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ABSTRACT

Recent advancements in Natural Language Processing (NLP) have witnessed the ground-
breaking impact of pretrained models, yielding impressive outcomes across various tasks.
This study seeks to extend the power of pretraining methodologies to facilitating the pre-
diction over tables in data science, a domain traditionally overlooked, yet inherently chal-
lenging due to the plethora of table schemas intrinsic to different tasks. The primary
research questions underpinning this work revolve around the establishment of a universal
pretraining protocol for tables with varied structures, the generalizability and transfer-
ability of learned knowledge across tasks, the adaptation to diverse downstream applica-
tions, and the incorporation of incremental columns over time. In response to these chal-
lenges, we introduce UniTabE, a straightforward yet effective method designed to process
tables in a uniform manner, devoid of constraints imposed by specific table structures.
UniTabE’s core concept relies on representing each basic table element with a module,
termed TabUnit. This is subsequently followed by a Transformer encoder to refine the
representation. Moreover, our model is designed to facilitate pretraining and finetuning
through the utilization of free-form prompts. In order to implement the pretraining phase,
we curated an expansive tabular dataset comprising approximately 13 billion samples,
meticulously gathered from the Kaggle platform. This research primarily centers on clas-
sification and regression tasks involving tabular data, and conducts rigorous experimental
testing and analyses to validate the effectiveness of our methodology. The experimen-
tal results demonstrate UniTabE’s superior performance against several baseline models
across a multitude of benchmark datasets. This, therefore, underscores UniTabE’s poten-
tial to significantly enhance the semantic representation of tabular data, thereby marking a
significant stride for tabular data analysis.

1 INTRODUCTION

Tabular data, characterized by its structured arrangement of rows and columns, represents a foundational
element within the field of data science, finding extensive practical utility in diverse domains. It facilitates
a spectrum of real-world applications, such as stock market prediction, real estate price forecasting, and
credit level estimation, etc. In the context of data analysis, modeling, and decision-making, classification
and regression, the predominant tasks of predicting over tabular data, play a central role across diverse
industries, attracting considerable attention from the research community.

However, several significant challenges have been identified within this domain: 1) The prevailing focus in
the literature centers on bolstering the capabilities of powerful model architectures, often at the expense of
relatively simple approaches to feature processing, such as adopting textualization [Song et al., 2019; Herzig
et al., 2020; Yin et al., 2020a; Huang et al., 2020; Gorishniy et al., 2021]. This approach, while effective in
certain contexts, tends to overlook the intrinsic nature and numerical significance of tabular data, particularly
numerical values. This omission can impede the model’s capacity to extract meaningful insights from such
data, highlighting a potential gap in current methodologies [Eisenschlos et al., 2021; Herzig et al., 2020]. 2)
Recent approaches have turned to finetuning large language models (LLMs) pretrained on natural language
processing (NLP) datasets, such as TaBERT [Yin et al., 2020a], Tapas [Herzig et al., 2020], etc. However,
LLMs do not inherently excel in handling textualized tabular data, which fundamentally differs from natural
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language texts. Furthermore, these methods often employ simplistic textualization techniques mentioned
above that can limit their effectiveness. 3) Prior work exploring pretraining solely on large-scale tabular
datasets and assessing transferability is limited. Existing attempts [Wang and Sun, 2022] have primarily
focused on a relatively small number of datasets from the same domain, which may not sufficiently validate
the model’s adaptability across diverse contexts. 4) Existing neural network methods often fall short in per-
formance compared to eXtreme Gradient Boosting (XGBoost) [Chen and Guestrin, 2016] in data science
applications, where XGBoost’s high predictive accuracy, efficiency, and flexibility have contributed to its
widespread adoption in industry. 5) Many existing approaches require strict consistency in table structures
between training and testing data, posing challenges when minor modifications to table structures are nec-
essary. This limitation becomes particularly relevant when applying trained models to tables with additional
columns, a common scenario in practical applications. For example, in clinical trials, incremental columns
are collected across different phases.

To address these challenges, we introduce UniTabE, a straightforward yet efficient framework designed to
process tables uniformly while accommodating flexible table structures. UniTabE adopts a fine-grained ap-
proach to feature engineering by processing each cell in the table individually. Motivated by the success of
pretraining in NLP, we explore large-scale pretraining over tables in data science, assessing the knowledge
transferability and application scalability. We have collected an expansive tabular dataset from Kaggle, com-
prising approximately 13 billion examples spanning diverse domains. This dataset enables our large-scale
pretraining over tabular data. In order to accommodate diverse pretraining and finetuning tasks within a
unified framework, we introduce a universal training protocol. This protocol involves the utilization of an
auto-regressive decoder, coupled with adaptable free-form prompts. The decoder performs reasoning on the
high-level semantic representation produced by the encoder, functioning as an adaptable module capable of
task-specific customization through the application of task-specific prompts. To ensure the preservation of
a significant portion of pretrained knowledge within the encoder that serves as the foundational module de-
signed for tabular data, we employ a shallow decoder. This deliberate choice compels the encoder to assume
the primary responsibility for absorbing the intricacies of learning during pretraining. To comprehensively
evaluate the effectiveness of our method, we conduct extensive experiments under different scenarios in-
cluding predictive tasks on prominent benchmark datasets, filling in missing values, zero-shot prediction,
adaptation to incremental tables, and integration of the neural semantic representation with XGBoost, etc.

Our contributions are as follow:

• We introduce an innovative architectural framework, UniTabE, specifically designed to offer metic-
ulous feature processing tailored to tabular data. Furthermore, through the incorporation of free-
form prompts into our model, we augment its scalability to an extensive array of tasks for down-
stream applications.

• We have built an extensive tabular dataset for large-scale pretraining. We introduce an efficient
framework for both pretraining and finetuning, optimized to leverage the full potential of our col-
lected dataset.

• With comprehensive experiments, we substantiate the feasibility of pretraining on tabular data,
underscore the transferability of knowledge acquired, and highlight the substantial performance
enhancements it affords in downstream tasks. Our experimental findings also elucidate the practical
efficacy of our approach in scenarios such as missing value handling, zero-shot prediction, and
adaptability to incremental column structures. Moreover, our method outperforms XGBoost across
a wide spectrum of benchmark datasets, demonstrating its superiority.

In Sec. 2 we cover related work. Sec. 3 introduces the model architecture of our proposed UniTabE. Sec. 4
gives detailed description of our pretraining and finetuning strategies. Finally, Sec. 5 provides the results of
experimental studies which verify the effectiveness of our method.

2 RELATED WORK

2.1 TABLE DATA FEATURIZATION

Tables encompass various data types, and to process this tabular data with neural models, conventional
methods typically convert each data format into a continuous space using individual strategies. For instance,
texts are processed with tokenization and word embedding, while images are handled using image patch
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Figure 1: The left part delineates the operational procedure of TabUnit module in processing individual
cells. The right part provides an overview of our UniTabE architecture. “n” denotes the number of cells in
each example, “Q” denotes the length of prompt, while “T” here represents the length of target. A shallow
decoder is applied offering adaptability to a spectrum of diverse downstream tasks.

embedding. However, prior research tends to simplify this process by treating numerical values as text and
then applying the same embedding strategy, which invariably disrupts the original recording structure and
numerical meanings [Eisenschlos et al., 2021; Herzig et al., 2020]. Given the prevalence of numerical values
in tables, this area has garnered increasing attention [Gorishniy et al., 2022]. To enhance the representation
of numerical values, MATE [Eisenschlos et al., 2021] and TaPas [Herzig et al., 2020] introduced a ranking
embedding based on numeric rank, which relies on comparisons. Further, TUTA [Wang et al., 2021] applied
additional numerical features, such as magnitude, precision, the first digit, and the last digit, to distinguish
numbers from text. Gorishniy et al. [2022] attempted to train the embedding vector for numbers. Wang
and Sun [2022] suggested categorizing tabular data into three distinct types: textual, categorical, and nu-
merical. Their model, TransTab, concatenates columns of the same type into a text sequence, with column
names, column values, and different columns separated by a space. After the concatenation, these three text
sequences are fed into the embedding layer individually.

2.2 PRETRAINING TABLE MODELS

In recent years, the pretraining of language models (LMs) over vast text corpora has led to noteworthy en-
hancements in performance for a variety of downstream tasks. This success has stimulated a growing body
of work that focuses on pretraining and adapting LMs specifically for tabular data. The prevailing method
employed by these studies is to fine-tune LMs that have been pretrained on NLP datasets, such as BERT [De-
vlin et al., 2018], BART [Lewis et al., 2019], etc. Typically, this training utilizes the Masked Language
Model (MLM) objective, as evidenced by models like Tabtransformer [Huang et al., 2020], TaBERT [Yin
et al., 2020b], Tabnet [Arik and Pfister, 2021], Saint [Somepalli et al., 2021], and so on. Liu et al. [2022]
proposed a modality transformation that converts tabular data into textual data using a basic lexicon and
ordered syntax before feeding it into the pretrained LMs. They then finetuned their model using the same
MLM objective. However, LMs pretrained on natural texts do not perform optimally as the textualized
tabular data differs fundamentally from natural language texts. The efficacy of finetuned LMs without archi-
tectural modifications has largely been confined to text data so far. But making modifications might lead to
undesired outcomes like catastrophic forgetting of knowledge learned from natural language corpora [Chen
et al., 2020; Bavarian et al., 2022]. In this work, our focus lies on pretraining a large model from scratch on
tabular data. In line with previous work, we construct our model upon the renowned Transformer encoder,
utilizing a self-supervised objective similar to MLM, which masks parts of the model input and then pre-
dicts the masked content. Contrary to previous work, we abstain from textualizing the tabular data using a
simplistic strategy. Instead, we introduce a TabUnit module designed to process the basic element of a table
independently, leading to an improved modeling of tabular data.

3 UNITABE ARCHITECTURE

In this section, we present the architecture of our model, which is composed of three primary components:
the TabUnit, the Encoding Layer, and a Shallow Decoder. Our model employs the TabUnit module serving
as the foundational feature processor for varying data types before leveraging the Transformer’s encoder for
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further encoding. Through adopting the setting of prompts and integrating a decoder, our model becomes
adaptable to a wide range of tasks.

TabUnit Module As depicted on the left side of Figure 1, we propose the use of an unified module, called
TabUnit in this work, for modeling the basic element of tabular data. To mitigate the influence of table
structure, we treat each cell in a table as a key-value pair representing the column name and the column
value respectively. In our implementation, we concatenate the vector of column name and vectors of cell
value into a sequence as the cell’s representation. To get the column name vector, the tokens of the column
name Xcn are first passed into the embedding module:

xcn = Avg(Emb(Xcn))

xdt = Avg(EmbDT (Xdt))
(1)

where Emb represents the embeddings consisting of word embedding and positional embedding. xcn is the
vector after mean pooling across the dimension of token sequence. We map data types Xdt into integers (e.g.
numerical→0, categorical→1, and textual→2) and subsequently employ an embedding module EmbDT to
obtain the data type embedding vector xdt. Here, the EmbDT is specifically designed to help the model
adeptly handle diverse data formats, particularly in instances where columns share the same/similar name
but contain values in different data formats. For example, the values in the “salary” column of a table in
a downstream task might be numerical, while those in the corresponding column of another table could be
textual (e.g., high income, medium income, and low income, etc). In some way, such situation may cause
confusion for the neural networks. In order to remedy this problem, our model integrates the data type
information into xcn via a fuse layer relied on the gate mechanism:

gdt = Sigmoid(vflReLU(w⊤
flxdt + bfl))

vcn = ffl(xcn,xdt) = (1− gdt)xcn + gdt ∗ xdt

(2)

where wfl, bfl and vfl are trainable parameters. Note that the ratio gdt is calculated only conditioning on
xdt. Theoretically, integrating an equal amount of data type information into the column name representation
across columns of the same data type is reasonable, as opposed to computing the fusing ratio gdt based on
both xcn and xdt that will lead to adding varied amount of data type information. Tokens in each cell are
also passed into the embedding module:

{x0
cv,x

1
cv,x

2
cv, ...,x

q−1
cv } = Emb({x0

cv, x
1
cv, x

2
cv, ..., x

q−1
cv }) (3)

Where the embedding module Emb(.) is shared to carry out embedding for column names and column
values, q here denotes the length of the cell value. Given the orderless nature of self-attention within the
Transformer encoder, it becomes challenging for the model to learn the connection between the column
name and its value when all cells are concatenated into a sequence. As a result, we introduce a Linking
Layer to establish the relationship within each (column name, cell value) pair. We employ a gated function
to weave the information from the column name into its corresponding value. Thus guaranteeing vectors
coming from the same pair have higher weights in the self-attention operation to make the model aware of
the association between column name and values.

α = Sigmoid(vlkReLU(w⊤
lkvcn + blk))

vi
cv = xi

cv + α ∗ vcn

(4)

where wlk, blk and vlk are learnable parameters. We employ α to ensure that an equal amount of column
name information is integrated into all value vectors. This allows the model to recognize which parts of
vectors are values corresponding to specific column. To avoid having the value information overshadowed
by the column name information, we only apply the multiplication operation to α and vcn. Overall, the
TabUnit can be briefly formulated as:

XTU = {vcn,v
0
cv,v

1
cv, ...,v

q−1
cv } = fTabUnit(Xdt, Xcn, Xcv) (5)

where Xdt, Xcn and Xcv denote the data type indicator, tokens of column name and tokens of column
value, respectively. The concatenation of column name vector and value vectors is treated as the inner
representation of a tabular cell. In our implementation, all cells are processed in parallel.

Encoding Layer We concatenate the representations of all cells, and attach a trainable [CLS] vector to the
head of such sequence. We leverage the Transformer encoder as the encoding layer:

{hcls,h
0,h1, ...,hN−1} = fEnc(vcls,X

0
TU ,X

1
TU , ...,X

n−1
TU ) (6)
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where n is the number of cells, and N is the length after concatenating all cells’ representations.

Shallow Decoder During pretraining, we want to encourage the encoder to store most of the learned knowl-
edge. Hence, we adopt a Long Short-Term Memory network (LSTM) [Hochreiter and Schmidhuber, 1997]
as the weak decoder. Specifically, the hidden state of [CLS] token and the prompt are passed to the decoder
to compute the initial state of our decoder:

{yP
0 ,y

P
1 , ...,y

P
Q−1} = fattn(W

⊤
1 Emb({yP0 , yP1 , ..., yPQ−1}),W⊤

2 {X0
TU ,X

1
TU , ...,X

n−1
TU }) (7)

vp =
∑
i

exp(v⊤
1 y

P
i )∑

j exp(v
⊤
1 y

P
j )

yP
i (8)

vstate = W⊤
s {vp,hcls}+ bs (9)

where the fattn denotes the dot product attention [Vaswani et al., 2017]. W1, W2, v1, Ws and bs are train-
able parameters. Here vp represents the weighted average of attention states of the prompt. The embedding
layer of decoder also share the same parameter as that one on TabUnit to further reduce parameters of the
decoder. The target sequence of tokens are generated by the decoder step by step conditioned on the initial
state and previously produced token.

4 PRETRAINING & FINETUNING

In this section, we will commence by presenting the pretraining objectives that consist of multi-cell-masking
and contrastive learning, followed by an elaboration on the finetuning methodologies.

4.1 PRETRAINING OBJECTIVE

Multi-Cell-Masking. Previous research in NLP pretraining utilized self-supervised tasks within datasets to
provide pretraining signals, such as predicting next token, generating masked spans of texts, and determining
the subsequent sentence, etc. These studies have shown that unlabeled data can aid in the learning of seman-
tic representation. In this work, we also adopt the mask-then-predict approach to facilitate self-supervised
training. In practical applications, filling in the entire content of a cell is more useful than merely filling in
part of the cell content. As such, we treat each cell as the basic masked unit, as opposed to the token level in
NLP pretraining. We randomly replace the content of the masked cells with the special token, [MASK]. We
also use [MASK] as the default content for cells whose values are missing.

For each example, we arbitrarily mask columns and train the model to predict the masked content. Often,
there may be multiple missing values in downstream tasks. Therefore, we also train the model under condi-
tions where several values are missing, to familiarize the model with such situations. The number of masked
cells varies during training. The prompt template for pretraining is set to “fill in missing value, <column
name> :”, which specifies the precise masked column to predict. The details regarding the number of ran-
domly masked cells and their corresponding probabilities will be elaborated in § 5.2. An illustration of the
multi-cell-masking objective is presented in Figure 5. Our model is trained with the optimization objective
of the maximum log likelihood estimation.

B1 B2

B3 B4

Figure 2: Demonstration of contrastive learning.
(B1, B2) is positive pair, while (B1, B3) and (B1,
B4) are negative pairs.

Contrastive Learning. Expect for predicting values of
masked cells that focuses on the global information of
the table, we can also concentrate on local properties. In
various applications, table row represents a sample and
its columns are features. A natural self-supervised opti-
mization signal would be distinguishing the differences
across rows. Prior work [Khosla et al., 2020; Tian et al.,
2020] in computer vision treated the augment of original
image as the positive sample, and augments of other im-
ages as negative ones. For instance, the augment can be
a block of the original image. Inspired by prior work, we
regard a subset of row as the compared unit. In Figure 2, block B2 is positive example, B3 and B4 are
negative examples when B1 is treated as an anchor. B3 and B4 come from different row that is not identical
to the row containing the given anchor. We utilize the cosine similarity to measure the closeness between
two blocks. The training objective is maximizing the similarity between anchor and positive block while
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Table 1: Statistics of our pretraining dataset. “Avg# NC”, “Avg# CC” and “Avg# TC” signify the average
counts of numerical columns, categorical columns, and textual columns, respectively, within each table. The
lower section of the table exhibits the Top-5 domains most prominently featured in our dataset.

Domains # Domains # Tables # Examples Avg# NC Avg# CC Avg# TC
ALL 303 283K 13B 28.7 0.4 7.7
Investing 1 71K 1B 29.33 0.02 1.58
Time Series 1 65K 1B 6.47 0.02 2.27
Finance 1 52K 773M 37.57 0.04 1.46
Economics 1 47K 488M 40.34 0.01 1.27
Games 1 32K 430M 23.37 0.66 3.66

minimizing it between anchor and negative block. We adopt the overlap between B1 and B2 to guarantee
such supervised signal will not make the optimization collapse contributing to the robustness for various
tables.

4.2 FINETUNING FORMULATION

Filling in Missing Value as Prediction. When finetuning our model for downstream tasks, we can consider
the target as an additional column of the table. The model is then tasked with predicting the masked values of
this target column using the same prompt as during pretraining. Thanks to the decoder, UniTabE is capable
of generating textual and numerical targets. For example, the trained model is suited for classification and
regression tasks, as well as predicting missing values in tables. In our implementation, we also support
constrained generation. This feature is particularly beneficial for classification tasks, as the model only
needs to predict from a small subset of the vocabulary.

Finetuning with Task-specific Prompt. Apart from those tasks where we treat the target as the masked
column of the table, there are tasks that require the model to perform reasoning over the table and other
inputs. For instance, in table question answering (TableQA) tasks, the model needs to produce an answer
conditioned on the provided table and question. The prompt used in these tasks may include the task instruc-
tion and the question, appropriately formatted.

(a) Domains Distribution (b) Data Type Distribution

Figure 3: Distribution visualization. The left part (a) demonstrates the distribution of domains and the
number of tables in each domain. Please magnify the figure as some captions are small. The right part
shows the proportion (cell level) of different data types in train/dev/test splits.

5 EXPERIMENTS AND ANALYSES

In this section, we will commence by introducing the pretraining dataset collected from Kaggle. Subse-
quently, we will provide a detailed exposition of our implementation. Finally, we will engage in an extensive
discussion of the experimental results and analyses, encompassing an assessment of performance in Kaggle
benchmarks, public benchmarks, zero-shot prediction, and related aspects.
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Table 2: Performance comparison in 12 Kaggle tasks coming from different domains. “UniTabE scratch”
is trained from scratch without pretraining. The result of each method is the average score across five runs.

Method/Dataset Classification (AUC ↑) Regression (R2 ↑)
PID RWQ HFP HIC EPL LDP MIP GPP RSP CCL MMP HPA

XGBoost 0.79 0.67 0.89 0.85 0.73 0.50 0.54 0.64 0.98 0.78 0.71 0.49
TransTab-LSTM 0.81 0.56 0.74 0.85 0.73 0.50 0.50 0.55 0.64 0.65 0.51 0.47
UniTabE scratch 0.76 0.57 0.61 0.85 0.73 0.52 0.53 0.76 0.99 0.72 0.82 0.54
UniTabE finetune 0.83 0.66 0.81 0.86 0.78 0.53 0.75 0.99 0.99 0.96 0.87 0.58

Table 3: Evaluation results with AUC on public tabular datasets. We conducted five training iterations for
each method and subsequently computed the average scores across these runs.

Method/Dataset CG CA DS AD CB BL IO Avg.
XGBoost 0.78 0.93 0.54 0.91 0.87 0.82 0.71 0.79
NODE [Popov et al., 2019] 0.65 0.85 0.58 0.90 0.70 0.83 0.67 0.74
AutoInt [Song et al., 2019] 0.77 0.93 0.57 0.91 0.82 0.84 0.72 0.79
Tapas [Herzig et al., 2020] 0.77 0.92 0.63 0.91 0.87 0.84 0.70 0.81
TaBERT [Yin et al., 2020a] 0.72 0.88 0.54 0.90 0.71 0.82 0.66 0.75
TabTransformer [Huang et al., 2020] 0.76 0.92 0.56 0.91 0.82 0.82 0.71 0.79
FT-Transformer [Gorishniy et al., 2021] 0.77 0.93 0.58 0.91 0.85 0.84 0.71 0.80
TabNet [Arik and Pfister, 2021] 0.49 0.48 0.48 0.90 0.53 0.79 0.62 0.61
TUTA [Wang et al., 2021] 0.74 0.92 0.61 0.81 0.74 0.83 0.65 0.76
TransTab [Wang and Sun, 2022] 0.73 0.86 0.52 0.90 0.80 0.71 0.73 0.75
TransTab-LSTM 0.70 0.85 0.56 0.90 0.72 0.83 0.73 0.76
TabPFN [Hollmann et al., 2022] 0.79 0.93 0.62 0.88 0.78 0.81 0.70 0.79
GANDALF [Joseph and Raj, 2023] 0.78 0.92 0.63 0.91 0.84 0.84 0.71 0.80
Llama2 13B [Touvron et al., 2023] 0.77 0.92 0.65 0.91 0.84 0.83 0.68 0.80
UniTabE scratch 0.76 0.93 0.62 0.91 0.85 0.84 0.74 0.81
UniTabE + XGBoost 0.79 0.93 0.60 0.91 0.88 0.83 0.74 0.81
UniTabE finetune 0.79 0.94 0.66 0.91 0.88 0.84 0.76 0.83

5.1 PRETRAINING DATASET

As there are no large-scale, high-quality tabular datasets available for pretraining, we have collected our own
dataset by crawling from Kaggle. We downloaded CSV tables, omitting empty columns. Specifically, we
constructed initial keywords for each domain and extended the set of keywords using WordNet under the
same topic. We then searched and downloaded tables using these keywords. For tables originating from the
same Kaggle dataset, we attempted to join tables using primary and foreign keys. This process resulted in
a 7TB dataset containing 13 billion tabular examples. Statistics about the pretraining data are presented in
Table 1. We also present the statistics of the Top-5 domains in this table. Figure 3 shows the distribution of
domains and the proportion of cells of different data types for each split of our dataset. We tried to split our
dataset in such a way as to maintain a similar distribution of data types and domains.

5.2 IMPLEMENTATION DETAILS

We train our UniTabE with 32 A100 GPUs in the distributed way. Our model is implemented with the
PyTorch v1.12. The Transformer encoder used as the backbone of our model is borrowed from the hug-
gingface “transformers” module. During training, the learning rate is set to be 1e-5, the batch size is 64.
We use Adam [Kingma and Ba, 2015] as the optimizer with β1=0.9, β2=0.999 and ϵ =10−8. We train three
variants of our model, UniTabEbase, UniTabElarge and UniTabExlarge. The hidden size and embedding
size for UniTabEbase are both set as 768. Its encoder is the 12 layers of self-attention stack with 12 heads.
UniTabElarge consists of 24 layers encoder, 16 attention heads. Its hidden size and embedding size are
both 1024. UniTabExlarge is the 48 layers’ version of UniTabElarge. More details about implementation
of baselines and experimental setting, please refer to Appendix A.3.

5.3 RESULTS & ANALYSES

Many practical tabular tasks in the field of data science fall into the categories of classification or regres-
sion. As such, we evaluate the effectiveness of our pretrained model on these types of tasks. Details about
baselines are attached in the Appendix A.1.
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Kaggle Benchmarks. We selected a diverse set of tasks comprising 6 representative classification assign-
ments and 6 regression tasks from Kaggle. To ensure a fair and unbiased evaluation, we deliberately ex-
cluded these specific tabular datasets from our pretraining corpus. This precaution was taken to prevent the
pretrained model from gaining undue familiarity with the target columns, thereby avoiding any potential bias
in the results. The statistical metrics pertaining to these datasets are delineated in Table 7. The comparison of
results among methods is presented in Table 2. On most of datasets, we notice that our method outperforms
XGBoost that is widely used in industry due to its promising performance. TransTab-LSTM is the model
that we equip TransTab with the same decoder as ours. Its vital differences from ours consist of the feature
processing and gate mechanism integrated with the Transformer encoder. Compared with TransTab-LSTM,
our UniTabE achieves higher scores in both classification and regression tasks. It demonstrates the superior-
ity of our table feature processor, TabUnit, as opposed to the table textualization strategy of TransTab. This
is indicative of the efficacy of our model’s approach to handling and understanding the nuanced structure of
tabular data.

Public Benchmarks. Since those 12 tasks coming from Kaggle might have the similar domains to our
pretraining data, we also use other public tabular datasets (CG, CA, DS, AD, CB, BL and IO) to further
evaluate the efficacy of our method. These datasets are all binary classfication tasks. The statistical data
pertaining to these datasets is presented in Table 7. We compare our method against previous start-of-the-art
(SOTA) methods for tabular classification on these datasets. Table 3 presents experimental results on these
datasets. Similar to those results in 12 Kaggle tasks, our method also achieves impressive results indicating
its superiority in learning the intrinsic semantic information of tabular data.

Table 4: The accuracy of zero-shot classification.
Method/Dataset CG CA DS AD CB BL IO
UniTabE finetune 0.75 0.89 0.62 0.86 0.78 0.80 0.94
Random Initial 0.30 0.41 0.50 0.54 0.41 0.26 0.06
Zero-Shot 0.70 0.56 0.58 0.76 0.57 0.73 0.94

Zero-shot Prediction. Table 4 presents the results of zero-shot prediction. The ”Random Initial” ap-
proach, which does not load the pretrained parameters, exhibits inferior performance. In contrast, our pre-
trained model demonstrates strong performance, even without fine-tuning on the target datasets, indicating
its promising generalizability. These results also suggest that UniTabE acquires a certain degree of high-level
reasoning capabilities through extensive large-scale pretraining, which contributes to its robust performance
in zero-shot settings.

Table 5: The percentage(%) of AUC drop
facing with incremental columns.

Method/Drop k 1 2
TransTab-LSTM 7.5 11.7
UniTabE scratch 5.3 8.4
UniTabE finetune 3.5 5.8

Adaption of Incremental Columns. We want to investi-
gate the scalability of various models when confronted with
an increasing number of columns. To simulate this scenario,
we remove k columns from the original training set and train
models using the modified data. Subsequently, we perform
inference using the unaltered test set. We conduct a com-
parative analysis between our methodology and TransTab-
LSTM, a representative approach that necessitates congru-

ence in table structure between the training and testing data. The results of this experiment are displayed
in Table 5. Thanks to the flexibility afforded by the TabUnit component of UniTabE, our model exhibits
adaptability to the introduction of new columns with a relatively minor performance deterioration.

Base Large XLarge
Model Size

78

80

82

84

86

B
L

E
U

Small Dataset
Medium Dataset
Large Dataset

Figure 4: BLEU scores illustrating the
generation of textual values across various
model sizes and dataset sizes.

Model Size Analysis. We want to see the impact of the size
of UniTabE on performance across different size of dataset.
50 tables for each dataset size are reserved and not included
in the pretraining dataset. Here “small” means datasets whose
example numbers do not surpass 2000, and “medium” means
datasets of which the example numbers are between 2000 and
20000, while “large” denotes those datasets whose data num-
bers exceed 20000. The results presented in Figure 4 indi-
cate that for larger finetuning datasets, larger models (like
UniTabExlarge) tend to perform better. However, for smaller
datasets, the performance of larger models tends to decrease.
We notice that UniTabElarge is a balance size for different
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datasets. Hence, we apply the UniTabElarge to compare the performance with baselines in subsequent
experiments.

Table 6: Ablation studies. The average
AUC score is computed across 7 datasets(CG
∼ IO). ”MCM” and ”CL” denote multi-cell
masking and contrastive learning objective.

Method Avg.
UniTabE 0.83
w/o Fuse Layer 0.77
w/o Linking Layer 0.75
w/o Fuse&Linking 0.72
w/o MCM 0.81
w/o CL 0.79
MCM rate: 0.3 0.81
MCM rate: 0.2 0.81
MCM rate: 0.1 0.82
3L Decoder 0.81
6L Decoder 0.79
12L Decoder 0.78
1L Transformer Decoder 0.81

Ablation Analysis. Table 6 provides the results from vari-
ous ablation studies. We notice that the omission of the fuse
layer from the TabUnit module leads to a decline in per-
formance, suggesting the significance of incorporating data
type information into the cell representation. Similarly, re-
moving the linking layer, responsible for associating column
names with column values, makes the model oblivious to
the distinction between vectors of column names and values.
This is confirmed by a notable decrease in the AUC score, at-
testing to its efficacy. We further expel the contrastive learn-
ing and multi-cell masking objectives separately. A signif-
icant performance decline is observed when the former is
removed, indicating its vital role in discerning the intrinsic
differences within the table. The reduced performance fol-
lowing the removal of the multi-cell masking objective fur-
ther emphasizes its importance in tabular pretraining. Upon
evaluating models pretrained with varying masking ratios, a
masking ratio of 0.15 yields an average AUC score of 0.83,
proving better for the given tasks, while ratios of 0.2 and
0.3 appear inordinate. Excessive masking can impede accu-
rate prediction of masked values and hinder differentiation
between positive and negative pairs in contrastive learning. Furthermore, substituting UniTabE’s 1-layer
LSTM decoder with a 1-layer Transformer decoder showed the former to be more suitable for the tasks at
hand. Models with an increasing number of LSTM decoder layers exhibit a declining trend in performance,
suggesting a simpler decoder enables the encoder to retain more knowledge, leading to enhanced semantic
representation of tabular data and superior performance. Additional exploration on the text generation capa-
bilities of models with varying decoder layers is presented in Appendix A.5. The task involves querying the
model about reasons for loan applications. The results shown in Table 9 indicate that models with additional
decoder layers achieve improved BLEU scores, suggesting that more complex decoders absorb a greater
portion of the pretrained knowledge, potentially detracting from the encoder. This can subsequently reduce
performance in classification tasks that are reliant on the semantic representation of tabular data generated
by the encoder.

Learned Feature + XGBoost. We are interested in examining the synergistic effects of combining the
semantic representation derived from UniTabE with traditional machine learning algorithms, such as XG-
Boost. We integrate the original features with the generated representation vector, and use this composite
data as input to XGBoost. The outcomes are displayed in Table 3. These results indicate that the neural
feature acts as a beneficial supplement, leading to a slight performance enhancement in most instances.

Fill in Missing Value Analysis. Furthermore, we assess the efficacy of our approach concerning its capacity
to fill in missing values, with the corresponding results displayed in Table 10. The improvement in perfor-
mance provides additional experimental support for the effectiveness of our pretrained model in addressing
missing values, thereby affirming its potential utility in applications related to data completion, data recovery
and tabular data synthesis tasks.

6 CONCLUSIONS

In this research, we investigate the challenge of pretraining large-scale models specifically on tabular data.
We demonstrate the feasibility and scalability of such pretraining. To address the inherent difficulties in
pretraining over tabular data, we introduce UniTabE, a flexible approach capable of conducting fine-grained
feature processing as well as adapting to different tasks with single framework. We have also collected
a substantial dataset, comprising 13B examples spanning various domains, for pretraining purposes. To
ascertain the effectiveness of our methodology, we carry out extensive experiments across 19 downstream
tasks, with the outcomes confirming the superiority of our approach. Additionally, we explore issues related
to the practical application of our method, including zero-shot prediction, adaptation to incrementally added
columns, and combination of learned representation and traditional machine learning method (XGBoost).
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A APPENDIX

A.1 BASELINES

XGBoost [Chen and Guestrin, 2016] 1 Despite a large number of proposed neural network architectures
for tabular data, the performance gap between them and the “shallow” ensembles of decision trees, like
XGBoost, often remains significant in industry. We use it as baseline for classification tasks. Implemented
based on the XGBoost package.

TransTab [Wang and Sun, 2022] 2 also builds upon the Transformer encoder. It splits data into three
categories: numerical, binary and categorical. Before being processed by the encoder, columns of the same
data type are textualized into a text by inserting a space among columns, column names and column values.
For instance, textual columns will be organized as the form: ”column0 name column0 value column1 name
column1 value ... columnk name columnk value”. In addition, the numerical values are represented through
multiplying with a training vector.

TransTab-LSTM In order to equip TransTab with the ability of text generation for the pretraining objective
of multi-cell masking, we integrate the LSTM decoder of our model into TransTab. Thus, we compare the
performance of different tabular data featuring strategies.

Linear Regress 3 is also used to compare the performance for regression tasks. We adopt the Scikit-learn
implementation of linear regression in the experiments.

Tapas [Herzig et al., 2020] 4 extends the pretrained BERT to encompass the encoding of tabular data. This
extension is realized through the joint pre-training process that encompasses both textual segments and
tabular data extracted from Wikipedia. TAPAS is a method devised for addressing questions posed over
tables, and notably, it operates without the generation of explicit logical forms. The training procedure
for TAPAS is conducted under the paradigm of weak supervision, and its predictive mechanism involves
the selection of specific cells within tables, optionally accompanied by the application of an associated
aggregation operator to the chosen cell selections.

TabPFN [Hollmann et al., 2022] 5 TabPFN, denoting a Prior-Data Fitted Network (PFN), undergoes offline
training as a one-time process, aimed at approximating Bayesian inference. This approximation is applied to
synthetic datasets generated from a prior distribution that incorporates principles rooted in causal reasoning,
encompassing a vast array of structural causal models, with an inherent preference for simplicity. It employs
in-context learning (ICL), acquiring the capability to make predictions based on sequences of labeled ex-
amples within the input context, all while obviating the need for subsequent parameter updates. This model
operates without necessitating hyperparameter tuning, while showcasing competitive performance against
contemporary state-of-the-art classification methodologies.

TaBERT [Yin et al., 2020a] 6 TaBERT is a pretrained language model designed for learning joint represen-
tations of natural language utterances and structured tables. TaBERT can be integrated as a substitute for the
original encoder within a semantic parser, facilitating the computation of representations for both utterances
and table columns.

Llama2 13B [Touvron et al., 2023] 7 The recent advanced and versatile language model that offers enhanced
capabilities, increased language support, and improved performance across a wide range of natural language
processing tasks. This state-of-the-art model leverages the latest advancements in deep learning to provide
comprehensive linguistic insights.

TabTransformer [Huang et al., 2020] 8 The TabTransformer architecture is based on the Transformer, with
its primary objective being the acquisition of effective contextual embeddings for categorical features of
tabular data. Its experiments reveal the resilience of contextual embeddings derived from the TabTransformer

1xgboost.sklearn
2https://github.com/RyanWangZf/transtab
3https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear model
4https://huggingface.co/docs/transformers/model doc/tapas
5https://github.com/automl/TabPFN
6https://github.com/facebookresearch/TaBERT
7https://huggingface.co/meta-llama/Llama-2-13b-hf
8https://github.com/lucidrains/tab-transformer-pytorch
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Table 7: Statistics of datasets in downstream tasks. “# NC”, “# CC”, “# TC” and “# Examples” denote
the number of numerical columns, categorical columns, textual columns of the table and the total number of
examples in the dataset, respectively.

Name # NC # CC # TC # Examples
Pima Indians Diabetes (PID) [url] 8 0 0 768
Red Wine Quality (RWQ) [url] 11 0 11 1599
Heart Failure Prediction (HFP) [url] 7 5 0 299
Health Insurance Cross Sell (HIC) [url] 7 0 3 381109
Eligibility Prediction for Loan (EPL) [url] 6 3 3 614
Loan Default Prediction (LDP) [url] 24 3 7 67463
Medical Insurance Payout (MIP) [url] 4 2 1 1338
Gold Price Prediction (GPP) [url] 80 0 1 1718
Reliance Stock Price (RSP) [url] 10 0 5 6205
Credit Card Limit Prediction (CCL) [url] 7 3 1 400
Miami Housing Prediction (MMP) [url] 14 0 3 13932
House Prices - Advanced (HPA) [url] 37 2 41 1460
Credit-G (CG) [url] 7 2 11 1000
Credit-Approval (CA) [url] ) 6 3 6 690
Dress-Sales (DS) [url] 1 0 11 500
Adult (AD) [url] 2 0 12 48842
Cylinder-Bands (CB) [url] 13 4 18 540
Blastchar (BL) [url] 3 5 11 7043
Insurance-co (IO) [url] 83 0 2 5822

in the face of both missing values and noisy data, thereby enhancing interpretability and demonstrating their
robustness.

FT-Transformer [Gorishniy et al., 2021] 9 An adaptation involves the incorporation of the Transformer
architecture specifically tailored for tabular data processing. A distinct Feature Tokenizer is employed to
transform individual columns into continuous vector spaces. Numerical values are subjected to multipli-
cation with a training vector, while other non-numeric data is tokenized as text, utilizing word embedding
techniques for further processing.

GANDALF [Joseph and Raj, 2023] 10 A deep learning framework, denoted as the Gated Adaptive Network
for Deep Automated Learning of Features (GANDALF), which demonstrates its promissing performance,
interpretability, and computational efficiency in the context of tabular data analysis. GANDALF incorporates
a special tabular processing unit characterized by a gating mechanism and integrated feature selection capa-
bilities, termed the Gated Feature Learning Unit (GFLU), serving as a fundamental component for feature
representation learning.

NODE [Popov et al., 2019] 11 The Neural Oblivious Decision Ensembles (NODE) constitute an emerging
deep learning architecture expressly engineered for heterogeneous tabular data. The NODE architecture
extends the concept of ensembles composed of oblivious decision trees, harnessing the advantages inher-
ent in both end-to-end gradient-based optimization and the potent capabilities of multi-layer hierarchical
representation learning.

TabNet [Arik and Pfister, 2021] 12 TabNet represents an interpretable canonical deep learning architecture
designed specifically for the represention of tabular data. Its core mechanism employs sequential attention to
systematically determine the pertinent features to consider at each decision-making juncture. This strategic
feature selection not only enhances interpretability but also optimizes the learning process by allocating
learning capacity to the most salient features.

AutoInt [Song et al., 2019] 13 AutoInt is an automated mechanism designed for the autonomous acquisition
of high-order feature interactions inherent in input attributes. It performs a joint mapping of numerical
and textual features onto a shared, reduced-dimensional space. Subsequently, a multihead self-attentive

9https://github.com/yandex-research/tabular-dl-revisiting-models
10https://github.com/manujosephv/pytorch tabular
11https://github.com/Qwicen/node
12https://github.com/sourabhdattawad/TabNet
13https://github.com/DeepGraphLearning/RecommenderSystems
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Table 8: Ablation results on public tabular datasets (CG ∼ IO).
Method/Dataset CG CA DS AD CB BL IO Avg.
UniTabE finetune 0.79 0.94 0.66 0.91 0.88 0.84 0.76 0.83
w/o Fuse Layer 0.74 0.84 0.60 0.90 0.80 0.83 0.69 0.77
w/o Linking Layer 0.69 0.84 0.61 0.90 0.72 0.81 0.69 0.75
w/o Fuse&Linking 0.65 0.85 0.61 0.84 0.65 0.77 0.65 0.72
w/o MCM 0.77 0.92 0.58 0.91 0.88 0.84 0.75 0.81
w/o CL 0.74 0.84 0.60 0.90 0.90 0.83 0.69 0.79
MCM rate: 0.3 0.79 0.92 0.65 0.90 0.84 0.83 0.75 0.81
MCM rate: 0.2 0.78 0.92 0.64 0.90 0.82 0.85 0.73 0.81
MCM rate: 0.1 0.79 0.93 0.65 0.91 0.85 0.83 0.75 0.82
3L Decoder 0.75 0.93 0.63 0.90 0.86 0.83 0.76 0.81
6L Decoder 0.74 0.90 0.62 0.89 0.84 0.83 0.73 0.79
12L Decoder 0.74 0.89 0.60 0.90 0.82 0.81 0.69 0.78
1L Transformer Decoder 0.78 0.93 0.62 0.91 0.87 0.84 0.73 0.81
3L Transformer Decoder 0.73 0.88 0.59 0.86 0.83 0.83 0.72 0.78
3L Transformer Decoder 0.72 0.86 0.68 0.85 0.77 0.82 0.69 0.77
12L Transformer Decoder 0.74 0.86 0.60 0.89 0.79 0.81 0.69 0.77

neural network, featuring residual connections, is employed to explicitly capture feature interactions within
this low-dimensional representation. Through incorporating multiple layers of the multi-head self-attentive
neural network, the model accommodates the modeling of diverse orders of feature combinations derived
from the input attributes.

A.2 DATASETS

The statistical characteristics of each dataset involved in the downstream tasks are provided in Table 7.
The table includes the dataset names, along with their corresponding abbreviations, in the “Name” column.
Additionally, we have included hyperlinks to access each dataset directly within the table for reference. We
have deliberately selected these datasets, representing diverse domains (e.g. finance, medicine, healthcare,
real estate, credit analysis, etc.), with the primary objective of conducting a comprehensive and thorough
evaluation of our methodology.

A.3 EXPERIMENTAL DETAILS

The UniTabE is pretrained with ten steps of gradient accumulation. The two pretraining objectives, multi-
cell-masking and contrastive learning, are carried out interactively. We adopt the hyperparameter p to control
the overall proportion of cells to mask. The program generates random number q ∈ [0, 1] for each cell. If
q ≤ p, then the corresponding cell will be masked. Masking single cell is used as the backup option in some
cases, such as there is no any cell to mask. p is set to be 0.15 in this work. We follow prior work [Wang and
Sun, 2022], the overlap ratio used in this work is set to be 50% while conducting contrastive learning. We
skip those tables whose column numbers are less than two during training with contrastive learning objective.
Furthermore, we employ a random shuffling procedure to alter the arrangement of columns within the table
during the pretraining phase. The batch size is set as 8 while finetuning our model in downstream tasks.
The finetune learning rate is 1e-6. We use the same optimizer settings as that used during pretraining. For
compared baselines, we use the official optimal settings and train these models on different datasets. We
then average scores of five runs for all model for fair comparison.

A.4 ABLATION STUDIES

Table 8 presents the detailed ablation results on different datasets.

A.5 TABLEQA CASE STUDY

We have observed a diminishing performance trend in classification tasks as we increase the number of
decoder layers in our model. This phenomenon raises the suspicion that a strong decoder may inadvertently
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Table 9: Comparison of text generation ability. The BLEU score between ground truth and generated text.
The results reveal that more pretrained knowledge are stored in decoder as its layer number grows.

# Layers/Decoder LSTM Transformer
1L 24.72 24.91
3L 27.00 27.42
6L 28.82 29.14
12L 29.54 30.16

Table 10: Performance comparison in filling in missing value. “mean/mode” uses the average in numerical
column as prediction, and takes the most common text as prediction for textual column.

Method/Dataset Regression (MAE ↓) Text Generation (BLEU ↑)
CG CA DS AD CB BL CG CA DS AD CB BL

mean/mode 0.81 0.61 0.84 0.78 0.73 0.84 48 62 46 62 65 43
Linear Regress 0.64 0.58 0.91 0.45 0.60 0.51 - - - - - -
GPT-3 0.58 0.57 0.69 0.64 0.61 0.46 48 66 39 73 71 82
UniTabE scratch 0.49 0.56 0.83 0.69 0.72 0.38 35 63 28 67 18 75
UniTabE finetune 0.40 0.51 0.61 0.43 0.51 0.22 59 76 51 80 85 92

divert some of the pretrained knowledge away from the encoder, potentially compromising the encoder’s
capacity for representation. In contrast, a weaker decoder places the onus of modeling knowledge on the
encoder during pretraining. Consequently, an encoder trained in collaboration with shallow decoder tends
to yield better semantic representations. To assess the efficacy of text generation, we constructed a table
question answering (table QA) dataset based on the CG dataset. In this dataset, we omitted the “purpose”
column from the original data and employed the prompt “why the person applies for the loan?” for finetuning
our UniTabE model. Table A.5 presents a comparative analysis of results across varying decoder sizes.
Notably, we observe that the BLEU score exhibits an ascending trend as the number of decoder layers
increases. Given the observation that pretrained models equipped with a powerful decoder demonstrate
marginally inferior performance in semantic representation, we have opted for the design featuring a shallow
decoder, aiming to prioritize the storage of acquired knowledge within the encoder, as opposed to relying on
a powerful decoder or applying the balanced encoder-decoder architecture. This phenomenon aligns with
findings in prior research [Kasai et al., 2020; Sun et al., 2021; Li et al., 2021; Kong et al., 2022] which further
inspired us to take such architecture. For instance, all of them adopted Transformer as backbone with shallow
decoder. Extensive experiments of Kasai et al. [2020] and Kong et al. [2022] demonstrated competitive
performance between the single-layer decoder integrating with strong encoder and the balanced encoder-
decoder depth in Neural Machine Translation (NMT). In addition, the LSTM decoder underperforms the
Transformer decoder in the generation of target text, underscoring the suitability of the LSTM decoder for
deployment as a weaker component within our model.

A.6 FILL IN MISSING VALUE ANALYSIS

We evaluate the model’s capability to fill in missing values, utilizing the Mean Absolute Error (MAE) metric
for numerical columns and the BLEU score for textual predictions. For comparative analysis, we also
fine-tune and test the GPT-3 model. The results, outlined in Table 10, indicate a significant improvement
over other baseline models. This substantial gain in performance further corroborates the efficacy of our
pretrained model in handling missing values, demonstrating its potential for applications in data completion
and recovery tasks.
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Figure 5: Demonstration of multi-cell-masking.

A.7 DEMONSTRATION OF MULTI-CELL-MASKING

Figure 5 illustrates the pretraining example of multi-cell-masking. We use the prompt template “fill in
missing value, <column name> :” to specify the precise masked column to predict.

A.8 KAGGLE DATA LICENSE AND COPYRIGHT

Our utilization of Kaggle’s dataset for UniTabE pretraining adheres meticulously to Kaggle’s terms of
use and licensing agreements. The publicly available dataset complies with Kaggle’s licensing terms,
and any specific requirements imposed by dataset providers have been respected. The dataset was col-
lected through the official Kaggle API (https://github.com/Kaggle/kaggle-api), specifying the license option
as ”gpl” and ”odb”. We exclusively collected data under licenses such as GNU General Public License
(GPL) and Open Data Commons series (e.g., ODbL, PDDL, ODC-By), ensuring compatibility for open-
sourcing our model. For example, the ”sales-from-different-stores” dataset is obtained under the ODbL li-
cense (https://opendatacommons.org/licenses/odbl/1-0/), allowing a worldwide, royalty-free, non-exclusive
license for data use. Our approach aligns with copyright laws, and we uphold ethical considerations, prior-
itizing responsible and fair data use within permitted scope and respecting Kaggle’s data privacy policies.
We intend to include information on data licensing, copyright, and ethical considerations in the final version
of our paper if it is accepted.
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