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A PROOF OF PROPOSITION 3.1

Taking the loss function to be NLL, we have `(f(x), y)) = − log [f(x)]y, where [f(x)]y is the
probability assigned by the network f of x belonging to the true class y, i.e. indexing the predicted
probabilities f(x) with the true target y. Note that t 7→ − log t is a convex and decreasing function.

We first prove `(FOE(x), y) ≤ `(F (x), y). Recall, by definition of FOE, we have FOE(x) = fθk(x)
where k ∈ argmini `(fθi(x), y), therefore [FOE(x)]y = [fθk(x)]y ≥ [fθi(x)]y for all i = 1, . . . , C.
That is, fθk assigns the highest probability to the correct class y for input x. Since − log is a
decreasing function, we have

`(F (x), y) = − log

(
1

M

M∑
i=1

[fθi(x)]y

)
≥ − log ([fθk(x)]y) = `(FOE(x), y).

We apply Jensen’s inequality in its finite form for the second inequality. Jensen’s inequality states
that for a real-valued, convex function ϕ with its domain being a subset of R and numbers t1, . . . , tn
in its domain, ϕ( 1n

∑n
i=1 ti) ≤

1
n

∑n
i=1 ϕ(ti). Noting that − log is a convex function, `(F (x), y) ≤

1
M

∑M
i=1 `(fθi(x), y) follows directly.

B EXPERIMENTAL AND IMPLEMENTATION DETAILS

We describe details of the experiments shown in Section 5 and Appendix C. Note that unless stated
otherwise, all sampling over a discrete set is done uniformly in the discussion below.

B.1 ARCHITECTURE SEARCH SPACES

DARTS search space. The first architecture search space we consider in our experiments is the
one from DARTS (Liu et al., 2019). We search for two types of cells: normal cells, which preserve
the spatial dimensions, and reduction cells, which reduce the spatial dimensions. These cells are
stacked using a pre-determined macro-architecture where they are usually repeated and connected
using additional skip connections. Each cell is a directed acyclic graph, where nodes represent feature
maps in the computational graph and edges between them correspond to operation choices (e.g. a
convolution operation). The cell parses inputs from the previous and previous-previous cells in its 2
input nodes. Afterwards it contains 5 nodes: 4 intermediate nodes that aggregate the information
coming from 2 previous nodes in the cell and finally an output node that concatenates the output of
all intermediate nodes across the channel dimension. AmoebaNet contains one more intermediate
node, making that a deeper architecture. The set of possible operations (eight in total in DARTS)
that we use for each edge in the cells is the same as DARTS, but we leave out the “zero” operation
since that is not necessary for non-differentiable approaches such as random search and evolution.
Randomly of architectures is done by sampling the structure of the cell and the operations at each
edge. The total number of architectures contained in this space is ≈ 1018. We refer the reader to Liu
et al. (2019) for more details.

NAS-Bench-201 search space. NAS-Bench-201 (Dong & Yang, 2020) is a tabular NAS bench-
mark, i.e. all architectures in the cell search space are trained and evaluated beforehand so one can
query their performance (and weights) from a table quickly. Since this space is exhaustively evaluated,
its size is also limited to only normal cells containing 4 nodes in total (1 input, 2 intermediate and 1
output node) and 5 operation choices on every edge connecting two nodes. This means that there
are only 15,625 possible architecture configurations in this space. The networks are constructed by
stacking 5 cells with in-between fixed residual blocks for reducing the spacial resolution. Each of
them is trained for 200 epochs 3 times with 3 different seeds on 3 image classification datasets. For
more details, please refer to Dong & Yang (2020).

B.2 DATASETS

Fashion-MNIST (Xiao et al., 2017). Fashion-MNIST consists of a training set of 60k 28×28
grayscale images and a test set of 10k images. The number of total labels is 10 classes. We split the
60k training set images to 50k used to train the networks and 10k used only for validation.
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CIFAR-10/100 (Krizhevsky et al., 2009). CIFAR-10 and CIFAR-100 both consist of 60k 32×32
colour images with 10 and 100 classes, respectively. We use 10k of the 60k training images as the
validation set. We use the 10k original test set for final evaluation.

Tiny ImageNet (Le & Yang, 2015). Tiny Imagenet has 200 classes and each class has 500 training,
50 validation and 50 test colour images with 64×64 resolution. Since the original test labels are not
available, we split the 10k validation examples into 5k for testing and 5k for validation.

ImageNet-16-120 (Dong & Yang, 2020) This variant of the ImageNet-16-120 (Chrabaszcz et al.,
2017) contains 151.7k train, 3k validation and 3k test ImageNet images downsampled to 16×16 and
120 classes.

Note that the test data points are only used for final evaluation. The data points for validation are
used by the NES algorithms during ensemble selection and by DeepEns (RS) for picking the best
architecture from the pool to use in the deep ensemble. Note that when considering dataset shift for
CIFAR-10, CIFAR-100 and Tiny ImageNet, we also apply two disjoint sets of “corruptions” (fol-
lowing the terminology used by (Hendrycks & Dietterich, 2019)) to the validation and test sets. We
never apply any corruption to the training data. More specifically, out of the 19 different corruptions
provided by Hendrycks & Dietterich (2019), we randomly apply one from {Speckle Noise,
Gaussian Blur, Spatter, Saturate} to each data point in the validation set
and one from {Gaussian Noise, Shot Noise, Impulse Noise, Defocus Blur,
Glass Blur, Motion Blur, Zoom Blur, Snow, Frost, Fog, Brightness, Contrast,
Elastic Transform, Pixelate, JPEG compression} to each data point in the test set.
This choice of validation and test corruptions follows the recommendation of (Hendrycks & Diet-
terich, 2019). Also, as mentioned in Section 5, each of these corruptions has 5 severity levels, which
yields 5 corresponding severity levels for Dshift

val and Dshift
test .

B.3 TRAINING ROUTINE

The macro-architecture we use has 16 initial channels and 8 cells (6 normal and 2 reduction), and was
trained using a batch size of 100 for 100 epochs for CIFAR-10 and CIFAR-100 and 15 epochs for
Fashion-MNIST. For Tiny ImageNet, we used a batch size of 128 for 100 epochs. Unlike DARTS, we
do not use any data augmentation procedure during training, nor any additional regularization such as
ScheduledDropPath (Zoph et al., 2018) or auxiliary heads, except for the case of Tiny ImageNet, for
which we used ScheduledDropPath and standard data augmentation as default in DARTS. All other
hyperparameter settings are exactly as in DARTS (Liu et al., 2019).

All results shown are averaged over multiple runs with error bars indicating a 95% confidence
interval. We used a budget K = 400 in all experiments, except Tiny ImageNet on the DARTS search
space, which used K = 200 and ImageNet-16-120 on the NAS-Bench-201 search space, which used
K = 1000.

B.4 IMPLEMENTATION DETAILS OF NES-RE

Parallization. Running NES-RE on a single GPU requires evaluating hundreds of networks se-
quentially, which is tedious. To circumvent this, we distribute the “while |P| < K” loop in
Algorithm 2 over multiple GPUs, called worker nodes. We use the parallelism scheme provided
by the hpbandster (Falkner et al., 2018) codebase.3 In brief, the master node keeps track of the
population and history (lines 1, 4-6, 8 in Algorithm 2), and it distributes the training of the networks
to the individual worker nodes (lines 2, 7 in Algorithm 2). In our experiments, we always use 20
worker nodes and evolve a population p of size P = 50 when working over the DARTS search space.
Over NAS-Bench-201, we used one worker since it is a tabular NAS benchmark and hence is quick
to evaluate on. During iterations of evolution, we use an ensemble size of m = 10 to select parent
candidates.

Mutations. We adapt the mutations used in RE to the DARTS search space. As in RE, we first pick
a normal or reduction cell at random to mutate and then sample one of the following mutations:

3https://github.com/automl/HpBandSter

15

https://github.com/automl/HpBandSter


Under review as a conference paper at ICLR 2021

• identity: no mutation is applied to the cell.
• op mutation: sample one edge in the cell and replace its operation with another operation

sampled from the list of operations.
• hidden state mutation: sample one intermediate node in the cell, then sample one

of its two incoming edges. Replace the input node of that edge with another sampled node,
without altering the edge’s operation.

See Real et al. (2019) for details and illustrations of these mutations. Note that for NAS-Bench-201,
following Dong & Yang (2020) we only use op mutation.

Adaptation of NES-RE to dataset shifts. As described in Section 4.3, at each iteration of evolu-
tion, the validation set used in line 4 of Algorithm 2 is sampled uniformly between Dval and Dshift

val
when dealing with dataset shift. In this case, we use shift severity level 5 forDshift

val . Once the evolution
is complete and the pool P has been formed, then for each severity level s ∈ {0, 1, . . . , 5}, we apply
ForwardSelect with Dshift

val of severity s to select an ensemble from P (line 9 in Algorithm 2),
which is then evaluated on Dshift

test of severity s. (Here s = 0 corresponds to no shift.) This only applies
to CIFAR-10, CIFAR-100 and Tiny ImageNet, as we do not consider dataset shift for Fashion-MNIST
and ImageNet-16-120 .
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C ADDITIONAL EXPERIMENTS

In this section we provide additional results for the experiments conducted in Section 5. Note that, as
with all results shown in Section 5, all evaluations are made on test data unless stated otherwise.

C.1 ADDITIONAL RESULTS ON THE DARTS SEARCH SPACE

C.1.1 RESULTS ON FASHION-MNIST
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Figure 7: Results on Fashion-MNIST with varying ensembles sizes M . Lines show the mean NLL
achieved by the ensembles with 95% confidence intervals.
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Figure 8: Average base learner loss for NES-RS, NES-RE and DeepEns (RS) on Fashion-MNIST.
Lines show the mean NLL and 95% confidence intervals.
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Figure 9: Oracle ensemble loss for NES-RS, NES-RE and DeepEns (RS) on Fashion-MNIST. Lines
show the mean NLL and 95% confidence intervals.

As shown in Figure 7, we see a similar trend on Fashion-MNIST as with other datasets: NES
ensembles outperform deep ensembles with NES-RE outperforming NES-RS. To understand why
NES algorithms outperform deep ensembles on Fashion-MNIST (Xiao et al., 2017), we compare the
average base learner loss (Figure 8) and oracle ensemble loss (Figure 9) of NES-RS, NES-RE and
DeepEns (RS). Notice that, apart from the case when ensemble size M = 30, NES-RS and NES-RE
find ensembles with both stronger and more diverse base learners (smaller losses in Figures 8 and 9,
respectively). While it is expected that the oracle ensemble loss is smaller for NES-RS and NES-RE
compared to DeepEns (RS), it initially appears surprising that DeepEns (RS) has a larger average
base learner loss considering that the architecture for the deep ensemble is chosen to minimize the
base learner loss. We found that this is due to the loss having a sensitive dependence not only on the
architecture but also the initialization of the base learner networks. Therefore, re-training the best
architecture by validation loss to build the deep ensemble yields base learners with higher losses due
to the use of different random initializations. Fortunately, NES algorithms are not affected by this,
since they simply select the ensemble’s base learners from the pool without having to re-train anything
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which allows them to exploit good architectures as well as initializations. Note that, for CIFAR-10-C
experiments, this was not the case; base learner losses did not have as sensitive a dependence on the
initialization as they did on the architecture.

In Table 2, we compare the classification error and expected calibration error (ECE) of NES algorithms
with the deep ensembles baseline for various ensemble sizes on Fashion-MNIST. Similar to the loss,
NES algorithms also achieve smaller errors, while ECE remains approximately the same for all
methods.

Table 2: Error and ECE of ensembles on Fashion-MNIST for different ensemble sizes M . Best values
and all values within 95% confidence interval are bold faced.

Classification Error (out of 1) Expected Calibration Error (ECE)
M NES-RS NES-RE DeepEns

(RS)
DeepEns
(DARTS)

DeepEns
(AmoebaNet) NES-RS NES-RE DeepEns

(RS)
DeepEns
(DARTS)

DeepEns
(AmoebaNet)

3 0.074±0.001 0.072±0.001 0.076±0.001 0.077 0.077 0.007±0.001 0.007±0.002 0.008±0.001 0.003 0.008
5 0.073±0.001 0.071±0.002 0.075±0.001 0.077 0.074 0.005±0.001 0.005±0.001 0.006±0.001 0.005 0.005
10 0.073±0.001 0.070±0.001 0.075±0.001 0.076 0.073 0.004±0.001 0.005±0.001 0.005±0.001 0.006 0.005
30 0.073±0.001 0.070±0.001 0.074±0.001 0.075 0.073 0.004±0.001 0.004±0.002 0.004±0.001 0.008 0.004

C.1.2 ENTROPY ON OUT-OF-DISTRIBUTION INPUTS

To assess how well models respond to completely out-of-distribution (OOD) inputs (inputs which do
not belong to one of the classes the model can predict), we investigate the entropy of the predicted
probability distribution over the classes when the input is OOD. Higher entropy of the predicted
probabilities indicates more uncertainty in the model’s output. For CIFAR-10 on the DARTS search
space, we compare the entropy of the predictions made by NES ensembles with deep ensembles on
two types of OOD inputs: images from the SVHN dataset and Gaussian noise. In Figure 10, we
notice that NES ensembles indicate higher uncertainty when given inputs of Gaussian noise than
deep ensembles but behave similarly to deep ensembles for inputs from SVHN.
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Figure 10: Entropy of predicted probabilities when trained on CIFAR-10 over the DARTS search
space.

C.1.3 ADDITIONAL RESULTS ON CIFAR-10, CIFAR-100 AND TINY IMAGENET

In this section, we provide additional experimental results on CIFAR-10, CIFAR-100 and Tiny
ImageNet on the DARTS search space, complimenting the results in Section 5 as shown in Figures
12-18.
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Figure 11: t-SNE visualization: predictions of base learners in two ensembles, one with fixed
architecture and one with varying architectures.
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Figure 12: NLL vs. ensemble sizes on CIFAR-10, CIFAR-100 and Tiny ImageNet with varying
dataset shifts (Hendrycks & Dietterich, 2019) over DARTS search space.

19



Under review as a conference paper at ICLR 2021

10 20 30
Ensemble size (M)

0.09

0.10

0.10

0.11

0.11

0.12

0.12

En
se

m
bl

e 
Er

ro
r

CIFAR-10
DeepEns (AmoebaNet)
DeepEns (DARTS)
DeepEns (RS)
NES-RE
NES-RS

10 20 30
Ensemble size (M)

0.29
0.30
0.31
0.32
0.33
0.34
0.35
0.36

CIFAR-100

5 10 15
Ensemble size (M)

0.37

0.38

0.39

0.40

0.41

Tiny ImageNet

(a) No data shift

10 20 30
Ensemble size (M)

0.16

0.17

0.18

En
se

m
bl

e 
Er

ro
r

CIFAR-10

10 20 30
Ensemble size (M)

0.38

0.40

0.42

0.44

0.46 CIFAR-100

5 10 15
Ensemble size (M)

0.42

0.43

0.44

0.45

0.46

0.47
Tiny ImageNet

(b) Data shift (severity 1)

10 20 30
Ensemble size (M)

0.19

0.20

0.21

0.22

0.23

En
se

m
bl

e 
Er

ro
r

CIFAR-10

10 20 30
Ensemble size (M)

0.44

0.46

0.48

0.50

0.52
CIFAR-100

5 10 15
Ensemble size (M)

0.46

0.47

0.48

0.49

0.50

0.51

Tiny ImageNet

(c) Data shift (severity 2)

10 20 30
Ensemble size (M)

0.23

0.24

0.25

0.26

0.27

0.28

En
se

m
bl

e 
Er

ro
r

CIFAR-10

10 20 30
Ensemble size (M)

0.48

0.50

0.52

0.54

0.56

0.58
CIFAR-100

5 10 15
Ensemble size (M)

0.53

0.54

0.55

0.56

0.57

Tiny ImageNet

(d) Data shift (severity 3)

10 20 30
Ensemble size (M)

0.30

0.32

0.34

En
se

m
bl

e 
Er

ro
r

CIFAR-10

10 20 30
Ensemble size (M)

0.54

0.56

0.58

0.60

0.62

CIFAR-100

5 10 15
Ensemble size (M)

0.63

0.64

0.65

0.66

0.67
Tiny ImageNet

(e) Data shift (severity 4)

10 20 30
Ensemble size (M)

0.38

0.40

0.42

0.44
En

se
m

bl
e 

Er
ro

r

CIFAR-10

10 20 30
Ensemble size (M)

0.60

0.62

0.64

0.66

0.68

0.70

CIFAR-100

5 10 15
Ensemble size (M)

0.70

0.71

0.71

0.72

0.72

0.73

0.73
Tiny ImageNet

(f) Data shift (severity 5)

Figure 13: Classification error rate (between 0-1) vs. ensemble size on DARTS search space.
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Figure 14: Average base learner and oracle ensemble NLL across ensemble sizes and shift severities
on CIFAR-10 over DARTS search space.
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Figure 15: Average base learner and oracle ensemble NLL across ensemble sizes and shift severities
on CIFAR-100 over DARTS search space.
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Figure 16: Average base learner and oracle ensemble NLL across ensemble sizes and shift severities
on Tiny ImageNet over DARTS search space.
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Figure 17: Ensemble NLL vs. budget K. Ensemble size fixed at M = 10.
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Figure 18: Ensemble error vs. budget K. Ensemble size fixed at M = 10.
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Figure 19: High fidelity NLL vs. budgetK on CIFAR-10 and CIFAR-100 with and without respective
dataset shifts over the DARTS search space. Ensemble size is fixed at M = 10.
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Figure 20: High fidelity classification error vs. budget K on CIFAR-10 and CIFAR-100 with and
without respective dataset shifts over the DARTS search space. Ensemble size is fixed at M = 10.

Results on CIFAR for larger models. In additional to the results on CIFAR-10 and CIFAR-100
using the settings described in Appendix B.3, we also train larger models (around 3M parameters)
by scaling up the number of stacks cells and initial channels in the network. We run NES and other
baselines similarly as done before and plot results in Figure 19 and 20 for NLL and classification test
error with budget K = 90. As shown, NES algorithms tend to outperform or be competitive with the
baselines. Note, more runs are needed including error bars for conclusive results in this case.

C.2 ABLATION STUDY: NES-RE OPTIMIZING ONLY ON CLEAN DATA

We also include a variant of NES-RE, called NES-RE-0, in Figure 21.NES-RE and NES-RE-0 are
the same, except that NES-RE-0 uses the validation set Dval without any shift during iterations of
evolution, as in line 4 of Algorithm 2. Following the discussion in Appendix B.4, recall that this is
unlike NES-RE, where we sample the validation set to be either Dval or Dshift

val at each iteration of
evolution. Therefore, NES-RE-0 evolves the population without taking into account dataset shift,
with Dshift

val only being used for the post-hoc ensemble selection step in line 9 of Algorithm 2.

As shown in the Figure 21, NES-RE-0 shows a minor improvement over NES-RE in terms of
loss for ensemble size M = 30 in the absence of dataset shift. This is in line with expectations,
because evolution in NES-RE-0 focuses on finding base learners which form strong ensembles for
in-distribution data. On the other hand, when there is dataset shift, the performance of NES-RE-0
ensembles degrades, yielding higher loss and error than both NES-RS and NES-RE. Nonetheless,
NES-RE-0 still manages to outperform the DeepEns baselines consistently. We draw two conclusions
on the basis of these results: (1) NES-RE-0 can be a competitive option in the absence of dataset shift.
(2) Sampling the validation set, as done in NES-RE, to be Dval or Dshift

val in line 4 of Algorithm 2 plays
an important role is returning a final pool P of base learners from which ForwardSelect can select
ensembles robust to dataset shift.
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Figure 21: Results on CIFAR-10 (Hendrycks & Dietterich, 2019) with varying ensembles sizes
M and shift severity. Lines show the mean NLL achieved by the ensembles with 95% confidence
intervals. See Appendix C.1.3 for the definition of NES-RE-0.
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C.3 WHAT IF DEEP ENSEMBLES USE ENSEMBLE SELECTION OVER INITIALIZATIONS?

Recall that NES algorithms differ from deep ensembles in two important ways: the ensembles use
varying architectures and NES utilizes ensemble selection (i.e. ForwardSelect applied to P) to
pick the base learners. In this section, we conduct a study intended to investigate the following
question: is the improvement offered by NES over deep ensembles only due to ensemble selection?
In other words, we wish to isolate and understand the impact of varying architectures by comparing
NES to a baseline that also incorporates ensemble selection into the construction of deep ensembles.

Using the DARTS search space on Tiny ImageNet, we empirically compare NES to the baselines
“DeepEns + ES” which operate as follows. We optimize a fixed architecture for the base learners, train
K random initializations of it to form a pool and apply ForwardSelect to select an ensemble of size
M from the pool. This yields the three additional baselines DeepEns + ES (DARTS/AmoebaNet/RS)
which correspond to optimizing the fixed architectures using the DARTS algorithm (DARTS),
regularized evolution (AmoebaNet) and random search (RS).

The results indicate that NES outperforms or is at par with DeepEns + ES baselines, as shown in Table
3 and Figure 22. In particular, both NES algorithms outperform DeepEns + ES (DARTS/AmoebaNet).
DeepEns + ES (RS) is the most competitive of the deep ensemble baselines, which is improved upon
by NES-RE and is competitive with NES-RS. Also, as expected, deep ensembles with ensemble
selection consistently perform better than their counterparts without ensemble selection.

Table 3 also includes the computational costs of each method measured in terms of the number of
networks trained. For each DeepEns + ES baseline, we used a pool of size K = 200 (as with NES)
from which the ensemble is selected. This cost comes in addition to the cost of optimizing the fixed
base learner architecture prior to forming the pool. For instance, the architecture for DeepEns + ES
(RS) is optimized by random search, selecting the best architecture by validation loss from a random
sample of K = 200 (trained) architectures; this yields a total cost of 400 networks trained. This is
twice the cost of NES algorithms which required training 200 architectures to form the pool.

C.4 COMPARING NES TO ENSEMBLES WITH OTHER VARYING HYPERPARAMETERS

Since varying the architecture in an ensemble improves predictive performance and uncertainty
estimation as demonstrated in Section 5, it is natural to ask what other hyperparameters should be
varied in an ensemble. It is also unclear which hyperparameters might be more important than others.
Note that concurrent work by Wenzel et al. (2020) has shown that varying hyperparameters such
as L2 regularization strength, dropout rate and label smoothing parameter also improves upon deep
ensembles. While these questions lie outside the scope of our work and are left for future work, we
conduct preliminary experiments to address them.
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Figure 22: Loss vs. ensemble size for NES and deep ensembles (with/without ensemble selection
over initializations). The left plot shows that NES-RE outperforms all other methods across ensemble
sizes. The right plot shows that ensembles produced by NES algorithms also consistently have higher
diversity (as indicated by smaller oracle ensemble loss). See Appendix C.3 for details.
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Table 3: A comparison of NES to deep ensembles with ensemble selection over initializations for
Tiny ImageNet over the DARTS search space with ensemble size M = 10. The computational costs
are reports in terms of the number of networks trained (a typical network from this search space
takes 3 hours to train on an NVIDIA RTX 2080Ti). The “arch” column indicates the number of
architectures evaluated to find the architecture and the “ensemble” column indicates the number of
architectures evaluated for building the ensemble. Note that for DARTS and AmoebaNet we convert
the GPU hours for finding the architecture into number of networks trained by dividing by 3. See
Appendix C.3 for details.

Method No dataset shift Dataset shift (severity 5) Cost (# nets trained)
NLL Classif. Error (%) NLL Classif. Error (%) Arch. Ensemble

DeepEns (DARTS) 1.59 39.08 3.75 71.58 32 10
DeepEns + ES (DARTS) 1.57 38.68 3.68 70.90 32 200
DeepEns (AmoebaNet) 1.55 38.46 3.76 71.72 25200 10
DeepEns + ES (AmoebaNet) 1.54 38.12 3.70 71.68 25200 200
DeepEns (RS) 1.51±0.00 37.46±0.27 3.60±0.03 70.48±0.38 200 10
DeepEns + ES (RS) 1.50 36.98 3.55 70.10 200 200
NES-RS 1.51±0.01 37.42±0.21 3.53±0.01 69.93±0.23 200
NES-RE 1.48±0.01 36.98±0.57 3.55±0.02 70.22±0.13 200

In this section, we consider two additional baselines working over the DARTS search space on
CIFAR-10/100:

1. HyperEns: Optimize a fixed architecture, train K random initializations of it where the
learning rate and L2 regularization strength are also sampled randomly and select the final
ensemble of size M from the pool using ForwardSelect. This is similar to hyper ens
from Wenzel et al. (2020).

2. NES-RS (depth, width): As described in Appendix B.1, NES navigates a complex (non-
Euclidean) search space of architectures by varying the cell, which involves changing both
the DAG structure of the cell and the operations at each edge of the DAG. We consider
a baseline in which we keep the cell fixed (the optimized DARTS cell) and only vary the
width and depth of the overall architecture. More specifically, we vary the number of initial
channels ∈ {12, 14, 16, 18, 20} (width) and the number of layers ∈ {5, 8, 11} (depth). We
apply NES-RS over this substantially simpler search space of architectures as usual: train K
randomly sampled architectures (i.e. sampling only depth and width) to form a pool and
select the ensemble from it.

The results shown in Figures 23 and Table 4 compare the two baselines above to DeepEns (DARTS),
NES-RS and NES-RE.4 As shown in Figure 23, NES-RE tends to outperform the baselines, though
is at par with HyperEns on CIFAR-100 without dataset shift (Figure 23a). Under the presence of
dataset shift (Figures 23b and 23c), both NES algorithms substantially outperform all baselines. Note
that both HyperEns and NES-RS (depth, width) follow the same protocol as NES-RS and NES-RE:
ensemble selection uses a shifted validation dataset when evaluating on a shifted test dataset. In terms
of classification error, the observations are similar as shown in Table 4. Lastly, we view the diversity
of the ensembles from the perspective of oracle ensemble loss in Figure 24. As in Section 5, results
here also suggest that NES agorithms tend to find more diverse ensembles despite having higher
average base learner loss.

4Note that runs of DeepEns (DARTS), NES-RE and NES-RS differ slightly in this section relative to Section
5, as we tune the learning rate and L2 regularization strength for each dataset instead of using the defaults used
in Liu et al. (2019). This yields a fair comparison: HyperEns varies the learning rate and L2 regularization
while using a fixed, optimized architecture (DARTS), whereas NES varies the architecture while using fixed,
optimized learning rate and L2 regularization strength.
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Figure 23: Plots show NLL vs. ensemble sizes comparing NES to the baselines introduced in
Appendix C.4 on CIFAR-10 and CIFAR-100 with and without respective dataset shifts (Hendrycks &
Dietterich, 2019).

Table 4: Classification errors comparing NES to the baselines introduced in Appendix C.4 for different
shift severities and M = 10. Best values are bold faced.

Dataset Shift
Severity

DARTS search space
DeepEns
(DARTS) HyperEns NES-RS

(depth, width) NES-RS NES-RE

C10
0 8.2 8.1 8.0 8.0 7.7
3 25.9 25.0 24.1 22.5 21.5
5 43.3 40.8 42.1 38.1 34.9

C100
0 28.8 28.1 28.8 28.4 28.4
3 54.0 52.7 53.1 48.9 48.5
5 68.4 67.2 67.9 61.3 60.7
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Figure 24: Average base learner loss and oracle ensemble loss for NES and the baselines introduced
in Appendix C.4 on CIFAR-10 and CIFAR-100. Recall that small oracle ensemble loss generally
corresponds to higher diversity.
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