
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

LiteGfm: A Lightweight Self-supervised Monocular Depth
Estimation Framework for Artifacts Reduction via Guided Image

Filtering
Anonymous Authors

ABSTRACT
Facing with two significant challenges for monocular depth esti-
mation under a lightweight network, including the preservation
of detail information and the artifact reduction of the predicted
depth maps, this paper proposes a self-supervised monocular depth
estimation framework, called LiteGfm. It contains a DepthNet with
an Anti-Artifact Guided (AAG) module and a PoseNet. In the AAG
module, a Guided Image Filtering with cross-detail masking is first
designed to filter the input features of the decoder for preserving
comprehensive detail information. Second, a filter kernel generator
is proposed to decompose the Sobel operator along the vertical and
horizontal axes for achieving cross-detail masking, which better
captures the structure and edge feature for minimizing artifacts.
Furthermore, a boundary-aware loss between the reconstructed and
input images is presented to preserve high-frequency details for de-
creasing artifacts. Extensive experimental results demonstrate that
LiteGfm under 1.9M parameters gets more optimal performance
than state-of-the-art methods.

CCS CONCEPTS
• Computing methodologies → Scene understanding; Neural
networks.

KEYWORDS
Monocular depth estimation, Guided image filter, Lightweight net-
work

1 INTRODUCTION
Scene understanding plays a vital role in various tasks, such as au-
tonomous driving, embodied navigation, and virtual scene construc-
tion. Particularly, the depth estimation task significantly enhances
the performance of localization and segmentation. Recently, depth
estimation based on images has become the mainstreammethod, in-
corporating both traditional approaches[1–3] and deep learning ap-
proaches, with the latter achieving superior performance. However,
the general supervised deep learning frameworks of depth estima-
tion depend on depth labels for training. It is prohibitively expensive
to attain precise ground-truth depth measurements through sensors
such as radar, depth cameras, and stereo cameras, hard to obtain
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Figure 1: Computational efficiency comparison. All results
are tested on the KITTI dataset with a resolution of 192 ×
640. The accuracy (𝛿1) and parameters of the representative
models and LiteGfm are presented.

across multiple scenes. Consequently, self-supervised depth estima-
tion methods have gained popularity, with methods based on stereo
images first to be proposed and displaying promising accuracy[4–6].
Despite this, they have limitations in terms of data collection with
insufficient data. Therefore, by employing image reconstruction
loss[7] and popular frameworks like ResNet[8] and VGG[9], monoc-
ular self-supervised depth estimation architectures have exhibited
significant results in multitask learning[10–12]. However, main-
stream network frameworks typically involve a large parameter
and a considerable computational resources demand, which makes
depth estimation on various edge devices challenging.

Nevertheless, the reduction in parameters leads to decreased
fitting capacity, and existing lightweight methods frequently suf-
fer from insufficient feature extraction. To address this, a dilated
convolution[13] has been designed and implemented in lightweight
frameworks to enhance feature extraction. It significantly increases
the receptive field of filters, thereby enabling the network to cap-
ture features from a broader context range. However, the enlarged
receptive field of dilated convolution results in a substantial loss of
image details. Thus, often occurs in the production of depth maps
with artifacts in depth prediction tasks.

First, to enhance feature detail information, a guided image fil-
tering (GIF) module with a cross-detail masking filter is proposed.
In contrast to the conventional approach of implementing filtering
at the end of the network, the GIF module is placed at the decoder’s
input to conduct filtering procedures, effectively reducing the loss

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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of detailed information. Furthermore, the utilization of guided im-
age filtering is favored, which transfers structural details from a
guide image to the target image. The implementation of the GIF
module significantly supplements the features of the decoder’s in-
put. Second, to eliminate edge artifacts, a lightweight filter kernel
generator was designed for achieving cross-detail masking. This
generator utilizes the Sobel operator in both vertical and horizon-
tal directions, followed by pooling and point-wise multiplication
operations, which enhance directional awareness features and effec-
tively supplement structural and edge features. Finally, a boundary
awareness loss is presented to eradicate detailed artifacts, which
offers improved differentiation between details and artifacts in high-
frequency regions and enhances the method’s ability to eliminate
detailed artifacts.

Hence, this paper proposes a lightweight but efficient approach
for self-supervised monocular depth estimation. Based on the cho-
sen backbone, a lightweight AAG module is incorporated in the
decoder’s input to fulfill the detailed information with a smooth gra-
dient. The AAG module encompasses a filter kernel generator and
GIF procedures. To avoid introducing extra parameters, we select
the Sharr operator due to its ability to capture more comprehensive
edge details, even weak edges. Moreover, a boundary-aware loss is
employed to provide additional optimization of the reconstructed
image for more detailed features. As illustrated in Figure 1, under
identical experimental settings, our proposed LiteGfm demonstrates
superior equilibrium between performance and complexity com-
pared to the prevailing state-of-the-art method in monocular depth
estimation. To summarize, this paper’s contributions are:

• A novel lightweight self-supervised monocular depth esti-
mation framework with a guided image filter architecture is
proposed, called LiteGfm, which achieves the smallest model
size and superior accuracy with extensive experiments on
KITTI. Sufficient ablation studies confirm the effectiveness
of different design choices.

• This paper presents a GIF module that applies guided image
filtering at the decoder’s input, significantly fulfilling the
detailed information with reduced parameters for tackling
the challenge of neglected detailed information.

• This paper develops a lightweight guided filter kernel gener-
ator achieving cross-detail masking that utilizes the Sobel
operator to extract edge information, tackling the challenge
of emerged edge artifacts. Additionally, boundary-aware
loss contributes to different details and artifacts in high-
frequency areas, which reduces the detailed artifacts in the
predicted depth maps.

The subsequent sections are structured as follows: Section 2
provides an overview of relevant research studies. Section 3 presents
the method in detail. Section 4 discusses the experimental results
and analysis. Section 5 concludes the paper.

2 RELATEDWORK
2.1 Self-supervised Monocular Depth

Estimation
For monocular supervised methods, researchers consider it as a
view synthesis task inspired by [14]. Then Zhou et al.[7] introduces

an innovative approach with a distinct pose network to predict the
6-DoF pose between temporally adjacent frames, thereby substi-
tuting the established geometric constraints derived from stereo
pairs. This has proved a lot of self-supervised monocular depth
estimation. Based on it, certain researchers have proposed the in-
corporation of supplementary tasks, such as flow estimation[15, 16],
semantic segmentation[17, 18], domain adaptation[19, 20], uncer-
tainty estimation[21, 22], etc. Furthermore, improving loss can
achieve favorable results without introducing supplementary tasks.
The Monodepth2[10] incorporates the minimum re-projection loss
to address occlusion challenges and employs automatic masking
loss to eliminate moving objects at the same pace as the camera.
Currently, Monodepth2 has emerged as the standard, and which
self-supervised training strategy is also employed in our work.

In recent years, the emergence of edge devices has prompted
researchers to focus on optimizing the balance between model
complexity and accuracy. Some lightweight models are achieved
by combining the new frameworks. HR-Depth[23] introduces a
framework based on the MobileNetV3[24], yielding results simi-
lar to Monodepth2 with significantly fewer parameters. Similarly,
SwiftDepth[25] creates an architecture with CNN and ViT[26],
which demonstrates superior performance results. MViTDepth[27]
also designs a novel architecture building upon MobileViT[28], uti-
lizing it as a teacher model for knowledge distillation to compress
the model and subsequently enhance the performance. Besides,
XDistill[29]presents additional supervision for the DepthNet, facili-
tating cross-task knowledge distillation and enhancing prediction
accuracy with small parameters. Moreover, certain approaches aim
to balance model complexity and accuracy by enhancing feature
extraction modules. R-MSFM[30], a lightweight model integrates
the upsampling module of multi-scale feature modulation and pa-
rameter learning, enhancing depth estimation quality.

However, the reduction of parameters leads to decreased fit-
ting capacity, and lightweight methods frequently suffer from in-
sufficient feature extraction. A hybrid architecture Lite-Mono[31]
proposes a Consecutive Dilated Convolutions (CDC) module to
effectively extract rich multi-scale local features, which achieves
comparable results with a reduction of approximately 80% parame-
ters. But Lite-Mono utilizes the attention-based module, which adds
a lot of parameters. This paper introduces guide image filtering
and designs a lightweight filter kernel generator to decrease our
model’s complexity.

2.2 Guided Image Filter
Guided image filtering is a novel explicit image filter[32] that com-
putes the filtering output by considering the content of a guidance
image. It exhibits the nice property of edge-preserving smoothing
while also being computationally efficient and exact. Through this,
the utilization of images containing a greater amount of feature
information as reference images enables the transfer of structural
information to the desired target images. So some works try to uti-
lize the guided image filter to refine object masks[33, 34]. Different
from the classical guided image filtering, the deep learning-based
designed guided image filtering approaches are proven. The re-
cent deep joint filtering method designs two-branch convolution
subnetworks to extract features from the guidance and the target
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images[35]. Some combined the other mechanisms, such as deep
attentional guided image filtering presenting a multiscale module
to progressively generate the filtering result with the constructed
kernels from coarse to fine with guided image filtering[36]. Corre-
spondingly, a multiscale fusion strategy is introduced to reuse the
intermediate results in the coarse-to-fine process. Guided image
filtering has been implemented in various computer vision tasks,
such as face recognition[37], semantic segmentation[38, 39], and
image dehazing[40].

This paper refers to the concept of guided image filtering to
transfer the structures of the guidance image to the filtering output.
It solves the challenge of edge and detailed artifact elimination of
the predicted depth maps.

3 METHODS
3.1 The Proposed Framework: LiteGfm
This paper proposes the LiteGfm framework, a lightweight self-
supervised monocular depth estimation framework with a guided
image filter module. As is shown in Figure 2, the LiteGfm frame-
work consists of a DepthNet and a PoseNet. In the DepthNet, a
target image 𝐼𝑡 ∈ ℜ𝐻×𝑊 ×3 is fed into a convolution stem, which
comprises a down-sampling layer (i.e. 3×3 convolutions with stride
= 2.)and two 3 × 3 convolutions with stride = 1. Then, the features
flow into the following three stages, and each stage consists of a
down-sampling layer and a CDC module from Lite-Mono[31]. The
CDC blocks in each stage have different dilation rates that are [1, 2,
3] for stage 1, [1, 2, 3] for stage 2, and [1, 2, 3, 2, 4, 6] for stage 3.
This is utilized in the two sizes of the proposed LiteGfm.

In the decoder of theDepthNet, our proposed framework presents
an AAG module to solve the problems of neglected detailed infor-
mation and emerged artifacts. The AAG module consists of a light-
weight guided kernel generator and GIF module, but effectively
maintains the parameter only at 0.007 M, diminishing the model’s
complexity. Taking the first stage as an illustration, the feature map
after the down-sampling layer and the pooled target image are both
as input to generate a guided kernel. Thereafter, the guided kernels
and each stage’s output are input to the GIF module to achieve
cross-detail masking. Then it outputs the feature maps with more
detailed information and fewer artifacts. In the end, we utilize bi-
linear up-sampling to expand the spatial dimension. After each
up-sampling block, a prediction block is followed to generate the
inverse depth map at the assigned resolution. Likewise, the other
two kernels can be generated by the feature among the other two
stages. Our framework employs the identical PoseNet as[10, 31],
which is input adjacent monocular frames to calculate the camera
pose for achieving self-supervision learning.

Then this paper illustrates these present novel modules and the
designed loss for training.

3.2 Guided Image Filtering
This part introduces the GIF module in the proposed AAG module.
The challenge we intend to tackle is to output the depth map with
the absence of details. As a result, we select the results of the down-
sample layer in each stage as the target feature 𝐼𝑡 ∈ ℜ𝐻×𝑊 ×𝐶𝑡

,
and the pooled source image with comprehensive feature infor-
mation input as the guided feature 𝐼𝑔 ∈ ℜ𝐻×𝑊 ×𝐶𝑔

, where 𝐻 ,𝑊 ,

and 𝐶 denote the height, width, and channels respectively. Com-
bined with the filter kernels𝑊 𝑘 generated by 𝐼𝑡 and 𝐼𝑔 , the input
feature can be reconstructed with edges and gradients preserved
by getting the prior information from the guided kernels. After
passing through the below layers, the ultimate output of each stage{
𝐹 𝑖𝑠𝑡𝑎𝑔𝑒 , 0 ≤ 𝑖 < 𝑚

}
will consequently drop some detailed informa-

tion, which is crucial to the depth prediction. This GIF module
utilizes detailed information of the object within the feature do-
main to enhance filtering outcomes.

As shown in Figure 2, this filter kernel’s whole guidance process
can be exposed to:

𝐼3 = 𝐶𝑜𝑛𝑣 (𝐹 3𝑠𝑡𝑎𝑔𝑒 ), 𝐹3 = 𝐺𝐼𝐹 [𝐼3,𝑊 𝑘
3 ], (1)

𝐼2 = 𝐶𝑜𝑛𝑣 (𝐶𝑜𝑛𝑐𝑎𝑡 (𝐹 2𝑠𝑡𝑎𝑔𝑒 , 𝐹
↑
3 )), 𝐹2 = 𝐺𝐼𝐹 [𝐼2,𝑊 𝑘

2 ], (2)

𝐼1 = 𝐶𝑜𝑛𝑣 (𝐶𝑜𝑛𝑐𝑎𝑡 (𝐹 1𝑠𝑡𝑎𝑔𝑒 , 𝐹
↑
2 )), 𝐹1 = 𝐺𝐼𝐹 [𝐼1,𝑊 𝑘

1 ] . (3)

where 𝐹 𝑖𝑠𝑡𝑎𝑔𝑒 denotes the final outputs of the ith stage; 𝐼𝑖 and𝑊 𝑘
𝑖

denote the inputs of the ith process of the GIF module; ↑ is an
upsampling operation. 𝐺𝐼𝐹 (·, ·) is the guided image filter to guide
the corresponding features. For feature 𝐼𝑖 , the filter process is as
follows :

𝐹𝑖 =
∑︁

(ℎ,𝑤 ) ∈ (𝐻,𝑊 )
𝑊 𝑘

𝑖 (ℎ,𝑤)𝐼𝑖 (ℎ,𝑤) (4)

The filtered features {𝐹𝑖 , 0 ≤ 𝑖 < 𝑚} are directed to capture added
details, and are subsequently forwarded to the network to generate
a superior depth map. The following elaborates on the guided image
kernel generator and the loss designed for network training

3.3 Guided Image Filter Kernel Generator
The guided image filter is employed to upgrade the target image’s
structural details and eliminate the edge artifacts of depth maps.
The proposed kernel generator is designed to produce kernels that
incorporate guided constructive information through cross-detail
masking.

As illustrated in Figure 3, it takes target feature 𝐼𝑡 and guided
feature 𝐼𝑔 as the inputs. First, we utilize a two-branch network
to completely extract detailed information crossly. Then combine
the outputs of the two branches to constitute the kernel. Taking
the horizontal direction as an illustration, we apply the Scharr
operator in the horizontal direction, which can detect fainter edges
with greater efficiency to enhance the comprehensive extraction of
object edges of an image. Next, a pooling operation is conducted
horizontally. The entire process can be calculated as:

𝐹 𝑡
ℎ𝑜𝑟

= 𝐴𝑣𝑔(𝑆ℎ𝑎𝑟𝑟ℎ𝑜𝑟 (𝐶𝑜𝑛𝑣 (𝐼𝑡 ))) (5)

𝐹
𝑔

ℎ𝑜𝑟
= 𝐴𝑣𝑔(𝑆ℎ𝑎𝑟𝑟ℎ𝑜𝑟 (𝐶𝑜𝑛𝑣 (𝐼𝑔))) (6)

where the 𝐴𝑣𝑔 encodes the feature 𝑋ℎ𝑜𝑟 ∈ ℜ𝐻×𝑊 ×𝐶 from hori-
zontal directions with pooling kernels (H, 1), which is capable of
extracting global context efficiently, can be presented as :

𝐴𝑣𝑔(𝑋ℎ𝑜𝑟 ) =
1
𝑊

∑︁
0≤𝑖<𝑊

𝑋ℎ𝑜𝑟 (ℎ, 𝑖) (7)

Currently, the features collected by the guided and target features
along the horizontal direction are subjected to max-pooling. Then
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Figure 2: Overview of the proposed LiteGfm. In the training stage, the target RGB image is input into the DepthNet. The
encoder of the DepthNet uses dilated convolution to expand the receptive field, and the decoder generates a guided filter kernel
to extract rich structural and edge information. Then, the target and adjacent frames are input to the PoseNet to obtain the
relative pose of the camera. Finally, the loss is used to optimize the DepthNet and the PoseNet simultaneously. In the testing
stage, only DepthNet is employed for depth prediction to obtain a depth map.

we obtain the optimal edge information in the horizontal direction,
denoted as𝑊 𝑘

ℎ𝑜𝑟
. The process can be formulated as:

𝑊 𝑘
ℎ𝑜𝑟

= 𝑀𝑎𝑥 (𝐹 𝑡
ℎ𝑜𝑟

, 𝐹
𝑔

ℎ𝑜𝑟
) (8)

Simultaneously, we also obtain an additional vertical branch
outcome denoted as𝑊 𝑘

𝑣𝑒𝑟 . It is assumed that:

𝑊 𝑘
𝑣𝑒𝑟 = 𝑀𝑎𝑥 (𝐹 𝑡𝑣𝑒𝑟 , 𝐹

𝑔
𝑣𝑒𝑟 ) (9)

The final guided filter kernel, which achieves the cross-detail
masking can be derived as:

𝑊 𝑘 =𝑊 𝑘
ℎ𝑜𝑟

⊙𝑊 𝑘
𝑣𝑒𝑟 (10)

where𝑊 𝑘 is the generated filter kernel; ⊙ means element-wise
multiplication.

3.4 Self-supervised Learning
Following [7], this work treats depth estimation as the task of image
reconstruction. We first train a depth net, giving an RGB image 𝐼𝑡
as input, and output a per-pixel depth map 𝐷𝑡 . Then, we train a
pose net to estimate the relative camera pose𝑇𝑡→𝑠 from temporally
adjacent frames. So, warp 𝐼𝑠 into 𝐼𝑡 to generate the constructive

image 𝐼𝑠→𝑡 :

𝐼𝑠→𝑡 = 𝐼𝑠 ⟨𝑝𝑟𝑜 𝑗 (𝐷𝑡 ,𝑇𝑡→𝑠 , 𝐾)⟩ (11)

where 𝑝𝑟𝑜 𝑗 (·) serves as the resulting 2D coordinates of the pro-
jected depths 𝐷𝑡 in 𝐼𝑡 , 𝑠 ∈ [𝑡 − 1, 𝑡 + 1], and ⟨·⟩ is the sampling
operator. Finally, the image reconstruction loss is used to optimize
our network.

3.4.1 Image Reconstruction Loss. The per-pixel reprojection loss is
defined as:

ℓ𝑝 (𝐼𝑠 , 𝐼𝑡 ) = min
𝐼𝑠 ∈[−1,1]

ℓ𝑝 (𝐼𝑠→𝑡 , 𝐼𝑡 ) (12)

where ℓ𝑝 is the photometric loss defined as:

ℓ𝑝 (𝐼𝑠→𝑡 , 𝐼𝑡 ) = 𝛼
1 − 𝑆𝑆𝐼𝑀 (𝐼𝑠→𝑡 , 𝐼𝑡 )

2
+ (1 − 𝛼) ∥𝐼𝑠→𝑡 − 𝐼𝑡 ∥ (13)

where SSIM is the structural similarity index measure[41] and 𝛼 is
set to 0.85[10].

Auto-masking is applied to remove moving pixels where no
relative camera motion is observed[10]:

𝜇 = min
𝐼𝑠 ∈[−1,1]

ℓ𝑝 (𝐼𝑠 , 𝐼𝑡 ) > min
𝐼𝑠 ∈[−1,1]

ℓ𝑝 (𝐼𝑠→𝑡 , 𝐼𝑡 ) (14)
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Figure 3: The structure of the proposed kernel generator. The target and guided features are input to a two-branch network for
calculating a guided image filter kernel.

Therefore, the image reconstruction loss can be expressed as:

ℓ𝑟 (𝐼𝑠→𝑡 , 𝐼𝑡 ) = 𝜇 · ℓ𝑝 (𝐼𝑠 , 𝐼𝑡 ) (15)

3.4.2 Edge-aware Smoothness Loss. Following [10, 42], the edge-
aware smoothness regularization loss is applied to enhance the
depth estimation at object boundaries, followed by:

ℓ𝑠𝑚𝑜𝑜𝑡ℎ =
��𝜕𝑥𝑑∗𝑡 �� 𝑒−|𝜕𝑥 𝐼𝑡 | + ��𝜕𝑥𝑑∗𝑡 �� 𝑒 |𝜕𝑦𝐼𝑡 | (16)

where 𝑑∗𝑥 = 𝑑𝑡/𝑑𝑡 is the mean-normalized disparity.

3.4.3 Boundary-aware Loss. Due to the equal treatment of all pix-
els, the mentioned approach of optimizing the loss at the pixel
level fails to effectively retain high-frequency structural details and
causes detailed artifacts in a depth map. To address this issue and
encourage the network to prioritize high-frequency components,
a boundary-aware loss is introduced. This loss aims to improve
the model’s capability to generate sharper boundaries and intricate
details. Followed by [43], the boundary-aware loss is defined as:

ℓ𝑏𝑎 = ∥𝑀 ⊙ 𝐼𝑡 −𝑀 ⊙ 𝐼𝑠→𝑡 ∥1 (17)

where we define the𝑀 as the boundary mask:

𝑀 = (▽𝑥 𝐼𝑡 − ▽𝑥 𝐼𝑠→𝑡 ) ⊙ (▽𝑦𝐼
𝑡 − ▽𝑦𝐼𝑠→𝑡 ) (18)

where ⊙ denotes the elementwise multiplication and ▽ is the Sobel
operator to detect the boundary information. With these three
losses, the total loss is formulated as:

ℓ = 𝜆1ℓ𝑝 + 𝜆2ℓ𝑠𝑚𝑜𝑜𝑡ℎ + 𝜆3ℓ𝑏𝑎 (19)

where 𝜆1, 𝜆2, 𝜆3 are set as 1, 1𝑒−3, 0.02 respectively. We need to
enhance the edge information without compromising the accuracy
of the prediction, while the consistency loss prevails, and 𝜆2 is set
as [10].

4 EXPERIMENTS
In this section, a thorough explanation of the implementation of our
framework is provided. Then, we evaluate the proposed LiteGfm
and LiteGfm-small frameworks on KITTI datasets. Next, compre-
hensive ablation experiments are conducted to verify the effect
of each contribution. Finally, visual experiments demonstrate the
impact of these components within the framework individually.

4.1 Implementation Details
4.1.1 Dataset. The KITTI dataset[44] is used to train and evaluate
the latest SOTA algorithms. The Eigen split[14] which has 39,810
monocular triplets for training, 4,424 images for validation, and 697
for testing is applied. The input image resolutions are set to 192×640.
Similar to MonoDepth2[10], the predicted depth is confined in the
range of [0, 80] m.

4.1.2 Hyperparameters. This work is implemented in PyTorch and
trained on NVIDIA GeForce RTX 3090 with a batch size of 12.
The optimizer is AdamW with the weight decay set to 1𝑒−2. All
experiments involving the compared methods are trained from
scratch. We set the initial learning rate to 5𝑒−4 and change it to
1𝑒−4 from 31 epochs for fine-tuning. The network is trained for 60
epochs, which takes about 20 hours.

4.1.3 Evaluation metrics. The performance of the proposed frame-
work is reported by the standard metrics proposed from[49], con-
sisting of absolute relative difference (Abs Rel), square-related differ-
ence (Sq Rel), root mean square error (RMSE), RMSE log, 𝛿1 < 1.25,
𝛿2 < 1.252, 𝛿3 < 1.253.

4.2 Depth Estimation Results
Table 1 displays the experiment results of LiteGfm and some repre-
sentative methods with model sizes lower than 35 M on the KITTI



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: The quantitative results of LiteGfm with some recent representative methods on the Eigen split[14] of the KITTI
dataset[44]. The best results are presented in bold for each category, with the second-best results underlined.

Methods Abs Rel Sq Rel RMSE RMSE log 𝛿1 𝛿2 𝛿3 Param.

Zhou[45] 0.183 1.595 6.709 0.270 0.734 0.902 0.959 31.6M
GeoNet[46] 0.155 1.296 5.857 0.233 0.793 0.931 0.973 31.6M
DDVO[47] 0.151 1.257 5.583 0.228 0.810 0.936 0.974 28.1M
EPC++[48] 0.141 1.029 5.350 0.216 0.816 0.941 0.976 33.2M

MonoDepth2-ResNet18[10] 0.132 1.044 5.142 0.210 0.845 0.948 0.977 14.3M
MonoDpeth2-ResNet50[10] 0.131 1.023 5.064 0.206 0.849 0.951 0.979 32.5M

R-MSFM3[30] 0.128 0.965 5.019 0.207 0.853 0.951 0.977 3.5M
R-MSFM6[30] 0.126 0.944 4.981 0.204 0.857 0.952 0.978 3.8M

Lite-Mono-tiny[31] 0.125 0.935 4.986 0.204 0.853 0.950 0.978 2.1M
Lite-Mono-small[31] 0.123 0.919 4.926 0.202 0.859 0.951 0.977 2.5M

Lite-Mono[31] 0.121 0.876 4.918 0.199 0.859 0.953 0.980 3.1M
SwiftDepth-small[25] 0.132 1.040 5.148 0.210 0.846 0.948 0.976 3.6M

SwiftDepth[25] 0.128 1.020 5.093 0.205 0.850 0.951 0.978 6.4M
LiteGfm-small (ours) 0.123 0.924 4.922 0.199 0.858 0.953 0.980 1.7M

LiteGfm (ours) 0.117 0.871 4.797 0.194 0.870 0.957 0.981 1.9M

LiteGfm

—small

SwiftDepth

Input

LiteMono

Monodepth2

LiteGfm

Figure 4: Visualization of LiteGfm and some methods[10, 25, 31] on the Eigen split[14] of the KITTI dataset[44].

dataset[44]. All of the results are without pre-training on ImageNet.
Compared to the standard model Monodepth2 of the ResNet50 ver-
sion and the current advanced lightweight model Lite-Mono, the
LiteGfm performs superior with the minimal parameter (1.9 M).
The small-size LitGfm, with the lowest parameters (1.7 M), also
achieves satisfactory results among all small-size models, even most
of the full-size models.

Moreover, Figure 4 shows the quantitative comparison of depth
maps among these lightweight models. LiteGfm decreases the edge
artifacts through the cross-detail masking, which objects in the
depth maps have a clearer edge, such as the billboard with a regular
shape in column 1 and the vehicles of different sizes and colors in
columns 2 and 3. Besides, more detailed artifacts are presented in
Lite-Mono and SwiftDepth, yet less on LiteGfm which has a remark-
able performance on the shady wall with complicated structure in
column 4 and distant traffic lights or slender poles in columns 3 and

5. Furthermore, with the boundary-aware loss, LiteGfm displays a
more stable prediction, which can be verified from the great predic-
tion of trees and pedestrians with light changes in columns 2 and 5.
In a word, LiteGfm achieves satisfactory results in decreasing the
edge and detailed artifacts.

4.3 Complexity and Speed Evaluation.
The performance of the proposed framework LiteGfm is evaluated
in terms of model complexity and inference speed. As shown in
Table 2, our LiteGfm has the lowest model parameters, which is
decreased by 87% compared to Monodepth2[10]. Coming to the
decoder part, our filtering module evitably increases the FLOPs
and inference time. Furthermore, the comparison of computational
efficiency is depicted in Figure 1.
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Table 2: Model complexity and speed evaluation. Params denote the number of parameters. FLOPs are floating points of
operations. Speed is inference time.

Methods Encoder Decoder Full Model
Params
(M)

FLOPs
(G)

speed
(ms)

Params
(M)

FLOPs
(G)

speed
(ms)

Params
(M)

FLOPs
(G)

speed
(ms)

MonoDepth2 11.2 4.5 0.8 3.1 3.5 0.9 14.3 8.0 1.7
R-MSFM3 0.7 2.4 0.2 2.8 14.1 3.4 3.5 16.5 3.6
R-MSFM6 0.7 2.4 0.2 3.1 28.8 5.6 3.8 31.2 5.8
MViT-Depth-tiny 1.0 0.7 1.5 0.8 0.8 0.3 1.8 1.5 1.8
MViT-Depth-small 1.9 1.8 1.9 0.9 1.0 0.4 2.8 2.8 2.3
MViT-Depth 5.0 3.6 2.2 1.3 1.1 0.4 6.3 4.7 2.6
Lite-Mono-tiny 2.0 2.4 1.6 0.2 0.7 0.2 2.5 4.8 1.8
Lite-Mono-small 2.3 4.1 2.0 0.2 0.7 0.2 2.5 4.8 2.2
Lite-Mono 2.9 4.4 2.1 0.2 0.7 0.2 3.1 5.1 2.3
SwiftDepth-small 3.0 1.5 1.7 0.6 2.1 0.2 3.6 3.6 1.9
SwiftDepth 5.6 2.4 2.2 0.8 2.5 0.2 6.4 4.9 2.4
LiteGfm-small 1.5 1.9 1.2 0.2 0.5 0.9 1.7 2.4 2.1
LiteGfm 1.7 3.3 1.7 0.2 0.7 0.9 1.9 4.0 2.6

4.4 Ablation Experiments
In this part, we verify the components of our model contribute to
the overall performance. Above all, as shown in Figure 2, the AAG
module mainly consists of the kernel generator and the guided
filtering process. For the kernel generator, our model utilizes the
current method which is two branches with the Scharr operator.
Before this, we tried other kernel generation methods. We differ-
entiate them with new filter kernels and old filter kernels. For the
guided filtering process, we select the guided object in a strategy
that maximizes the complement of structure and edge information,
i.e. the features in the decoder. Additionally, the features output
by each stage in the encoder are tried to filter and then feed the
results into the decoder. This paper use in encoder and in decoder to
distinguish. Besides, we execute boundary-aware loss ℓ𝑏𝑎 to train
our model to avoid the artifacts of depth maps. In Table 3, the five
variants of the model are presented the following:

• Model 1, which is the backbone without guided image filter,
BA loss.

• Model 2, which is the backbone trained with only BA loss.
• Model 3, which uses the old filter kernel to guide the en-
coder’s features, is trained with BA loss.

• Model 4, which uses the old filter kernel to guide the de-
coder’s features, is trained with BA loss.

• LiteGfm, which uses the new filter kernel to guide the de-
coder’s features, is trained with BA loss.

The quantitative results of ablation are listed in Table 3. Model 1
exhibits the worst performance in the absence of any of our contri-
butions. The performance of the proposed LiteGfm surpasses that
of the ablated models from the metrics results. Furthermore, every
component proposed in our model has the potential to enhance the
network performance substantially. The following gives a detailed
analysis and some visualization results of these components.

Figure 5: Comparison of feature maps filtered by different
guided filtering kernels.

4.5 Visualization of the Different Guided Filter
Kernels

This part shows the experimental results of different filter kernels
designed in the experimental process. As shown in Table 3, com-
pared with the model without a guided image filter, both models
with a guided image filter in the decoder only increase the number
of parameters by 0.007 M. However, this slight increase in parame-
ters leads to a significant improvement in the model’s accuracy. An
initial method to create the guided image filter kernels involves it-
eratively subtracting the two sets of features of the input generator
and subsequently establishing a cross-connection to supplement
the information. However, it is noted that filters generated through
this approach may disregard a significant portion of faint edge
details. Consequently, in light of the artifacts stemming from the
absence of structural and edge information, a dual-branch structure
is employed to capture more subtle edges using the Scharr operator.

Figure 5 displays the depth maps produced in the absence of the
guided image filter (i.e. Model 1) alongside those generated with
two distinct guided image filters (i.e. Model 4 and LiteGfm), and the
resultant feature map following decoder filtering. Model 1 shows
the feature map outputs of the decoder at the corresponding stage.
Notably, without a guided image filter, the baseline fails to perceive
the scene structure, especially in regions with few substances to
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Table 3: Results of ablation experiments in the five models.

Loss filter kernels guided object Params (M) Abs Rel Sq Rel RMSE RMSE log 𝛿1 𝛿2 𝛿3

Model1 \ \ \ 1.936 0.121 0.948 4.925 0.200 0.863 0.954 0.979
Model2

√ \ \ 1.936 0.119 0.945 4.915 0.198 0.865 0.955 0.979
Model3

√
old in encoder 1.957 0.120 0.933 4.910 0.198 0.869 0.956 0.980

Model4
√

old in decoder 1.943 0.120 0.927 4.908 0.197 0.866 0.956 0.980
LiteGfm

√
new in decoder 1.943 0.117 0.871 4.797 0.194 0.870 0.958 0.981

find clues. A designed guided image filter can restore the depth
of these regions with better accuracy and fewer edge and detailed
artifacts.

4.6 Benefits of Guided Object

Model 4

Model 3

Input

Figure 6: Comparison of depth maps of different guided ob-
jects.

Model 3 and Model 4 use a consistent filter kernel to process
the characteristics of distinct stages in the encoder and decoder
respectively.

From Table 3, the quantization results for Model 3 are signifi-
cantly poorer than those for Model 4. An extra 0.016M parameter
is needed for Model 3 to synchronize the filter kernel and features.
Therefore, choosing to filter the features in the decoder facilitates
the efficient incorporation of spatial details, mitigating redundant
extraction of structural information, and minimizing parameter
count.

Figure 6 shows the comparison of prediction depth maps with
different guided objects. Compared to the filtering in the encoder,
the results of filtering in the decoder provide the depth prediction
withmore details, including the road signs, poles, and billboards (the
box area in Figure 6). Meanwhile, filtering in the decoder presents
an effective ability to decrease the artifacts, particularly the objects
near the edge of the image.

4.7 Benefits of BA loss

Model 1

Model 2

Input

Figure 7: Comparison of depth maps with or without ℓ𝑏𝑎 .

It can be challenging to differentiate between artifacts and ac-
tual details in parts of the image with high frequencies, leading
to inaccuracies in reconstructing the image[50]. By utilizing ℓ𝑏𝑎 ,
the network is prompted to prioritize high-frequency elements, en-
hancing the model’s ability to distinguish between genuine edges
and artifacts. Consequently, the depth map produced by our model
exhibits a more refined structure with reduced instances of detailed
artifacts.

Table 3 demonstrates that the incorporation of ℓ𝑏𝑎 significantly
improves the performance from the quantitative results of Model 1
and Model 2. Meanwhile, Figure 7 displays the visualization results
of Model 1 and Model 2 for comparison. When the light changes
greatly in the image (the box area), the introduction of ℓ𝑏𝑎 can
capture more details for the prominence of detailed artifacts.

5 CONCLUSIONS
This paper proposes a lightweight self-supervised monocular depth
estimation method called LiteGfm to tackle the challenges that
are the preservation of detailed information and the artifact reduc-
tion of the predicted depth maps. In the proposed architecture, an
AAG module involving a GIF module with cross-detail masking
and a filter kernel generator is presented. The GIF module uses
the cross-detail masking filter to execute the input features of the
decoder, which preserves comprehensive detail information. Ad-
ditionally, a filter kernel generator is proposed to decompose the
Sobel operator along the vertical and horizontal axes for achiev-
ing cross-detail masking, which is devoted to decreasing the edge
artifacts. For minimizing detailed artifacts, a boundary-aware loss
between the reconstructed and input images is presented to pre-
serve high-frequency details. Extensive experiments on the Kitti
dataset demonstrate that LiteGfm effectively reduces the number
of parameters and achieves superior performance.
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