train and test datasets.

Hyperparameters. We set specific hyperparameters as follows:

1. κ and α are as in [2] and enforce a prior on discrete state transitions, so that discrete states
are more likely to remain the same for multiple time steps before switching. In our code,
based on a previous sweep over α and κ we found that α = 5 and κ = 10000 produced
discrete states with durations long enough to be interpretable as behavioral syllables.

3

https://github.com/lindermanlab/warhmm
https://github.com/lindermanlab/warhmm
https://dattalab.github.io/moseq2-website/

2. τstay is the probability that τt = τt+1, or the diagonal entry of the τ transition matrix. To
approximate τ as continuous, we enforced a banded structure on the transition matrix so τ
could only transition to adjacent values between time steps, and the off-diagonal values were
(1− τstay)/2. In our training we tried τstay = 0.7 and τstay = 0.9. We found that τstay = 0.7
allowed for more variation of τ within discrete states, matching our desire that the warping
variable could change its effect while a discrete state is carried out. Thus, τstay = 0.7 was
used for the paper results.

3. σ and ρ are the two parameters of the GP-WARHMM’s RBF kernel. We learn values for
both parameters by including them as free parameters in the EM algorithm and performing
and additional “hyper-M-step” to maximize the variational lower bound.

4. C is the log step-size parameter for the T-WARHMM warping variables. In the paper
experiments we took C = 2 based on prior assumptions about the range of speed variability
in natural behavior, so that syllable instances could take on speeds from “half as fast” to
“twice as fast” as the “base” syllable. Since C determines the spacing of the discretization
over τ , choosing a large value for C may result in poorer algorithm performance due to large
step-sizes in the state transitions from xt to xt+1, while choosing a very small value would
decrease the amount of variability covered in a single syllable.

Compute power. The models in section 5 (MoSeq dataset) were trained on a CPU cluster. As a
comparison, a T-WARHMM with 30 discrete states and 31 warping variables took approximately
2.5 hr to train. A GP-WARHMM with the same parameters took approximately 15 hr to train. An
ARHMM with 30 discrete states took approximately 1.5 hr to train.

C Societal impacts

Research on obtaining quantitative characterizations of natural behavior will have broad implications
for basic research in the field of neuroscience and neuroethology. Beyond basic neuroscience research,
such methods can also be used to better characterize disease phenotypes and therefore also represent
an important research direction for clinical sciences. One potential negative societal impact could
come if these behavioral analysis approaches are applied to human surveillance, especially as they
relate to identifying the influence of drugs on behavior.

D Example video results

We include sample videos for two syllables (dart and rear) across three time warping variables
(labeled slow, medium, and fast) in the supplemental material folder.

References
[1] Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.com/.

Software available from wandb.com.

[2] Alexander B Wiltschko, Matthew J Johnson, Giuliano Iurilli, Ralph E Peterson, Jesse M Katon, Stan L
Pashkovski, Victoria E Abraira, Ryan P Adams, and Sandeep Robert Datta. Mapping sub-second structure
in mouse behavior. Neuron, 88(6):1121–1135, 2015.

4

https://www.wandb.com/

	Inference and Learning
	Inference
	Learning
	T-WARHMM
	Gaussian Process WARHMM

	Computing details
	Code, data, and instructions
	Training details

	Societal impacts
	Example video results

