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A PROOF OF LEMMA 5

Proof. The first part follows by the symmetry of isotropic Gaussian. For the second part (monotonic-
ity) we use the definition of TVa. Without loss of generality we can assume a ∈ [0, 1] as otherwise
we can work with TVa(P,Q)/a = TV1/a(Q,P ). Let r = ‖u1 − u2‖2. We can show that the
derivative of the integral is always positive. In the following calculations, we use c1, c2, c3 and c4 to
denote positive constants that are independent of r.

First note that x∗ = r2−2σ2 ln(a)
2r is a middle point where e−

x2

2σ2 − ae−
(x−r)2

2σ2 goes from positive to
negative as x increases. By our assumption that a ∈ [0, 1], we have that x∗ > 0. Recalling that
erf(z) = 2√

π

∫ z
0

exp(−t2)dt, and that erf(∞) = 1 so that (by symmetry) 2√
π

∫ 0
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Now since a ∈ [0, 1], we have ln(a) ≤ 0 and
√
a−1 < 0, which means the term 1+

√
a

2
√

2σ
+ ln(a)(

√
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2
√
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is positive. This implies that the whole gradient is positive.

B ESTIMATING KL WITH RÉNYI DIVERGENCE

For two probability distributions µ and ν, the Rényi divergence of order α > 1 is

Dα(µ ‖ ν) ,
1

α− 1
log Et∼ν

(
dµ

dν
(t)

)α
, (14)

Rényi divergence is non-decreasing in α, and limα→1Dα(P ‖ Q)=KL(P ‖ Q).

RDP accounting for DP-SGD. (Abadi et al., 2016; Mironov, 2017) propose methods to account
for RDP for the Gaussian mechanism. Implementations of DP-SGD such as Opacus make use of
these accounting procedures. This is important as we use these accounting methods to calculate the
bound in Equation 14. Specifically, we calculate the Dα for α = 1 + τ for a very small τ , using the
Opacus implementation of Rényi accounting.
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C ALGORITHMS

Algorithm 1 Optimal MI
Require: sample rate vector q, number of iterations T , learning rate vector η, noise scale

vector σ, gradient norm clip vector r, sample size m
1: for all j ∈ [m] do
2: ηj ← 0
3: for i ∈ [T ] do
4: for j ∈ [m] do
5: sample ti,j ∼ N (0, σ[i]2 · r[i]2 · I)

6: ηj ← ηj+ln
(
1+q[i](e

2ti,j/r[i]−1
2σ[i]2 −1)

)
7: η ← 0
8: for j ∈ [m] do
9: ηj = max(ηj , 0).

10: η ← η + 1−eηj
m

11: return η

Algorithm 2 DP-SGD (Abadi et al., 2016)
Require: training dataset D, sample rate vector q, number of iterations T , learning rate

vector η, noise scale vector σ, gradient norm clip vector r, loss function L
1: Initiate θ randomly
2: for i ∈ {T} do
3: Bi ← Sample batch via Poisson sampling with rate q[i]
4: ∇[t]← ~0
5: for all (x, y) ∈ Bt do
6: ∇(x,y) ← gradient of L(x, y)

7: ∇(x,y) ← r[t] · (∇(x,y))
max(r[t],‖∇(x,y))‖2)

8: ∇[t]← ∇[t] +∇(x,y)

9: ∇̃[t]← ∇[t] +N (0, σ[t]2r[t]2I)
10: θ ← θ − η∇̃[t].
11: return θ

D PROOF OF THEOREM 18

Proof of Lemma 8. We have

2TVa(X ′, Y ) =

∫
Ω

|dµ′ − adν| =
∫

Ω

|qdµ− (q + a− 1)dν|

= q

∫
Ω

∣∣∣∣dµ− (q + a− 1)

q
dν

∣∣∣∣
= 2qTV a+q−1

q
(X,Y ).

Proof of Theorem 18. The proof steps are similar to Theorem 6. First, we have

2TV(X,Y ) =
∑

s≤T−1∈S≤T−1

Pr[X≤T−1 = s≤T−1]·

(∑
sT

∣∣∣Pr[XT = sT | s≤T−1]− Pr[YT = sT | s≤T−1]
Pr[Y≤T−1 = s≤T−1]

Pr[X≤T−1 = s≤T−1]

∣∣∣)
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= 2
∑

s≤T−1∈S≤T−1

Pr[X≤T−1 = s≤T−1]TVa(s≤T−1)(XT | s≤T−1, YT | s≤T−1).

But since XT and YT are subsampled Gaussian mechanisms we have XT ≡ (1− q)YT + qX ′T where
Y and X ′ are mixtures of Gaussians. Therefore, by Lemma 5 and Lemma 8 we have

TV(X,Y )

=
∑

s≤T−1∈S≤T−1

Pr[X≤T−1 = s≤T−1 ∈ S≤T−1]qTV a(s≤T−1)+q−1

q

(X ′T | s≤T−1, YT | s≤T−1) (By Lemma 8)

≤
∑

s≤T−1∈S≤T−1

Pr[X≤T−1 = s≤T−1 ∈ S≤T−1]qTV a(s≤T−1)+q−1

q

(N (0, σ),N (r, σ)) (By Lemma 5)

=
∑

s≤T−1∈S≤T−1

Pr[X≤T−1 = s≤T−1]TVa(s≤T−1)(N (0, σ), (1− q)N (0, σ) + qN (r, σ)) (By Lemma 8)

=
∑

s≤T−1∈S≤T−1

Pr[X≤T−1 = s≤T−1]TVa(s≤T−1)(N (0, σ),N (r ·B(q), σ)).

Therefore, we can replace XT with a mixture of two Gaussians centered at 0 and r and YT with
a single Gaussian centered at 0. Now we can use the same technique used in proof of Theorem 6
and move XT and YT to the first round and repeat this process. At the end, Y is replaced by a
n-dimensional Gaussian centered at 0 and standard deviation σ, and X by a mixture of Gaussians
with center randomly selected according to a n-dimensional Bernoulli distribution with probability q.
That is, the advantage is bounded by

TV(N (0T , σ),N (rB(q)T , σ)).

E EXPERIMENTAL DETAILS

E.1 GAUSSIAN EXPERIMENT

The simple Gaussian experiment is aimed at stripping away parts of the machine learning pipeline
that can interfere with privacy / membership inference, such as the particularities of neural networks
or optimization algorithms.

In this setup, D = {0, 0, . . . , 0} and D′ = D ∪ {1}. The (clean) summed gradient, before noise
addition, is therefore either 0 (on D or on D′ if the batch does not contain 1) or 1 (if the batch
contains 1). The adversary observes the noisy sums and infers whether they come from D or D′.
Given that the adversary knows the distribution is either N (0, σ2) or (1− q)N (0, σ2) + qN (1, σ2),
they can perform a simple likelihood test to determine whether the noisy sums come from D or D′,
and predict the more likely dataset. We report the advantage of this adversary in the “empirical"
curve of Figure 6.

F MEMBERSHIP INFERENCE PRECISION

In this section, we refine the analysis of Sablayrolles et al. (2019) for the accuracy of a membership
attack.

Upper-bound on precision. Let us first derive a bound on the precision of membership inference.
We assume that there are two datasets D and D′ and that a differentially-private mechanismM trains
a model represented by θ.

With probability (1− δ) over the choice of θ, we have:

−ε ≤ log

(
Pr(M(D) = θ)

Pr(M(D′) = θ)

)
≤ ε (15)
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Given that there is a balanced prior Pr(D) = Pr(D′), using Bayes rule, we have:

Pr(D | θ) =
Pr(M(D) = θ) Pr(D)

Pr(M(D) = θ) Pr(D) + Pr(M(D′) = θ) Pr(D′)
(16)

=
Pr(M(D) = θ)

Pr(M(D) = θ) + Pr(M(D′) = θ)
(17)

= σ

(
log

(
Pr(M(D) = θ)

Pr(M(D′) = θ)

))
, (18)

with σ(u) = 1/(1 + exp(−u)) the sigmoid function.

Hence the precision Pr(D | θ) is bounded between σ(−ε) and σ(ε), as σ(·) is non decreasing.

Upper-bound on attack accuracy. The accuracy of the Bayes classifier is

Acc = max(Pr(D | θ), 1− Pr(D | θ)), (19)

and thus

Acc ≤ max(σ(ε), σ(−ε)) (20)
= σ(ε) (21)

This means that the attack accuracy is bounded by σ(ε) with probability 1 − δ. Empirically, we
see that the sigmoid function closely matches the bound given by Humphries et al. (2020). Simply
stated, this derivation shows that the bound proven by Humphries et al. (2020) actually holds with
probability 1− δ instead of on average.

Acc =
1

2
(Pr(X ∈ A) + Pr(Y ∈ Ac))

=
1

2
(Pr(X ∈ A) + 1− Pr(Y ∈ A))

=
1

2
(1 + Adv)

G COMPARING SECURITY GAMES

In what follows, we write multiple variants of security games specifically defined for DP-SGD. Then
we proceed to compare the security games based on an example. We perform experiments on this
examples by running an attack and show that our upper bounds are tight even for the weaker security
games.

G.1 OUR SECURITY GAME WITH ALL INTERMEDIATE GRADIENTS (OIG)

1. Adversary picks a datasets D = {z1, . . . , zn} and a pair of data points z′0, z
′
1.

2. Challenger samples a bit b uniformly at random and creates

D′ =

{
D ∪ {z′1} if b = 1
D ∪ {z′0} if b = 0

3. Challenger runs DP-SGD on D′ to train a model and sends a transcript of training, including
all intermediate gradients, θ (The transcript could only include the final model or more
information like the intermediate steps of training) to the adversary.

4. Adversary observes θ and and guesses a bit b′. Adversary wins if b′ = b.

Remark 10. In this paper we are interested in analyzing the membership inference advantage for
algorithms that could be stated as adaptive composition of sampled Gaussian mechanisms. DP-SGD
(Algorithm 2) is a widely used example of such algorithm. Note that we assume that the output of
DP-SGD includes all the intermediate gradients that are used to train the model. In other words, the
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parameter θ in the security game contains all the intermediate gradients (not only the final model).
However, in what follows we still define the security game for the case that the adversary only sees
the final model. We define these more restricted security game so to experimentally compare it with
our security game.

Remark 11 (Replacing vs addition/removal). We also note that in this section we define the notion
of advantage for neighboring datasets where one dataset replaces a single example with another
example (i.e. the replacement game). The reason for this choice is that the security game of Yeom et.
al. is based on replacement and we want to make a fair comparison.

In the main body, we use the addition/removal definition of neighboring datasets because it is stronger.
Namely, we can convert an upper bound on addition/removal security game to an upper bound for
the replacement security game.

Remark 12 (Alternative notion of inference in Humphries et al. (2020)). Humphries et al. (2020),
propose a new definition for inference attacks. This definition (They call it "Experiment with Data
Dependencies".) is is distinct from the previously known notions of membership inference and deals
with the ability of an adversary in distinguishing samples from two different distributions. As this
notion is a model of distributional inference, the power of adversary in this model is not bounded
by differential privacy. The only way to bound this notion of privacy with DP is to pay the cost of
group privacy for groups that are almost the same size as of the entire dataset. Hence, we do not
study this model in this work.

G.2 OUR SECURITY GAME WITH FINAL MODEL (OFM)

1. Adversary picks a datasets D = {z1, . . . , zn} and a pair of data points z′0, z
′
1.

2. Challenger samples a bit b uniformly at random and creates

D′ =

{
D ∪ {z′1} if b = 1
D ∪ {z′0} if b = 0

3. Challenger runs DP-SGD on D′ to train a model and sends the final model θ (The transcript
could only include the final model or more information like the intermediate steps of training)
to the adversary.

4. Adversary observes θ and and guesses a bit b′. Adversary wins if b′ = b.

G.3 YOEM ET. AL’S SECURITY GAME WITH FINAL MODEL (YFM)

1. Challenger samples a dataset D = {z1, . . . , zn+1} from a distribution D .

2. Challenger runs DP-SGD on D to train a model and sends a the final model θ to the
adversary.

3. Challenger samples a bit b uniformly at random and creates

z′ =

{
z ← D if b = 1
z ← D if b = 0

4. Adversary observes (θ, z′) and and guesses a bit b′. Adversary wins if b′ = b.

G.4 YOEM ET. AL’S SECURITY GAME WITH ALL INTERMEDIATE GRADIENTS (YIG)

1. Challenger samples a dataset D = {z1, . . . , zn+1} from a distribution D .

2. Challenger runs DP-SGD onD to train a model and sends a transcript of training θ, including
all intermediate gradients, to the adversary.

3. Challenger samples a bit b uniformly at random and creates

z′ =

{
z ← D if b = 1
z ← D if b = 0

4. Adversary observes (θ, z′) and and guesses a bit b′. Adversary wins if b′ = b.
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Notation. For a security model T we use T (L, n,D) to denote the advantage of strongest adversary
in that threat model with learning algorithm L, dataset size n and data distribution D (our threat
models do not use this parameter but we include it for symmetry).
Proposition 13. For any learning algorithm L, any n ∈ N and data distribution D we have
OFM(L, n,D) ≤ OIG(L, n,D) and YFM(L, n,D) ≤ YIG(L, n,D).
Proposition 14 (Proved in Humphries et al. (2020)). For any learning algorithm L, any n ∈ N and
data distribution D we have YIG(L, n,D) ≤ OIG(L, n,D) and YFM(L, n,D) ≤ YIG(L, n,D).
Corollary 15. Any upper bound on the advantage of adversaries in security game OIG is also an
upper bound on the advantage of adversaries in the security games YIG, YFM and OFM.

Our analysis above shows that upper bounds for our security model are valid upper bounds for the
security game of Yoem et al and Shokri et al as well. Now, to analyze the tightness of our upper
bound we perform experiments with attacks in these threat models. We argue that one cannot get
a better upper bound on membership inference, unless they make extra assumptions on the data
distribution. In what follows, we experimentally verify this.

H EXPERIMENTS ON THE OPTMIALITY OF OUR BOUND

In this section, we construct a data distribution and study logistic regression on this distribution.
Definition 16. We define Hd be the uniform distribution over the hamming ball of radius 1 and
centered at zero. Thus, the samples fromHd have the form, (0, . . . , 0, 1, 0, . . . , 0) with only one of
the coordinates being 1 and other being 0. For an arbitrary Boolean function f : {−1, 1}d → {0, 1}
we also define Hfd to be the distribution of samples from H that are labled w.r.t. f , namely, Hfd =
(Hd, f(Hd)).

Experiment setup: We run experiments for membership inference on DP-SGD when trying to
learnHfd , using logistic regression, and for an arbitrary function f . We set the learning rate to 0.001,
the clipping threshold to .1 and vary the sub-sampling rate and noise multiplier. We run the models
for either 5 or 50 epochs.

Attacks. We implement a simple attack that only looks at the final model. This adversary looks
at the final model θ and the target instance x in hand which is equal to 1 in coordinate i and zero
everywhere else. If the ith coordinate of θ is larger than Tqc/2 + mTqc/d (T is the number of
iterations, q is sub-sampling rate, n is the number of examples in the training set, and c is the clipping
threshold) then the attack predicts b′ = 1 otherwise it predicts b′ = 0. We call this attack the “final
model attack” (FMA). We also implement another attack that looks at all the intermediate models.
This attack basically performs the FMA attack at each iteration and takes majority vote at the end.
We call this attack the “Intermediate models attack” (IMA).

Evaluation. We evaluate our FMA attack in the threat models of Yoem et al. and Shokri et al. in
the setting where the adversary only sees the final model. We also evaluate this attack in our threat
model, in the setting that the adversary only sees the final model. We also report the accuracy of the
stronger IMA attack.

H.1 RESULTS

We now summarize our findings in our experiments

Increasing d reduces the gap between threat models. We instantiate our data distribution Hfd
with a random function f and select the dimension from {2000, 10000, 10000}. We set the sample
size to 1000, set the sub-sampling rate to .1 and vary the noise multiplier to obtain the attack curve.
We run the models for 5 epochs and report the attack in various threat models. Our results in Figure
H.1 show that by increasing the dimension, the gap between the performance of all attacks and our
upper bound shrinks to almost 0. This verifies the optimality of our bound. It also shows that there is
no fundamental gap between the threat models and we cannot hope to achieve stronger upper bounds
in the weaker threat models, unless we make further assumptions.
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(a) d = 2000

(b) d = 10000

(c) d = 100000

Figure 5: Decreasing d results in smaller gap between all threat models and the upper bound. This
shows the optimality of our bound in all threat models.
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Without subsampling (d = 2000, m = 1000, q = 0.01)

Figure 6: Small sampling rate can produce a gap between FMA and IMA, but this gap tightens as
we increase the noise.

Small sub-sampling rate results in a small gap between the performance of FMA and IMA.
We instantiate our data distributionHfd with a random function f and set dimension to 2000 while
keeping the number of instances at 1000. We set the sub-sampling rate to .01 and the number of
epochs to 50. We vary the noise multiplier to obtain the attack curve. Our results in Figure H.1 show
that small sub-sampling rate can create a gap between the performance of two attacks. This gap
shrinks as we increase the noise multiplier.

I SECURITY GAME WITH NON-UNIFORM PRIOR

Here, we extend our result to the setting where the prior distribution for the bit b in the security game
for membership inference is non-uniform. This setting is recently studied in the work of .

Definition 17 (Non-uniform membership inference.). We define a security game between an Adver-
sary (who wants to guess training set membership) and a Challenger (who wants to hide training set
membership).

1. Adversary picks a datasets D = {z1, . . . , zn} and a data point z′

2. Challenger samples a bit b from a bernouli distribution with probability p and creates

D′ =

{
D ∪ {z′} if b = 1
D if b = 0

3. Challenger runs the a learning algorithm L on D′ to train a model and sends a transcript
of training θ (The transcript could only include the final model or more information like the
intermediate steps of training) to the adversary.

4. Adversary observes θ and guesses a bit b′. Adversary wins if b′ = b.

We define the advantage of adversary A on learning algorithm L as Adv(L,A, p) = 2 · Pr[b =
b′] − 2 max(p, 1 − p). We also use Adv(L, p) = supAAdv(A,L, p) to denote the advantage of
any adversary against L.

Note that similar to the uniform setting, with a simple averaging argument we can show that the
best adversarial strategy in the non-uniform membership security game is a deterministic strategy.
Therefore, assuming p < 0.5, the advantage for the learning algorithm L is then defined as

Adv(L, p)

2
= sup
A
µ(A) · p+ (1− ν(A)) · (1− p)− (1− p) (22)
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= sup
A

(1− p)
(
ν(A)− p

1− p
µ(A)

)
(23)

= sup
A

(1− p)
(
ν(A)− p

1− p
µ(A)

)
− (1− p)

(
ν(Ā)− p

1− p
µ(Ā)

)
(24)

+ (1− p)
(
ν(Ā)− p

1− p
µ(Ā)

)
(25)

= 2(1− p)TV p
1−p

(X,Y ) + (1− 2p− Adv(L, p)

2
). (26)

Therefore we have

Adv(L, p) = 2(1− p)TV p
1−p

(X,Y ) + 1− 2p (27)

Now using this, we can prove the following Theorem.
Theorem 18 (Non-uniform gaussian Composition with sub-sampling). Let M1, . . . ,MT be a series
of adaptive Gaussian Mechanisms with L2 sensitivity r and Gaussian noise with standard deviation
σ and sub-sampling rate q. The non-uniform membership inference risk of the composition of Mi’s is
at most

2(1− p)TV p
1−p

(
N (0T , σ),N (r ·B(q)T , σ)

)
+ 1− 2p

where p < 0.5 is the probability of sampling of the additional example in the non-uniform security
game.

Proof. The proof is similar to the proof of Theorem 6 except that we use Equation 27 instead of
Equation 4.
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