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This supplementary material consists of five parts, including

• Implementation details on each benchmark (Section 1).

• Descriptions of the compared methods (Section 2).

• More qualitative results in the DMC suite and CARLA simulator (Section 3).

• Ablation studies on the BAIR dataset (Section 4).

• Network details of Iso-Dream for different environments (Section 5).

1 Benchmarks

We quantitatively and qualitatively evaluate Iso-Dream on the following two environments for visual
control and two real-world datasets for action-conditioned video prediction.

• DeepMind control suite [12]: A set of stable, well-tested continuous control tasks that are easy
to use and modify. For vision-based control, we use a modified version of the DeepMind control
suite in DMControl Generalization Benchmark [9] to evaluate Iso-Dream. In this environment,
agents are trained to complete different tasks with random natural video as backgrounds, namely
video_easy and video_hard benchmarks. We use 4 tasks to test our Iso-Dream, i.e., Finger
Spin, Cheetah Run, Walker Walk, Hopper Stand.

• CARLA [3]: An open-source simulator with more complex and realistic visual observations for
autonomous driving research. In our experiments, we evaluate Iso-Dream in a first-person highway
driving task in “Town04”. The agent’s goal is to drive as far as possible in 1000 time steps without
colliding with the 30 other moving vehicles or barriers.

• BAIR robot pushing [4]: An action-conditioned video prediction dataset composed of hours of
self-supervised learning with the robotic arm Sawyer. In each video, a random moving robotic arm
pushes a variety of objects on similar tables with a static background. Each video also has recorded
actions taken by the robotic arm which correspond to the commanded gripper pose.

• RoboNet [1]: A large-scale dataset contains action-conditioned videos of seven robotic arms
interacting with a variety of objects from four different research laboratories, i.e., Berkeley, Google,
Penn, and Stanford.

2 Compared Methods

For visual MBRL, we compare our method with the following baselines and existing approaches:
∗Equal contribution.
†Corresponding author: Yunbo Wang.

Code available at https://github.com/panmt/Iso-Dream
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Figure 1: Video prediction results with different noisy backgrounds on the DMC. For each sequence,
we use the first 5 images as context frames.

• DreamerV2 [7]: A model-based RL method that learns directly from latent variables in world
models. The latent representation enables agents to imagine thousands of trajectories in parallel.

• CURL [10]: A model-free RL method that extracts high-level features from raw pixels using
contrastive learning, maximizing agreement between augmented versions of the same observation.

• SVEA [8]: A framework for data augmentation in deep Q-learning algorithms that improves
stability and generalization on off-policy RL.

• SAC [6]: A model-free actor-critic method that optimizes a stochastic policy in an off-policy way.
• DBC [13]: It learns a bisimulation metric representation without reconstruction loss, which are

invariant to different task-irrelevant details in the observation.

For video prediction, we compare the proposed world model with the following approaches:

• SVG [2]: This model introduces random variables into latent space, which ensures that the future
trajectory is inherently random.

• SA-ConvLSTM [11]: Based on the self-attention mechanism, this model uses the self-attention
memory to capture long-term spatial dependency.

• PhyDNet [5]: This model uses a two-branch architecture to disentangle PDE dynamics from
unknown complementary information.

3 Additional Visualization in DMC and CARLA

DeepMind Control suite. In Figure 1, more showcases on the DeepMind Control are presented
with different noisy backgrounds. We show the visualization of the masks and decoupled components
from three branches of Iso-Dream.
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Figure 2: Video prediction results with 10 vehicles (left) and 20 vehicles (right) on the CARLA
environment. For each sequence, we use the first 5 images as context frames.

Table 1: Ablation study for each component of Iso-Dream for video prediction on BAIR with
bouncing balls. Lines 1-2 show the results of removing the action-free branch and Inverse cell,
respectively. We use the first 2 frames as input to predict the next 18 frames and the next 28 frames.

MODEL
PREDICT 18 FRAMES PREDICT 28 FRAMES
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

ISO-DREAM W/O ACTION-FREE BRANCH 20.47 0.795 18.51 0.690
ISO-DREAM W/O INVERSE CELL 21.42 0.829 19.34 0.759
ISO-DREAM 21.43 0.832 19.51 0.768

CARLA autonomous driving simulator. In Figure 2, we visualize the video prediction results on
the CARLA environment with different numbers of vehicles. We train Iso-Dream with 30 vehicles
and test with 10 vehicles and 20 vehicles respectively.

4 Ablation study on the BAIR Robot Pushing Dataset

In Table 1, the first row shows the results of removing the action-free branch in the world model of
Iso-Dream. The performance has decreased from 21.43 to 20.47 and from 19.51 to 18.51 in PSNR
for predicting the next 18 frames and next 28 frames respectively, indicating that modular network
structures are effective for predictive learning by decoupling the controllable and noncontrollable
representations. Comparing the second row and third row in the Table 1, we observe that modeling
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Table 2: An overview of layers and hyper-parameters used for three environments.

Name DMC CARLA BARI / RoboNet
Encθ conv3-32 conv3-32 conv3-64

Action-conditioned branch
Encϕ1 conv3-64 conv3-64 conv3-64
GRUs hidden size = 200 hidden size = 200 -

ST-LSTM - - hidden size = 64
Decφ1 conv3-4 conv3-4 conv3-4

α 1 1 0.0001
β1 1 1 -

Action-free branch
Encϕ2 conv3-64 conv3-64 conv3-64
GRUz hidden size = 200 hidden size = 200 -

ST-LSTM - - hidden size = 64
Decφ2 conv3-4 conv3-4 conv3-4
β2 - 1 -

Static branch
Encϕ3 conv3-64 conv3-64 -
Decφ3 conv3-3 conv3-3 -

inverse dynamics can improve the performance by learning more deterministic state transitions given
particular actions in the action-conditioned branch.

5 Network Architectures for Different Environments

The networks and hyper-parameters used for different environments are shown in Table 2.
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