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Abstract

Actor-critic (AC) methods are widely used in reinforcement learning (RL), and1

benefit from the flexibility of using any policy gradient method as the actor and2

value-based method as the critic. The critic is usually trained by minimizing the TD3

error, an objective that is potentially decorrelated with the true goal of achieving a4

high reward with the actor. We address this mismatch by designing a joint objective5

for training the actor and critic in a decision-aware fashion. We use the proposed6

objective to design a generic, AC algorithm that can easily handle any function7

approximation. We explicitly characterize the conditions under which the resulting8

algorithm guarantees monotonic policy improvement, regardless of the choice of9

the policy and critic parameterization. Instantiating the generic algorithm results10

in an actor that involves maximizing a sequence of surrogate functions (similar to11

TRPO, PPO), and a critic that involves minimizing a closely connected objective.12

Using simple bandit examples, we provably establish the benefit of the proposed13

critic objective over the standard squared error. Finally, we empirically demonstrate14

the benefit of our decision-aware actor-critic framework on simple RL problems.15

1 Introduction16

Reinforcement learning (RL) is a framework for solving problems involving sequential decision-17

making under uncertainty, and has found applications in games [37, 49], robot manipulation tasks [54,18

63] and clinical trials [44]. RL algorithms aim to learn a policy that maximizes the long-term return by19

interacting with the environment. Policy gradient (PG) methods [58, 53, 28, 24, 46] are an important20

class of algorithms that can easily handle function approximation and structured state-action spaces,21

making them widely used in practice. PG methods assume a differentiable parameterization of the22

policy and directly optimize the return with respect to the policy parameters. Typically, a policy’s23

return is estimated by using Monte-Carlo samples obtained via environment interactions [58]. Since24

the environment is stochastic, this approach results in high variance in the estimated return, leading25

to higher sample-complexity (number of environment interactions required to learn a good policy).26

Actor-critic (AC) methods [28, 42, 5] alleviate this issue by using value-based approaches [51, 57] in27

conjunction with PG methods, and have been empirically successful [19, 22]. In AC algorithms, a28

value-based method (“critic”) is used to approximate a policy’s estimated value, and a PG method29

(“actor”) uses this estimate to improve the policy towards obtaining higher returns.30

Though AC methods have the flexibility of using any method to independently train the actor and31

critic, it is unclear how to train the two components jointly in order to learn good policies. For32

example, the critic is typically trained via temporal difference (TD) learning and its objective is33

to minimize the value estimation error across all states and actions. For large real-world Markov34

decision processes (MDPs), it is intractable to estimate the values across all states and actions, and35

algorithms resort to function approximation schemes. In this setting, the critic should focus its limited36

model capacity to correctly estimate the state-action values that have the largest impact on improving37

the actor’s policy. This idea of explicitly training each component of the RL system to help the38

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



agent take actions that result in higher returns is referred to as decision-aware RL. Decision-aware39

RL [17, 16, 1, 10, 13, 14, 31] has mainly focused on model-based approaches that aim to learn a40

model of the environment, for example, the rewards and transition dynamics in an MDP. In this41

setting, decision-aware RL aims to model relevant parts of the world that are important for inferring a42

good policy. This is achieved by (i) designing objectives that are aware of the current policy [1, 14]43

or its value [17, 16], (ii) differentiating through the transition dynamics to learn models that result44

in good action-value functions [13] or (iii) simultaneously learning value functions and models that45

are consistent [50, 39, 34]. In the model-free setting, decision-aware RL aims to train the actor46

and critic cooperatively in order to optimize the same objective that results in near-optimal policies.47

In particular, Dai et al. [10] use the linear programming formulation of MDPs and define a joint48

saddle-point objective (minimization w.r.t. the critic and maximization w.r.t. the actor). The use of49

function approximation makes the resulting optimization problem non-convex non-concave leading to50

training instabilities and necessitating the use of heuristics. Recently, Dong et al. [11] used stochastic51

gradient descent-ascent to optimize this saddle-point objective and, under certain assumptions on the52

problem, proved that the resulting policy converges to a stationary point of the value function. Similar53

to Dong et al. [11], we study a decision-aware AC method with function approximation and equipped54

with theoretical guarantees on its performance. In particular, we make the following contributions.55

Joint objective for training the actor and critic: Following Vaswani et al. [56], we distinguish56

between a policy’s functional representation (sufficient statistics that define a policy) and its parame-57

terization (the specific model used to realize these sufficient statistics in practice). For example, a58

policy can be represented by its state-action occupancy measure, and we can use a neural network59

parameterization to model this measure in practice (refer to Sec. 2 for more examples). In Sec. 3.2,60

we exploit a smoothness property of the return and design a lower-bound (Prop. 1) on the return of an61

arbitrary policy. Importantly, the lower bound depends on both the actor and critic, and immediately62

implies a joint objective for training the two components (minimization w.r.t the critic and maximiza-63

tion w.r.t the actor). Unlike Dai et al. [10], Dong et al. [11], the proposed objective works for any64

policy representation – the policy could be represented as conditional distributions over actions for65

each state or a deterministic mapping from states to actions [20]. Another advantage of working in66

the functional space is that our lower bound does not depend on the parameterization of either the67

actor or the critic. Moreover, unlike Dai et al. [10], Dong et al. [11], our framework does not need to68

model the distribution over states, and hence results in a more efficient algorithm. We note that our69

framework can be used for other applications where gradient computation is expensive or has large70

variance [38], and hence requires a model of the gradient (e.g., variational inference).71

Generic actor-critic algorithm: In Sec. 3.2, we use our joint objective to design a generic decision-72

aware AC algorithm. The resulting algorithm (Algorithm 1) can be instantiated with any functional73

representation of the policy, and can handle any policy or critic parameterization. Similar to Vaswani74

et al. [56], the actor update involves optimizing a surrogate function that depends on the current75

policy, and consequently supports off-policy updates, i.e. similar to common PG methods such as76

TRPO [45], PPO [47], the algorithm can update the policy without requiring additional interactions77

with the environment. This property coupled with the use of a critic makes the resulting algorithm78

sample-efficient in practice. In contrast with TRPO/PPO, both the off-policy actor updates and critic79

updates in Algorithm 1 are designed to maximize the same lower bound on the policy return.80

Theoretical guarantees: In Sec. 4.1, we analyze the necessary and sufficient conditions in order81

to guarantee monotonic policy improvement, and hence convergence to a stationary point. We82

emphasize that these improvement guarantees hold regardless of the policy parameterization and the83

quality of the critic (up to a certain threshold that we explicitly characterize). This is in contrast to84

existing theoretical results that focus on the tabular or linear function approximation settings or rely85

on highly expressive critics to minimize the critic error and achieve good performance for the actor.86

By exploiting the connection to inexact mirror descent (MD), we prove that Algorithm 1 is guaranteed87

to converge to the neighbourhood of a stationary point where the neighbourhood term depends on the88

decision-aware critic loss (Sec. 4.2). Along the way, we improve the theoretical guarantees for MD89

on general smooth, non-convex functions [15, 12]. As an additional contribution, we demonstrate a90

way to use the framework of Vaswani et al. [56] to “lift” the existing convergence rates [60, 36, 23]91

for the tabular setting to use off-policy updates and function approximation (Appendix D.2 and D.3).92

This gives rise to a simple, black-box proof technique that might be of independent interest.93

Instantiating the general AC framework: We instantiate the framework for two policy representa-94

tions – in Sec. 5.1, we represent the policy by the set of conditional distributions over actions (“direct”95
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representation), whereas in Sec. 5.2, we represent the policy by using the logits corresponding to a96

softmax representation of these conditional distributions (“softmax” representation). In both cases,97

we instantiate the generic lower-bound (Propositions 4, 6), completely specifying the actor and critic98

objectives in Algorithm 1. Importantly, unlike the standard critic objective that depends on the squared99

difference of the value functions, the proposed decision-aware critic loss (i) depends on the policy100

representation – it involves the state-action value functions for the direct representation and depends101

on the advantage functions for the softmax representation, and (ii) penalizes the under-estimation and102

over-estimation of these quantities in an asymmetric manner. For both representations, we consider103

simple bandit examples (Propositions 5, 7) which show that minimizing the decision-aware critic104

loss results in convergence to the optimal policy, whereas minimizing variants of the squared loss do105

not. In App. B, we consider a third policy representation involving stochastic value gradients [20] for106

continuous control, and instantiate our decision-aware actor-critic framework in this case.107

Experimental evaluation: Finally, in Sec. 6, we consider simple RL environments and bench-108

mark Algorithm 1 for both the direct and softmax representations with a linear policy and critic109

parameterization. We compare the actor performance when using the squared critic loss vs the pro-110

posed critic loss, and demonstrate the empirical benefit of our decision-aware actor-critic framework.111

2 Problem Formulation112

We consider an infinite-horizon discounted Markov decision process (MDP) [43] defined by the113

tuple ⟨S,A,P, r, ρ, γ⟩ where S is the set of states, A is the action set, P : S × A → ∆S is the114

transition probability function, ρ ∈ ∆S is the initial distribution of states, r : S × A → [0, 1] is115

the reward function and γ ∈ [0, 1) is the discount factor. For each state s ∈ S, a policy π induces116

a distribution pπ(·|s) over actions. It also induces a measure dπ over states such that dπ(s) =117 ∑∞
τ=0 γ

τP(sτ = s | s0 ∼ ρ, aτ ∼ pπ(·|sτ )). Similarly, we define µπ as the measure over state-118

action pairs induced by policy π, implying that µπ(s, a) = dπ(s) pπ(a|s) and dπ(s) =
∑

a µ
π(s, a).119

The action-value function corresponding to policy π is denoted by Qπ : S × A → R such that120

Qπ(s, a) := E[
∑∞

τ=0 γ
τr(sτ , aτ )] where s0 = s, a0 = a and for τ ≥ 0, sτ+1 ∼ P(·|sτ , aτ ) and121

aτ+1 ∼ pπ(·|sτ+1). The value function of a stationary policy π for the start state equal to s is defined122

as Js(π) := Ea∼pπ(·|s)[Q
π(s, a)] and we define J(π) := Es∼ρJs(ρ). For a state-action pair (s, a),123

the advantage function corresponding to policy π is given by Aπ(s, a) := Qπ(s, a)− Js(π). Given124

a set of feasible policies Π, the objective is to compute the policy that maximizes J(π).125

Functional representation vs Policy Parameterization: Similar to the policy optimization frame-126

work in Vaswani et al. [56], we differentiate between a policy’s functional representation and127

its parameterization. The functional representation of a policy π defines its sufficient statistics,128

for example, we may represent a policy via the set of distributions pπ(·|s) ∈ ∆A for each state129

s ∈ S. We will refer to this as the direct representation. The same policy can have multiple130

functional representations, for example, since pπ(·|s) is a probability distribution, one can write131

pπ(a|s) = exp(zπ(s,a))/
∑

a′ exp(z
π(s,a′)), and represent π by the set of logits zπ(s, a) for each (s, a)132

pair. We will refer to this as the softmax representation. On the other hand, the policy parame-133

terization is determined by a model (with parameters θ) that realizes these statistics. For example,134

we could use a neural-network to parameterize the logits corresponding to the policy’s softmax135

representation, rewriting zπ(s, a) = zπ(s, a|θ) where the model is implicit in the zπ(s, a|θ) nota-136

tion. As another example, the tabular parameterization corresponds to having a parameter for each137

state-action pair [60, 36]. The policy parameterization thus defines the set Π of realizable policies138

that can be expressed with the parametric model at hand. It is important to note that the policy139

parameterization can be chosen independently of its functional representation. In the next section, we140

recap the functional mirror ascent framework [56] and generalize it to the actor-critic setting.141

3 Methodology142

We describe functional mirror ascent in Sec. 3.1, and use it to design a general decision-aware143

actor-critic framework and corresponding algorithm in Sec. 3.2.144

3.1 Functional Mirror Ascent for Policy Gradient (FMAPG) framework145

For a given functional representation, Vaswani et al. [56] update the policy by functional mirror146

ascent and project the updated policy onto the set Π determined by the policy parameterization.147

Functional mirror ascent is an iterative algorithm whose update at iteration t ∈ {0, 1, . . . , T − 1} is148
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given as: πt+1 = argmaxπ∈Π

[
⟨π, ∇πJ(πt)⟩ − 1

η DΦ(π, πt)
]

where πt is the policy (expressed as149

its functional representation) at iteration t, η is the step-size in the functional space and DΦ is the150

Bregman divergence (induced by the mirror map Φ) between the representation of policies π and151

πt. The FMAPG framework casts the projection step onto Π as an unconstrained optimization w.r.t152

the parameters θ ∈ Rn of a surrogate function: θt+1 = argmax ℓt(θ) := ⟨π(θ), ∇πJ(π(θt))⟩ −153
1
ηDΦ(π(θ), π(θt)). Here, π(θ) refers to the parametric form of the policy where the choice of the154

parametric model is implicit in the π(θ) notation. The policy at iteration t is thus expressed as π(θt),155

whereas the updated policy is given by πt+1 = π(θt+1). The surrogate function is non-concave in156

general and can be approximately maximized using a gradient-based method, resulting in a nested157

loop algorithm. Importantly, the inner-loop (optimization of ℓt(θ)) updates the policy parameters (and158

hence the policy), but does not involve recomputing ∇πJ(π). Consequently, these policy updates159

do not require interacting with the environment and are thus off-policy. This is a desirable trait for160

designing sample-efficient PG algorithms and is shared by methods such as TRPO [45] and PPO [47].161

With the appropriate choice of Φ and η, the FMAPG framework guarantees monotonic policy162

improvement for any number of inner-loops and policy parameterization. A shortcoming of this163

framework is that it requires access to the exact gradient ∇πJ(π). When using the direct or softmax164

representations, computing ∇πJ(π) involves computing either the action-value Qπ or the advantage165

Aπ function respectively. In complex real-world environments where the rewards and/or the transition166

dynamics are unknown, these quantities can only be estimated. For example, Qπ can be estimated167

using Monte-Carlo sampling by rolling out trajectories using policy π resulting in large variance,168

and consequently higher sample complexity. Moreover, for large MDPs, function approximation is169

typically used to estimate the Q function, and the resulting aliasing makes it impossible to compute it170

exactly in practice. This makes the FMAPG framework impractical in real-world scenarios. Next, we171

generalize FMAPG to handle inexact gradients and subsequently design an actor-critic framework.172

3.2 Generalizing FMAPG to Actor-Critic173

In order to generalize the FMAPG framework, we first prove the following proposition in App. C.174

Proposition 1. For any policy representations π and π′, any strictly convex mirror map Φ, and any175

gradient estimator ĝ, for c > 0 and η such that J + 1
ηΦ is convex in π,176

J(π) ≥ J(π′) + ⟨ĝ(π′), π − π′⟩ −
(
1

η
+

1

c

)
DΦ(π, π

′)− 1

c
DΦ∗

(
∇Φ(π′)− c[∇J(π′)− ĝ(π′)],∇Φ(π′)

)
where Φ∗ is the Fenchel conjugate of Φ and DΦ∗ is the Bregman divergence induced by Φ∗.177

The above proposition is a statement about the relative smoothness [33] of J (w.r.t DΦ) in the178

functional space. Here, the brown term is the linearization of J around π′, but involves ĝ(π′)179

which can be any estimate of the gradient at π′. The red term quantifies the distance between the180

representations of policies π and π′ in terms of DΦ(π, π
′), whereas the blue term characterizes the181

penalty for an inaccurate estimate of ∇πJ(π
′) and depends on Φ. We emphasize that Prop. 1 can182

be used for any continuous optimization problem that requires a model of the gradient, e.g., in183

variational inference which uses an approximate posterior in lieu of the true one.184

For policy optimization with FMAPG, ∇πJ(π) involves the action-value or advantage function for185

the direct or softmax functional representations respectively (see Sec. 5 for details), and the gradient186

estimation error is equal to the error in these functions. Since these quantities are estimated by the187

critic, we refer to the blue term as the critic error. In order to use Prop. 1, at iteration t of FMAPG,188

we set π′ = πt and include the policy parameterization, resulting in inequality (I): J(π)− J(πt) ≥189

⟨ĝt, π(θ)− πt⟩ −
(

1
η + 1

c

)
DΦ(π(θ), πt)− 1

c DΦ∗

(
∇Φ(πt)− c[∇J(πt)− ĝt],∇Φ(πt)

)
, where190

ĝt := ĝ(πt). We see that in order to obtain a policy π that maximizes the policy improvement191

J(π)− J(πt) and hence the LHS, we should maximize the RHS i.e. (i) learn ĝt to minimize the blue192

term (equal to the critic objective) and (ii) compute π ∈ Π that maximizes the green term (equal to the193

functional mirror ascent update at iteration t). Using a second-order Taylor series expansion of DΦ∗194

(Prop. 20), we see that as c decreases, the critic error decreases, whereas the
(

1
η + 1

c

)
DΦ(π, πt)195

term increases. Consequently, we interpret the scalar c as a trade-off parameter that relates the critic196

error to the permissible movement in the functional mirror ascent update. Hence, both the actor197

and critic objectives are coupled through Prop. 1 and both components of the RL system should be198
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Algorithm 1: Generic actor-critic algorithm
1 Input: π (choice of functional representation), θ0 (initial policy parameters), ω(−1) (initial critic

parameters), T (AC iterations), ma (actor inner-loops), mc (critic inner-loops), η (functional step-size for
actor), c (trade-off parameter), αa (parametric step-size for actor), αc (parametric step-size for critic)

2 Initialization: π0 = π(θ0)
3 for t← 0 to T − 1 do

4 Estimate ∇̂πJ(πt) and form Lt(ω) :=
1
c
DΦ∗

(
∇Φ(πt)− c [∇̂πJ(πt)− ĝt(ω)],∇Φ(πt)

)
5 Initialize inner-loop: υ0 = ωt−1

6 for k ← 0 to mc − 1 do
7 υk+1 = υk − αc∇υ Lt(υk) /* Critic Updates */
8 ωt = υmc ; ĝt = ĝt(ωt)

9 Form ℓt(θ) := ⟨ĝt, π(θ)− πt⟩ −
(

1
η
+ 1

c

)
DΦ(π(θ), πt)

10 Initialize inner-loop: ν0 = θt
11 for k ← 0 to ma − 1 do
12 νk+1 = νk + αa∇ν ℓt(νk) /* Off-policy actor updates */
13 θt+1 = νma ; πt+1 = π(θt+1)
14 Return πT = π(θT )

trained cooperatively in order to maximize policy improvement. We refer to the resulting framework199

as decision-aware actor-critic and present its pseudo-code in Algorithm 1.200

At iteration t of Algorithm 1, ĝt (the gradient estimate at πt) is parameterized by ω and similar to the201

policy, the parametric model for the critic is implicit in the ĝt(ω) notation. Given the choice of the202

functional representation, the algorithm first estimates ∇̂πJ(πt)
1 in order to train the critic (Line 4).203

Given this estimate, the critic is trained to minimize Lt(ω) and form ĝt (Lines 5-8). Line 9 forms the204

surrogate function for the actor and depends on the policy parameterization. The inner-loop (Lines205

10 - 13) involves maximizing the surrogate w.r.t θ and corresponds to off-policy updates. In the next206

section, we establish theoretical guarantees on the performance of Algorithm 1.207

4 Theoretical Guarantees208

We first establish the necessary and sufficient conditions to guarantee monotonic policy improvement209

in the presence of critic error (Sec. 4.1). In Sec. 4.2, we prove that Algorithm 1 is guaranteed to210

converge to the neighbourhood (that depends on the critic error) of a stationary point.211

4.1 Conditions for monotonic policy improvement212

According to inequality (I), to guarantee monotonic policy improvement at iteration t, one must find213

a (θ, c) pair to guarantee that the RHS of (I) is positive. In the proposition below (proved in App. D),214

we derive the conditions on the critic error to ensure that it possible to find such an (θ, c) pair.215

Proposition 2. For any policy representation and any policy or critic parameterization, there exists216

a (θ, c) pair that makes the RHS of inequality (I) strictly positive, and hence guarantees monotonic217

policy improvement (J(πt+1) > J(πt)), if and only if218

⟨bt, H̃†
t bt⟩ > ⟨[∇J(πt)− ĝt],∇2Φ∗(∇Φ(πt)) [∇J(πt)− ĝt]⟩ ,

where bt ∈ Rn :=
∑

s∈S
∑

a∈A [ĝt]s,a ∇θ[π(θt)]s,a and H̃t ∈ Rn×n :=219

∇θπ(θt)
T ∇2

πΦ(πt)∇θπ(θt). For the special case of the tabular policy parameterization,220

the above condition becomes equal to,221

⟨ĝt, [∇2
πΦ(πt)]

−1ĝt⟩ > ⟨[∇J(πt)− ĝt],∇2Φ∗(∇Φ(πt)) [∇J(πt)− ĝt]⟩ .

For the Euclidean mirror map with the tabular policy parameterization, the above condition becomes222

equal to ∥ĝt∥22 > ∥∇J(πt)− ĝt∥22 meaning that the relative error in estimating ∇J(πt) needs to be223

less than 1. For a general mirror map, the relative error is measured in a different norm induced by224

the mirror map. The above improvement guarantee holds regardless of the policy representation and225

parameterization of the policy or critic. This is in contrast to existing theoretical results [40, 27, 18]226

that focus on either the tabular or linear function approximation setting for the policy and/or critic, or227

rely on using expressive models to minimize the critic error and achieve good performance for the228

1The corresponding (action-) value functions can be estimated using Monte-Carlo rollouts or bootstraping.
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actor. The above proposition also quantifies the scenario when the critic error is too large to guarantee229

policy improvement. In this case, the algorithm should either improve the critic by better optimization230

or by using a more expressive model, or resort to using high variance Monte-Carlo samples as in231

REINFORCE [58]. Finally, we see that the impact of a smaller function class for the actor is a232

potentially lower value for ⟨bt, H̃†
t bt⟩, making it more difficult to satisfy the above condition.233

4.2 Convergence of Algorithm 1234

We now analyze the convergence of Algorithm 1 for an arbitrary critic error. Define θ̄t+1 :=235

argmaxθ ℓt(θ), π̄t+1 = π(θ̄t+1) = argmaxπ∈Π

{
⟨ĝt, π − πt⟩ −

(
1
η + 1

c

)
DΦ(π, πt)

}
. Note that236

π̄t+1 is the iterate obtained by using the inexact mirror ascent (MA) update [7] starting from πt, and237

that the inner-loop (Lines 10-13) of Algorithm 1 approximates this update. This connection allows us238

to prove the following guarantee (see App. D.1 for details) for Algorithm 1.239

Proposition 3. For any policy representation and mirror map Φ such that (i) J + 1
ηΦ is convex in π,240

any policy parameterization such that (ii) ℓt(θ) is smooth w.r.t θ and satisfies the Polyak-Lojasiewicz241

(PL) condition, for c > 0, after T iterations of Algorithm 1 we have that,242

E
[
DΦ(π̄R+1, πR)

ζ2

]
≤ 1

ζT

[
J(π∗)− J(π0) +

T−1∑
t=0

(
1

c
EDΦ∗

(
∇Φ(πt)− c δt,∇Φ(πt)

)
+ E[et]

)]

where δt := ∇J(πt)−ĝt, 1
ζ = 1

η+
1
c , R is a random variable chosen uniformly from {0, 1, 2, . . . T−243

1} and et ∈ O(exp (−ma)) is the approximation error at iteration t.244

It is possible to find η such that Assumption (i) is satisfied for both the direct and softmax representa-245

tions (see Sec. 5). Assumption (ii) is satisfied when using a linear and in some cases, a neural network246

policy parameterization [32]. We note that the measure of sub-optimality in the above proposition247

is similar to the one used in the analysis of stochastic mirror descent [64]. It recovers the standard248

E ∥∇J(πt)∥22 characterization of the stationary point for the Euclidean mirror map. The first term on249

the RHS is the initial sub-optimality that decreases at an O(1/T ) rate, whereas the second term is250

equal to the critic error and can be decomposed into variance and bias terms. The variance decreases251

as the number of samples used to train the critic (Line 4 in Algorithm 1) increases. The bias can be252

decomposed into an optimization error (that decreases as mc increases) and a function approximation253

error (that decreases as we use more expressive models for the critic). The last term is the projection254

(onto Π) error, is equal to zero for the tabular policy parameterization and decreases as ma increases.255

In contrast to Prop. 3, Dong et al. [11] prove that their proposed algorithm results in an O (1/T)256

convergence to the stationary point (not the neighbourhood). However, they make a strong unjustified257

assumption that the minimization problem w.r.t the parameters modelling the policy and distribu-258

tion over states is jointly PL. Compared to [2, 60, 35] that focus on proving convergence to the259

(neighbourhood) of the optimal value function, but bound the critic error in the ℓ2 or ℓ∞ norm, we260

focus on proving convergence to the (neighbourhood) of a stationary point, but define the critic261

loss in a decision-aware manner. Finally, compared to the existing theoretical work on general (not262

decision-aware) AC methods [61, 59, 8, 27, 21, 29, 18, 40, 9] that prove stronger results for the263

tabular or linear function approximation settings, we develop a practical decision-aware AC algorithm264

that has weaker theoretical guarantees, but requires fewer assumptions on the function approximation.265

5 Instantiating the generic actor-critic framework266

We now instantiate Algorithm 1 for the direct (Sec. 5.1) and softmax representation (Sec. 5.2).267

5.1 Direct representation268

Recall that for the direct functional representation, policy π is represented by the set of dis-269

tributions pπ(·|s) over actions for each state s ∈ S. Using the policy gradient theorem [52],270

∇πJ(π) = dπ(s)Qπ(s, a). Similar to [56, 60], we use a weighted (across states) negative entropy271

mirror map implying that DΦ(p
π, pπ

′
) =

∑
s∈S dπt(s)Dϕ(p

π(·|s), pπ′
(·|s)) where ϕ(pπ(·|s)) =272

−
∑

a p
π(a|s) log(pπ(a|s)) and hence, Dϕ(p

π(·|s), pπ′
(·|s)) = KL(pπ(·|s)||pπ′

(·|s)). We now273

instantiate inequality (I) in Sec. 3.2 in the proposition below (see App. E for the derivation).274
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Proposition 4. For the direct representation and negative entropy mirror map, c > 0, η ≤ (1−γ)3

2γ |A| ,275

J(π)− J(πt) ≥ C + Es∼dπt

[
Ea∼pπt (·|s)

[
pπ(a|s)
pπt(a|s)

(
Q̂πt(s, a)−

(
1

η
+

1

c

)
log

(
pπ(a|s)
pπt(a|s)

))]]
− Es∼dπt

[
Ea∼pπt (·|s) [Q

πt(s, a)− Q̂πt(s, a)] +
1

c
log

(
Ea∼pπt (·|s)

[
exp

(
−c [Qπt(s, a)− Q̂πt(s, a)]

)])]
where C is a constant and Q̂πt is the estimate of the action-value function for policy πt.276

For incorporating policy (with parameters θ) and critic (with parameters ω) parameterization, we277

note that pπ(·|s) = pπ(·|s, θ) and Q̂π(s, a) = Qπ(s, a|ω) where the model is implicit in the notation.278

Using the reasoning in Sec. 3.2 with Prop. 4 immediately gives us the actor and critic objectives (ℓt(θ)279

and Lt(ω) respectively) at iteration t and completely instantiates Algorithm 1. Observe that the critic280

error is asymmetric and penalizes the under/over-estimation of the Qπ function differently. This is281

different from the standard squared critic loss: Es∼dπtEa∼pπt (·|s) [Q
πt(s, a)−Qπt(s, a|ω)]2 that282

does not take into account the sign of the misestimation. In order to demonstrate the effectiveness of283

the proposed critic loss, we consider the following two-armed bandit example (see App. E for details)284

with deterministic rewards (there is no variance due to sampling), use the direct representation and285

tabular parameterization for the policy, linear function approximation for the critic and compare286

minimizing the standard squared loss with minimizing the decision-aware critic loss in Prop. 4.287

Proposition 5. Consider a two-armed bandit example with deterministic rewards where arm 1 is288

optimal and has a reward r1 = Q1 = 2 whereas arm 2 has reward r2 = Q2 = 1. Consider using289

linear function approximation to estimate the Q function i.e. Q̂ = xω where ω is the parameter to290

be learned and x is the feature of the corresponding arm. Let x1 = −2 and x2 = 1 implying that291

Q̂1(ω) = −2ω and Q̂2(ω) = ω. Let pt be the probability of pulling the optimal arm at iteration t292

and consider minimizing two alternative objectives to estimate ω:293

(1) Squared loss: ω
(1)
t := argmin

{
pt
2
[Q̂1(ω)−Q1]

2 + 1−pt
2

[Q̂2(ω)−Q2]
2
}

.294

(2) Decision-aware critic loss: ω
(2)
t = argminLt(ω) := pt [Q1 − Q̂1(ω)] + (1 − pt) [Q2 − Q̂2(ω)] +295

1
c
log

(
pt exp

(
−c [Q1 − Q̂1(ω)] + (1− pt) exp

(
−c [Q2 − Q̂2(ω)]

))]
.296

For p0 < 2
5 , minimizing the squared loss results in convergence to the sub-optimal action, while297

minimizing the decision-aware loss (for c, p0 > 0) results in convergence to the optimal action.298

Hence, minimizing the decision-aware critic loss results in a better, more well-informed estimate of ω299

which when coupled with the actor update results in convergence to the optimal arm. For this simple300

example, at every iteration t, Lt(ω
(2)
t ) = 0, while the standard squared loss is non-zero at ω(1)

t ,301

though we use the same linear function approximation model in both cases. In Prop. 22, we prove302

that for a 2-arm bandit with deterministic rewards and linear critic parameterization, minimizing the303

decision-aware critic loss will always result in convergence to the optimal arm.304

5.2 Softmax representation305

Recall that for the softmax functional representation, policy π is represented by the logits zπ(s, a)306

for each s ∈ S and a ∈ A such that pπ(a|s) = exp(zπ(s,a))∑
a′ exp(zπ(s,a′)) . Using the policy gradi-307

ent theorem, ∇πJ(π) = dπ(s)Aπ(s, a) pπ(a|s) where Aπ is the advantage function. Similar308

to Vaswani et al. [56], we use a weighted (across states) log-sum-exp mirror map implying that309

DΦ(z, z
′) =

∑
s∈S dπt(s)Dϕ(z(s, ·), z′(s, ·)) where ϕ(z(s, ·)) = log(

∑
a exp(z(s, a))) and hence,310

Dϕ(z(s, ·), z′(s, ·)) = KL(pπ
′
(·|s), pπ(·|s)) (see Lemma 28 for a derivation). We now instantiate311

inequality (I) in Sec. 3.2 in the proposition below (see App. E for the derivation).312

Proposition 6. For the softmax representation and log-sum-exp mirror map, c > 0, η ≤ 1− γ,313

J(π)− J(πt) ≥ Es∼dπt Ea∼pπt (·|s)

[(
Âπt(s, a) +

1

η
+

1

c

)
log

(
pπ(a|s)
pπt(a|s)

)]
− 1

c
Es∼dπtEa∼pπt (·|s)

[(
1− c [Aπt(s, a)− Âπt(s, a)]

)
log

(
1− c [Aπt(s, a)− Âπt(s, a)]

)]
,

where Âπt is the estimate of the advantage function for policy πt.314

For incorporating policy (with parameters θ) and critic (with parameters ω) parameterization, we315

note that pπ(a|s) = exp(zπ(s,a|θ))∑
a′ exp(zπ(s,a′|θ)) and Âπ(s, a) = Aπ(s, a|ω) where the model is implicit in316
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the notation. Using the reasoning in Sec. 3.2 with Prop. 6 immediately gives us the actor and critic317

objectives (ℓt(θ) and Lt(ω) respectively) at iteration t and completely instantiates Algorithm 1.318

Similar to the direct representation, observe that Lt is asymmetric and penalizes the under/over-319

estimation of the advantage function differently. To demonstrate the effectiveness of the proposed320

critic loss, we construct a two-armed bandit example (see App. E for details), use the softmax321

representation and tabular parameterization for the policy and consider a discrete hypothesis class322

(with two hypotheses) as the model for the critic. We compare minimizing the squared loss on the323

advantage: Es∼dπtEa∼pπt (·|s) [A
πt(s, a)−Aπt(s, a|ω)]2 with minimizing the decision-aware loss.324

Proposition 7. Consider a two-armed bandit example and define p ∈ [0, 1] as the probability of325

pulling arm 1. Given p, let the advantage of arm 1 be equal to A1 := 1
2 > 0, while that of arm326

2 is A2 := − p
2 (1−p) < 0 implying that arm 1 is optimal. For ε ∈

(
1
2 , 1
)
, consider approximating327

the advantage of the two arms using a function approximation model with two hypotheses that328

depend on p: H0 : Â1 = 1
2 + ε , Â2 = − p

1−p

(
1
2 + ε

)
and H1 : Â1 = 1

2 − ε sgn
(
1
2 − p

)
, Â2 =329

− p
1−p

(
1
2 − ε sgn

(
1
2 − p

))
where sgn is the signum function. If pt is the probability of pulling arm330

1 at iteration t, consider minimizing two alternative loss functions to choose the hypothesis Ht:331

(1) Squared loss: Ht = argmin{H0,H1}

{
pt
2
[A1 − Â1]

2 + 1−pt
2

[A2 − Â2]
2
}

.332

(2) Decision-aware critic loss with c = 1: Ht = argmin{H0,H1}333 {
pt (1− [A1 − Â1]) log(1− [A1 − Â1]) + (1− pt) (1− [A2 − Â2]) log(1− [A2 − Â2])

}
.334

For p0 ≤ 1
2 , the squared loss cannot distinguish between H0 and H1, and depending on how ties335

are broken, minimizing it can result in convergence to the sub-optimal action. On the other hand,336

minimizing the divergence loss (for any p0 > 0) results in convergence to the optimal arm.337

We see that minimizing the decision-aware critic loss can distinguish between the two hypotheses338

and choose the correct hypothesis resulting in convergence to the optimal action.339

In Prop. 19 in App. E, we study the softmax representation with the Euclidean mirror map and340

instantiate inequality (I) for this case. Finally, in App. B, we instantiate our actor-critic framework341

to handle stochastic value gradients used for learning continuous control policies [20]. In the next342

section, we consider simple RL environments to empirically benchmark Algorithm 1.343

6 Experiments344

Figure 1: Comparison of decision-aware, AdvTD and TD loss functions using a linear actor and linear
(with three different dimensions) critic in the Cliff World environment for direct and softmax policy
representations. For d = 80 (corresponding to an expressive critic), all algorithms have the same
performance. For d = 40 and d = 60, TD does not have monotonic improvement and converges to a
sub-optimal policy. AdvTD almost always reaches the optimal policy. Compared to the AdvTD and
TD, minimizing the decision-aware loss always results in convergence to the optimal policy at a faster
rate, especially when using a less expressive critic (d = 40).
We demonstrate the benefit of the decision-aware framework over the standard AC algorithm where345

the critic is trained by minimizing the squared error. We instantiate Algorithm 1 for the direct and346
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softmax representations, and evaluate the performance on two grid-world environments, namely Cliff347

World [52] and Frozen Lake [6] (see App. F for details). We compare the performance of three AC348

algorithms that have the same actor, but differ in the objective function used to train the critic.349

Critic Optimization: For the direct and softmax representations, the critic’s objective is to estimate350

the action-value (Q) and advantage (A) functions respectively. We use a linear parameterization for351

the Q function implying that for each policy π, Qπ(s, a|ω) = ⟨ω,X(s, a)⟩, where X(s, a) ∈ Rd352

are features obtained via tile-coding [52, Ch. 9]. We vary the dimension d ∈ {80, 60, 40} of353

the tile-coding features to vary the expressivity of the critic. Given the knowledge of pπ and the354

estimate Qπ(s, a|ω), the estimated advantage can be obtained as: Aπ(s, a|ω) = Qπ(s, a|ω) −355 ∑
a p

π(a|s)Qπ(s, a|ω). We consider two ways to estimate the Q function for training the critic:356

(a) using the known MDP to exactly compute the Q values and (b) estimating the Q function using357

Monte-Carlo (MC) rollouts. We evaluate the performance of the decision-aware loss defined for358

the direct (Prop. 4) and softmax representations (Prop. 6). For both representations, we minimize359

the corresponding objective at each iteration t (Lines 6-8 in Algorithm 1) using gradient descent360

with the step-size αc determined by the Armijo line-search [4]. We use a grid-search to tune the361

trade-off parameter c, and propose an alternative albeit conservative method to estimate c in App. F.362

We compare against two baselines (see App. F for implementation details) – (i) the standard squared363

loss on the Q functions (referred to as TD in the plots) defined in Prop. 5 and (ii) squared loss on364

A function (referred to as AdvTD in the plots) defined in Prop. 7. We note that the AdvTD loss365

corresponds to a second-order Taylor series expansion of the decision-aware loss (see Prop. 20 for366

details), and is similar to the loss in Pan et al. [41]. Recall that the critic error consists of the variance367

when using MC samples (equal to zero when we exactly compute the Q function) and the bias368

because of the critic optimization error (controlled since the critic objective is convex) and error due369

to the limited expressivity of the linear function approximation (decreases as d increases). Since our370

objective is to study the effect of the critic loss and its interaction with function approximation, we371

do not use bootstrapping to estimate the Qπ since it would result in a confounding bias term.372

Actor Optimization: For all algorithms, we use the same actor objective defined for the direct373

(Prop. 4) and softmax representations (Prop. 6). We consider both the tabular and linear policy374

paramterization for the actor. For the linear function approximation, we use the same tile-coded375

features and set n = 60 for both environments. We update the policy parameters at each iteration t in376

the off-policy inner-loop (Lines 11-13 in Algorithm 1) using Armijo line-search to set αa. For details377

about the derivatives and closed-form solutions for the actor objective, please refer to [56, App. F]378

and App. F. We use a grid-search to tune η, and experiment with multiple values.379

Results: For each environment, we conduct four experiments that depend on (a) whether we use380

MC samples or the true dynamics to estimate the Q function, and (b) on the policy parameterization.381

We only show the plot corresponding to using the true dynamics for estimating the Q function and382

linear policy parameterization, and defer the remaining plots to App. G. For all experiments, we383

report the mean and 95% confidence interval of J(π) averaged across 5 runs. In the main paper, we384

only include 2 values of η ∈ {0.01, 0.1} and vary d ∈ {40, 60, 80}, and defer the complete figure385

with a broader range of η and d to App. G. For this experiment, c is tuned to 0.01 and we include a386

sensitivity (of J(π) to c) plot in App. G. From Fig. 1, we see that (i) with a sufficiently expressive387

critic (d = 80), all algorithms reach the optimal policy at nearly the same rate. (ii) as we decrease388

the critic capacity, minimizing the TD loss does not result in monotonic improvement and converges389

to a sub-optimal policy, (iii) minimizing the AdvTD usually results in convergence to the optimal390

policy, whereas (iv) minimizing the decision-aware loss results in convergence to better policies at a391

faster rate, and is more beneficial when using a less-expressive critic (corresponding to d = 40). We392

obtain similar results for the tabular policy parameterization or when using sampling to estimate the393

Q function (see App. G for additional results).394

7 Discussion395

We designed a generic decision-aware actor-critic framework where the actor and critic are trained396

cooperatively to optimize a joint objective. Our framework can be used with any policy representation397

and easily handle general policy and critic parameterization, while preserving theoretical guarantees.398

Instantiating the framework resulted in an actor that supports off-policy updates, and a corresponding399

critic loss that can be minimized using first-order optimization. We demonstrated the benefit of our400

framework both theoretically and empirically. In the future, we aim to benchmark our framework for401

complex deep RL environments, and broaden its scope to applications such as variational inference.402
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Supplementary material

Organization of the Appendix564

A Definitions565

B Extension to stochastic value gradients566

C Proofs for Sec. 3567

D Proofs for Sec. 4568

E Proofs for Sec. 5569

F Implementation Details570

G Additional Experiments571

A Definitions572

• [Solution set]. We define the solution set X ∗ for a function f as X ∗ := {x∗|x∗ ∈ argminx∈dom(f) f(x)}.573

574

• [Convexity]. A differentiable function f is convex iff for all v and w in dom(f)575

f(v) ≥ f(w) + ⟨∇f(w), v − w⟩. (Convexity)

• [Lipschitz continuity]. A differentiable function f is G-Lipschitz continuous, meaning that for all v and w and576

constant G >,577

|f(v)− f(w)| ≤ G ∥v − w∥ =⇒ ∥∇f(v)∥ ≤ G . (Lipschitz Continuity)

• [Smoothness]. A differentiable function f is L-smooth, meaning that for all v and w and some constant L > 0578

f(v) ≤ f(w) + ⟨∇f(w), v − w⟩+ L

2
∥v − w∥22 . (Smoothness)

• [Polyak-Lojasiewicz inequality]. A differentiable function f satisfies the Polyak-Lojasiewicz (PL) inequality if579

there exists a constant µp > 0 s.t. for all v,580

µp(f(v)− f∗) ≤ 1

2
∥∇f(v)∥22 , (PL)

where f∗ is the optimal function value i.e. f∗ := f(x∗) for x∗ ∈ X ∗.581

• [Restricted Secant Inequality]. A differentiable function f satisfies the Restricted Secant Inequality (RSI)582

inequality if there exists a constant µr > 0 that for all v583

⟨∇f(v), v − vp⟩ ≥ µr ∥v − vp∥22 , (RSI)

where vp is the projection of v onto X ∗.584

• [Bregman divergence]. For a strictly-convex, differentiable function Φ, we define the Bregman divergence585

induced by Φ (known as the mirror map) as:586

DΦ(w, v) := Φ(w)− Φ(v)− ⟨∇Φ(v), w − v⟩. (Bregman divergence)

• [Relative smoothness]. A function f is ρ-relatively smooth w.r.t. DΦ iff f + ρΦ is convex. Furthermore, if f is587

ρ-relatively smooth w.r.t. Φ, then, |f(w)− f(v)− ⟨∇f(v), w − v⟩| ≤ ρDΦ(w, v).588

• [Mirror Ascent]. Optimizing maxx∈X f(x) using mirror ascent (MA), if xt is the current iterate, then the update589

at iteration t ∈ {0, 1, . . . , T − 1} with a step-size ηt and mirror map Φ is given as:590

xt+1 := argmax
x∈X

{
⟨∇f(xt), x⟩ −

1

ηt
DΦ(x, xt)

}
, (MD update)

The above update can be formulated into two steps Bubeck [7, Chapter 4] as follows:591

yt+1 := (∇Φ)−1 (∇Φ(xt) + ηt∇f(xt)) (Move in dual space)
xt+1 := argmin

x∈X
{DΦ(x, yt+1)} (Projection step)
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B Extension to stochastic value gradients592

In Sec. 5, we have seen alternative ways to represent a policy’s conditional distributions over actions pπ(·|s) for each state593

s ∈ S. On the other hand, stochastic value gradients [20] represent a policy by a set of actions. Formally, if ε are random594

variables drawn from a fixed distribution χ, then policy π is a deterministic map from S × χ → A. This corresponds to595

the functional representation of the policy, and is particularly helpful for continuous control, i.e. when the action-space is596

continuous. The action a chosen by π in state s, when fixing the random variable ε = ϵ, is represented as π(s, ϵ), and the597

value function for policy π is given as:598

J(π) =
∑
s

dπ(s)

∫
ε∼χ

r(s, π(s, ε)) dε (1)

and Silver et al. [48] showed that
∂J(π)

∂π(s, ϵ)
= dπ(s)∇aQ

π(s, a)
∣∣
a=π(s,ϵ)

. In order to characterize the dependence on the599

policy parameterization, we note that π(s, ϵ) = π(s, ϵ, θ) where θ are the model parameters. For a fixed ϵ, we will use a600

Euclidean mirror map implying that DΦ(π, π
′) =

∑
s∈S dπt(s)Dϕ(π(s, ϵ), π

′(s, ϵ) and choose ϕ(π(s, ϵ)) = 1
2 ∥π′(s, ϵ)∥22601

implying that Dϕ(π(s, ϵ), π
′(s, ϵ) = 1

2 [π(s, ϵ)− π′(s, ϵ)]
2. In order to instantiate the generic lower bound in Prop. 1 at602

iteration t, we prove the following proposition in App. E.603

Proposition 8. For the stochastic value gradient representation and Euclidean mirror map, c > 0, η such that J + 1
ηΦ is604

convex in π.605

J(π)− J(πt) ≥ C + Es∼dπtEε∼χ

[
∇̂aQπt(s, a)

∣∣
a=πt(s,ε)

π(s, ε)− 1

2

(
1

η
+

1

c

)
[πt(s, ϵ)− π(s, ϵ)]

2

]
− c

2
Es∼dπtEε∼χ

[
∇aQ

πt(s, a)
∣∣
a=πt(s,ε)

− ∇̂aQπt(s, a)
∣∣
a=πt(s,ε)

]2
where C is a constant and ∇̂aQπt(s, a)

∣∣
a=πt(s,ε)

is the estimate of the action-value gradients for policy π at state s and606

a = πt(s, ϵ).607

For incorporating policy (with parameters θ) and critic (with parameters ω) parameterization, we note that π(s, ε) =608

π(s, ε|θ) and ∇̂aQπt(s, a)a=πt(s,ε) = ∇aQ
πt(s, a|ω)a=πt(s,ε,θt) where the model is implicit in the notation. Using the609

reasoning in Sec. 3.2 with Prop. 8 immediately gives us the actor and critic objectives (ℓt(θ) and Lt(ω) respectively) at610

iteration t and completely instantiates Algorithm 1. The actor objective is similar to Eq (15) of Silver et al. [48], with the611

easier to compute Qπt instead of Qπ , whereas the critic objective is similar to the one used in existing work on policy-aware612

model-based RL for continuous control [13].613
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C Proofs for Sec. 3614

Proposition 1. For any policy representations π and π′, any strictly convex mirror map Φ, and any gradient estimator ĝ,615

for c > 0 and η such that J + 1
ηΦ is convex in π,616

J(π) ≥ J(π′) + ⟨ĝ(π′), π − π′⟩ −
(
1

η
+

1

c

)
DΦ(π, π

′)− 1

c
DΦ∗

(
∇Φ(π′)− c[∇J(π′)− ĝ(π′)],∇Φ(π′)

)
where Φ∗ is the Fenchel conjugate of Φ and DΦ∗ is the Bregman divergence induced by Φ∗.617

Proof. For any η such that J + 1
ηΦ is convex, we use Lemma 10 to form the following lower-bound,618

J(π) ≥ J(π′) + ⟨∇J(π′), (π − π′)⟩ − 1

η
Dϕ(π, π

′)

= J(π′) + ⟨ĝ(π′), (π − π′)⟩+ ⟨∇J(π′)− ĝ(π′), (π − π′)⟩ − 1

η
Dϕ(π, π

′)

Defining δ := ∇J(π′) − ĝ(π′), and assuming that c δ is small enough to satisfy the requirement for Lemma 9, we
use Lemma 9 with x = δ, y = π and y′ = π′.619

= J(π′) + ⟨ĝ(π′), (π − π′)⟩ − 1

η
Dϕ(π, π

′)− 1

c
[Dϕ(π, π

′) +Dϕ∗ (∇ϕ(π′)− cδ,∇ϕ(π′))]

=⇒ J(π) ≥ J(π′) + ĝ(π′)⊤(π − π′)−
(
1

η
+

1

c

)
DΦ(π, π

′)− 1

c
Dϕ∗

(
∇ϕ(π′)− c[∇J(π′)− ĝ(π′)],∇ϕ(π′)

)
620

Lemma 9 (Bregman Fenchel-Young). Let x ∈ Y∗, y ∈ Y , y′ ∈ Y . Then, for sufficiently small c > 0 and x s.t.621

(∇ϕ)−1[∇ϕ(y′)− c x] ∈ Y , we have622

⟨y − y′, x⟩ ≥ −1

c

[
Dϕ(y, y

′) +Dϕ∗(∇ϕ(y′)− c x,∇ϕ(y′))

]
. (2)

For a fixed y′, this inequality is tight for y = argminυ
{
⟨x, υ − y′⟩+ 1

cDΦ(υ, y)
}

.623

Proof. Define f(y) := ⟨x, y − y′⟩+ 1
cDΦ(y, y

′). If y∗ = argmin f(y), then,624

∇f(y∗) = 0 =⇒ ∇ϕ(y∗) = ∇ϕ(y′)− cx

y∗ = (∇ϕ)−1[∇ϕ(y′)− cx] =⇒ y∗ = ∇ϕ∗[∇ϕ(y′)− cx]

Note that according to our assumption, y∗ ∈ Y . For any y,625

f(y) ≥ f(y∗) = ⟨x, y∗ − y′⟩+ 1

c
DΦ(y

∗, y′) (3)

In order to simplify DΦ(y
∗, y′), we will use the definition of ϕ∗(z). In particular, for any y,626

ϕ(y) = max
z

[⟨z, y⟩ − ϕ∗(z)] ; z∗ = argmax
z

[⟨z, y⟩ − ϕ∗(z)] =⇒ y = ∇ϕ∗(z∗) =⇒ z∗ = ∇ϕ(y)

=⇒ ϕ(y) = ⟨∇ϕ(y), y⟩ − ϕ∗(∇ϕ(y)) (4)
627

DΦ(y
∗, y′) = ϕ(y∗)− ϕ(y′)− ⟨∇ϕ(y′), y∗ − y′⟩

= [⟨∇ϕ(y∗), y∗⟩ − ϕ∗(∇ϕ(y∗))]− ϕ(y′)− ⟨∇ϕ(y′), y∗ − y′⟩
(using Eq. (4) to simplify the first term)

Let us focus on the first term and simplify it,628

⟨∇ϕ(y∗), y∗⟩ − ϕ∗(∇ϕ(y∗)) = ⟨∇ϕ (∇ϕ∗[∇ϕ(y′)− cx]) ,∇ϕ∗[∇ϕ(y′)− cx]⟩ − ϕ∗(∇ϕ (∇ϕ∗[∇ϕ(y′)− cx]))

= ⟨[∇ϕ(y′)− cx],∇ϕ∗[∇ϕ(y′)− cx]⟩ − ϕ∗([∇ϕ(y′)− cx])
(For any z, ∇ϕ(∇ϕ∗(z)) = z)
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Using the above relations,629

DΦ(y
∗, y′) = ⟨[∇ϕ(y′)− cx],∇ϕ∗[∇ϕ(y′)− cx]⟩ − ϕ∗([∇ϕ(y′)− cx])− ϕ(y′)

− ⟨∇ϕ(y′),∇ϕ∗[∇ϕ(y′)− cx]− y′⟩
= ⟨∇ϕ(y′),∇ϕ∗[∇ϕ(y′)− cx]⟩ − c⟨x,∇ϕ∗[∇ϕ(y′)− cx]⟩
− ϕ∗([∇ϕ(y′)− cx])− ϕ(y′)− ⟨∇ϕ(y′),∇ϕ∗[∇ϕ(y′)− cx]− y′⟩

=⇒ DΦ(y
∗, y′) = −c⟨x,∇ϕ∗[∇ϕ(y′)− cx]⟩ − ϕ∗([∇ϕ(y′)− cx])− ϕ(y′) + ⟨∇ϕ(y′), y′⟩

Using the above simplification with Eq. (3),630

f(y) ≥ ⟨x, y∗ − y′⟩+ 1

c
[−c⟨x,∇ϕ∗[∇ϕ(y′)− cx]⟩ − ϕ∗([∇ϕ(y′)− cx])− ϕ(y′) + ⟨∇ϕ(y′), y′⟩]

= ⟨x, y∗ − y′⟩ − ⟨x,∇ϕ∗[∇ϕ(y′)− cx]⟩ − 1

c
[ϕ∗([∇ϕ(y′)− cx]) + ϕ(y′)− ⟨ϕ(y′), y⟩]

= −⟨x, y′⟩+ ⟨x,∇ϕ∗[∇ϕ(y′)− cx]⟩ − ⟨x,∇ϕ∗[∇ϕ(y′)− cx]⟩ − 1

c
[ϕ∗([∇ϕ(y′)− cx]) + ϕ(y′)− ⟨∇ϕ(y′), y′⟩]

= −⟨x, y′⟩ − 1

c
[ϕ∗([∇ϕ(y′)− cx]) + ϕ(y′)− ⟨∇ϕ(y′), y′⟩]

Using Eq. (4), ϕ(y′) = ⟨∇ϕ(y′), y′⟩ − ϕ∗(∇ϕ(y′)) =⇒ ϕ(y′)− ⟨∇ϕ(y′), y′⟩ = −ϕ∗(∇ϕ(y′)),631

=⇒ f(y) ≥ −⟨x, y′⟩ − 1

c
[ϕ∗([∇ϕ(y′)− cx])− ϕ∗(∇ϕ(y′))] = −1

c
[c⟨x, y⟩+ ϕ∗([∇ϕ(y′)− cx])− ϕ∗(∇ϕ(y′))]

= −1

c

[
c⟨x, y′⟩+ [ϕ∗([∇ϕ(y′)− cx])− ϕ∗(∇ϕ(y′))− ⟨∇ϕ∗(∇ϕ(y′)),∇ϕ(y′)− cx−∇ϕ(y′)⟩]

+ ⟨∇ϕ∗(∇ϕ(y′)),∇ϕ(y′)− cx−∇ϕ(y′)⟩
]

=⇒ f(y) ≥ −1

c
[c⟨x, y′⟩+D∗

Φ(∇ϕ(y′)− cx,∇ϕ(y′)) + ⟨y′,−cx⟩] = −1

c
D∗

Φ(∇ϕ(y′)− cx,∇ϕ(y′))

Using the definition of f(y),632

⟨x, y − y′⟩+ 1

c
DΦ(y, y

′) ≥ −1

c
D∗

Φ(∇ϕ(y′)− cx,∇ϕ(y′))

=⇒ ⟨x, y − y′⟩ ≥ −1

c
[DΦ(y, y

′) +D∗
Φ(∇ϕ(y′)− cx,∇ϕ(y′))]

633

Lemma 10. If J + 1
ηΦ is convex, then, J(π) is 1

η -relatively smooth w.r.t to DΦ, and satisfies the following inequality,634

J(π) ≥ J(π′) + ⟨∇πJ(π
′), π − π′⟩ − 1

η
DΦ(π, π

′)

635

Proof. If J + 1
ηΦ is convex,636 (

J +
1

η
ϕ

)
(π) ≥

(
J +

1

η
ϕ

)
(π′) +

〈
π − π′,∇π

(
J +

1

η
ϕ

)
(π′)

〉
=⇒ J(π) ≥ J(π′) + ⟨π − π′,∇πJ(π

′)⟩ − 1

η
[ϕ(π)− ϕ(π′)− ⟨∇πϕ(π

′), π − π′⟩]

=⇒ J(π) ≥ J(π′) + ⟨π − π′,∇πJ(π
′)⟩ − 1

η
DΦ(π, π

′)

637
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D Proofs for Sec. 4638

Proposition 2. For any policy representation and any policy or critic parameterization, there exists a (θ, c) pair that makes639

the RHS of inequality (I) strictly positive, and hence guarantees monotonic policy improvement (J(πt+1) > J(πt)), if and640

only if641

⟨bt, H̃†
t bt⟩ > ⟨[∇J(πt)− ĝt],∇2Φ∗(∇Φ(πt)) [∇J(πt)− ĝt]⟩ ,

where bt ∈ Rn :=
∑

s∈S
∑

a∈A [ĝt]s,a ∇θ[π(θt)]s,a and H̃t ∈ Rn×n := ∇θπ(θt)
T ∇2

πΦ(πt)∇θπ(θt). For the special642

case of the tabular policy parameterization, the above condition becomes equal to,643

⟨ĝt, [∇2
πΦ(πt)]

−1ĝt⟩ > ⟨[∇J(πt)− ĝt],∇2Φ∗(∇Φ(πt)) [∇J(πt)− ĝt]⟩ .

Proof. As a warmup, let us first consider the tabular parameterization where π(θ) = θ ∈ RSA. In this case, the lower-bound644

in Prop. 1 is equal to,645

J(π)− J(πt) ≥ ⟨ĝt, θ − θt⟩ −
(
1

η
+

1

c

)
DΦ(θ, θt)−

1

c
DΦ∗

(
∇Φ(θt)− c[∇J(θt)− ĝt],∇Φ(θt)

)
We shall do a second-order Taylor expansion of the critic objective (blue term) in c around 0 and a second-order Taylor646

expansion of the actor objective (green term) around θ = θt. Defining δ := ∇J(θt)− ĝt,647

RHS = ⟨ĝt, θ − θt⟩ −
1

2

(
1

η
+

1

c

)
(θ − θt)

T [∇2Φ(θt)] (θ − θt)−
c

2
⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩+ o(c) + o(∥θ − θt∥22) ,

(Using Prop. 20)

where o(c) and o(∥θ − θt∥22) consist of the higher order terms in the Taylor series expansion. A necessary and sufficient648

condition for monotonic improvement is equivalent to finding a (θ, c) such that RHS is positive. As c tends to 0, the θ649

maximizing the RHS is650

θ∗ = θt +
cη

c+ η

[
∇2Φ(θt)

]†
ĝt

With this choice,651

RHS =
1

2

1
1
η + 1

c

⟨ĝt,
[
∇2Φ(θt)

]−1
ĝt⟩ −

c

2
⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩+ o(c) (o(∥θ − θt∥22) is subsumed by o(c))

=
c

2
⟨ĝt,

[
∇2Φ(θt)

]−1
ĝt⟩ −

c

2
⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩+

1

2

(
1

1
η + 1

c

− c

)
⟨ĝt,

[
∇2Φ(θt)

]−1
ĝt⟩︸ ︷︷ ︸

o(c) term

+o(c)

=
c

2
⟨ĝt,

[
∇2Φ(θt)

]−1
ĝt⟩ −

c

2
⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩+ o(c) (Subsuming the additional o(c) term)

If ⟨ĝt,
[
∇2Φ(θt)

]−1
ĝt⟩ > ⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩, i.e. there exists an ϵ > 0 s.t. ⟨ĝt,

[
∇2Φ(θt)

]−1
ĝt⟩ =652

⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩ + ϵ, then, RHS = cϵ
2 + o(c). For any fixed κ > 0, since o(c)/c → 0 as c → 0, there exists a653

neighbourhood (0, cκ) around zero such that for all c in this neighbourhood, o(c)/c > −κ and hence o(c) > −κc. Setting654

κ = ε
4 , there is a c such that655

RHS >
cε

4
> 0

Hence, there exists a c ∈ (0,min{η, cκ}) such that the RHS is positive, and is hence sufficient to guarantee monotonic656

policy improvement.657

On the other hand, if ⟨ĝt,
[
∇2Φ(θt)

]−1
ĝt⟩ < ⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩, i.e. there exists an ϵ > 0 s.t. ⟨ĝt,

[
∇2Φ(θt)

]−1
ĝt⟩ =658

⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩ − ϵ, then, RHS = −cϵ
2 + o(c) which can be negative and hence monotonic improvement can not be659

guaranteed. Hence, ⟨ĝt,
[
∇2Φ(θt)

]−1
ĝt⟩ > ⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩ is a necessary and sufficient condition for improvement.660

Let us now consider the more general case, and define m = SA, ĝt ∈ Rm×1, π(θ) ∈ Rm×1 is a function of θ ∈ Rn×1.661

Rewriting Prop. 1,662

J(π)− J(πt) ≥ ⟨ĝt, π(θ)− π(θt)⟩ −
(
1

η
+

1

c

)
DΦ(π(θ), π(θt))−

1

c
DΦ∗

(
∇Φ(πt)− c[∇J(πt)− ĝt],∇Φ(πt)

)
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As before, we shall do a second-order Taylor expansion of the critic objective (blue term) in c around 0 and a second-order663

Taylor expansion of the actor objective (green term) around θ = θt. Defining δ := ∇J(θt)− ĝt. From Prop. 20, we know664

that,665

1

c
DΦ∗

(
∇Φ(πt)− c[∇J(πt)− ĝt],∇Φ(πt)

)
=

c

2
⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩+ o(c)

In order to calculate the second-order Taylor series expansion of the actor objective, we define ∇θπ(θt) ∈ Rm×n as the666

Jacobian of the θ :→ π map, and use ∇θ[π(θt)]i ∈ R1×n for i ∈ [m] to refer to row i667

⟨ĝt, π(θ)− π(θt)⟩ =
m∑
i=1

[ĝt]i︸︷︷︸
1×1

∇θ[π(θt)]i︸ ︷︷ ︸
1×n

(θ − θt)︸ ︷︷ ︸
n×1

+
1

2
(θ − θt)︸ ︷︷ ︸

1×n

 m∑
i=1

[ĝt]i︸︷︷︸
1×1

∇2
θ[π(θt)]i︸ ︷︷ ︸
n×n

 (θ − θt)︸ ︷︷ ︸
n×1

+o(∥θ − θt∥22)

where o(∥θ − θt∥22) consist of the higher order terms in the Taylor series expansion. For expanding the divergence term,668

note that DΦ(π(θ), π(θt)) = ϕ(π(θ))− ϕ(π(θt))− ⟨∇ϕ(π(θt)), π(θ)− π(θt)⟩669

ϕ(π(θ))− ϕ(π(θt)) = ∇πϕ(πt)
T︸ ︷︷ ︸

1×m

∇θπ(θt)︸ ︷︷ ︸
m×n

(θ − θt)︸ ︷︷ ︸
n×1

+
1

2
(θ − θt)

T︸ ︷︷ ︸
1×n

∇θπ(θt)
T︸ ︷︷ ︸

n×m

∇2
πϕ(πt)︸ ︷︷ ︸
m×m

∇θπ(θt)︸ ︷︷ ︸
m×n

+
m∑
i=1

[∇πϕ(πt)]i︸ ︷︷ ︸
1×1

∇2
θ[π(θt)]i︸ ︷︷ ︸
n×n

 (θ − θt)︸ ︷︷ ︸
n×1

+o(∥θ − θt∥22)

670

⟨∇ϕ(π(θt)), π(θ)− π(θt)⟩ =
m∑
i=1

[∇ϕ(πt)]i︸ ︷︷ ︸
1×1

[∇θπ(θt)]i︸ ︷︷ ︸
1×n

(θ − θt)︸ ︷︷ ︸
n×1

+
1

2
(θ − θt)︸ ︷︷ ︸

1×n

 m∑
i=1

[∇ϕ(πt)]i︸ ︷︷ ︸
1×1

∇2
θ[π(θt)]i︸ ︷︷ ︸
n×n

 (θ − θt)︸ ︷︷ ︸
n×1

+o(∥θ − θt∥22)

Putting everything together,671

RHS =

 m∑
i=1

[ĝt]i︸︷︷︸
1×1

∇θ[π(θt)]i︸ ︷︷ ︸
1×n

 (θ − θt)︸ ︷︷ ︸
n×1

+
1

2
(θ − θt)

T︸ ︷︷ ︸
1×n

 m∑
i=1

[ĝt]i︸︷︷︸
1×1

∇2
θ[π(θt)]i︸ ︷︷ ︸
n×n

−
(
1

η
+

1

c

)
∇θπ(θt)

T︸ ︷︷ ︸
n×m

∇2
πϕ(πt)︸ ︷︷ ︸
m×m

∇θπ(θt)︸ ︷︷ ︸
m×n

 (θ − θt)︸ ︷︷ ︸
n×1

− c

2
⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩+ o(∥θ − θt∥22) + o(c)

Defining bt :=
∑m

i=1 [ĝt]i ∇θ[π(θt)]i and Ht := ∇θπ(θt)
T ∇2

πϕ(πt)∇θπ(θt)− 1

( 1
η+ 1

c )

∑m
i=1

(
[ĝt]i ∇2

θ[π(θt)]i
)

672

RHS = ⟨bt, θ − θt⟩+
1

2

(
1

η
+

1

c

)
⟨(θ − θt), Ht (θ − θt)⟩ −

c

2
⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩+ o(∥θ − θt∥22) + o(c)

As a sanity check, it can be verified that if π(θ) = θ, Ht =
(

1
η + 1

c

)
∇2Φ(θt) and bt = ĝt, and we recover the tabular

result above. Notice that
〈
(θ − θt),

1

( 1
η+ 1

c )

∑m
i=1

(
[ĝt]i ∇2

θ[π(θt)]i
)
(θ − θt)

〉
is o(c) as c goes to zero. Subsuming this

term in o(c),673

RHS = ⟨bt, θ − θt⟩+
1

2

(
1

η
+

1

c

)
⟨(θ − θt), H̃t (θ − θt)⟩ −

c

2
⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩+ o(∥θ − θt∥22) + o(c)

where H̃t := ∇θπ(θt)
T ∇2

πϕ(πt)∇θπ(θt). As before, a necessary and sufficient condition for monotonic improvement is674

equivalent to finding a (θ, c) such that RHS is positive. As c tends to 0, the θ maximizing the RHS is675

θ∗ = θt +
c η

(c+ η)

[
H̃t

]†
bt

With this choice,676

RHS =
1

2

1
1
η + 1

c

⟨bt,
[
H̃t

]†
bt⟩ −

c

2
⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩+ o(c) (o(∥θ − θt∥22) is subsumed in o(c))
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As in the tabular case, since 1
1
η+ 1

c

is o(c), we can subsume it, and we get that,677

RHS =
c

2
⟨bt,

[
H̃t

]†
bt⟩ −

c

2
⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩+ o(c)

Using the same reasoning as in the tabular case above, we can prove that678

⟨bt,
[
H̃t

]†
bt⟩ > ⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩

is a necessary and sufficient condition for monotonic policy improvement.679

680

D.1 Proof of Prop. 3681

The following proposition shows the convergence of inexact mirror ascent in the functional space.682

Proposition 11. Assuming that (i) J + 1
η Φ is convex in π, for a constant c > 0, after T iterations of mirror ascent with683

1
η′ =

2
η + 2

c we have684

E
DΦ(π̄R+1, π̄R)

ζ2
≤ 1

ζT

[
[J(π∗)− J(π0)] +

1

c

T−1∑
t=0

EDϕ∗

(
∇ϕ(π̄t)− c[∇J(π̄t)− ĝ(π̄t)],∇ϕ(π̄t)

)]

where ζ = η′/2 and R is picked uniformly random from {0, 1, 2, . . . T − 1}.685

Proof. We divide the mirror ascent (MA) update into two steps:686

∇ϕ(π̃t+1) = ∇ϕ(π̄t) + η′tĝ(π̄t) =⇒ ĝ(π̄t) =
1

η′t
[∇ϕ(π̃t+1)−∇ϕ(π̄t)]

π̄t+1 = argmin
π∈Π

DΦ(π, π̃t+1).

We denote the above update as π̄t+1 = MA(π̄t). Using Prop. 1 with π = π̄t+1, π′ = π̄t,687

J(π̄t+1) ≥ J(π̄t) + ĝ(π̄t)
⊤(π̄t+1 − π̄t)−

(
1

η
+

1

c

)
DΦ(π̄t+1, π̄t)−

1

c
Dϕ∗

(
∇ϕ(π̄t)− c[∇J(π̄t)− ĝ(π̄t)],∇ϕ(π̄t)

)
︸ ︷︷ ︸

:=ϵct

≥ J(π̄t) +
1

η′t
⟨∇ϕ(π̃t+1)−∇ϕ(π̄t), π̄t+1 − π̄t⟩ −

(
1

η
+

1

c

)
DΦ(π̄t+1, π̄t)− ϵct (Using the update)

≥ J(π̄t) +
1

η′t
{DΦ(π̄t+1, π̄t) +DΦ(π̄t, π̃t+1)−DΦ(π̄t+1, π̃t+1)} −

(
1

η
+

1

c

)
DΦ(π̄t+1, π̄t)− ϵct

(using Lemma 15)

= J(π̄t) +
1

η′t
{DΦ(π̄t, π̃t+1)−DΦ(π̄t+1, π̃t+1)}︸ ︷︷ ︸

:=A

+

(
1

η′t
− 1

η
− 1

c

)
DΦ(π̄t+1, π̄t)− ϵct

≥ J(π̄t) +

(
1

η′t
− 1

η
− 1

c

)
DΦ(π̄t+1, π̄t)− ϵct (A ≥ 0 since π̄t+1 is the projection of π̃t+1 onto Π)

≥ J(π̄t) +

(
1

η
+

1

c

)
︸ ︷︷ ︸

:= 1
ζ

DΦ(π̄t+1, π̄t)− ϵct (Sinc 1/η′t = 2/η + 2/c)
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Recursing for T iterations and dividing by 1/ζ , picking R uniformly random from {0, 1, 2, . . . T−1} and taking expectation688

we get689

E
DΦ(π̄R+1, π̄R)

ζ2
=

1

ζ2T

T−1∑
t=0

EDΦ(π̄t+1, π̄t)

≤ E[J(π̄T )− J(π0)]

ζT
+

∑T−1
t=0 Eϵct
T

≤ [J(π∗)− J(π0)]

ζT
+

∑T−1
t=0 Eϵct
T

=
1

ζT

[
[J(π∗)− J(π0)] +

1

c

T−1∑
t=0

EDϕ∗

(
∇ϕ(π̄t)− c[∇J(π̄t)− ĝ(π̄t)],∇ϕ(π̄t)

)]

690

Compared to Dragomir et al. [15], D’Orazio et al. [12] that analyze stochastic mirror ascent in the smooth, non-convex691

setting, our analysis ensures that the (i) sub-optimality gap (the LHS in the above proposition) is always positive, and (ii)692

uses a different notion of variance that depends on DΦ∗ .693

Similar to Vaswani et al. [56], we assume that each π ∈ Π is parameterized by θ. In Algorithm 1, we run gradient ascent694

(GA) on ℓt(θ) to compute πt+1 = π(θt+1) and interpret the inner loop of Algorithm 1 as an approximation to the projection695

step in the mirror ascent update. We note that ℓt(θ) does not have any additional randomness and is a deterministic function696

w.r.t θ. Note that π̄t+1 = where πt = π(θt). Assuming that ℓt(θ) is smooth, and satisfies the PL condition [26], we get the697

following convergence guarantee for Algorithm 1.698

Proposition 3. For any policy representation and mirror map Φ such that (i) J + 1
ηΦ is convex in π, any policy699

parameterization such that (ii) ℓt(θ) is smooth w.r.t θ and satisfies the Polyak-Lojasiewicz (PL) condition, for c > 0, after700

T iterations of Algorithm 1 we have that,701

E
[
DΦ(π̄R+1, πR)

ζ2

]
≤ 1

ζT

[
J(π∗)− J(π0) +

T−1∑
t=0

(
1

c
EDΦ∗

(
∇Φ(πt)− c δt,∇Φ(πt)

)
+ E[et]

)]

where δt := ∇J(πt) − ĝt, 1
ζ = 1

η + 1
c , R is a random variable chosen uniformly from {0, 1, 2, . . . T − 1} and702

et ∈ O(exp (−ma)) is the approximation error at iteration t.703

Proof. For this proof, we define the following notation:704

πt := π(θt)

ℓt(θ) := J(πt) + ĝ(πt)
⊤(π(θ)− πt)−

(
1

η
+

1

c

)
DΦ(π(θ), πt)

θ̄t+1 := argmax ℓt(θ)

π̄t+1 := π(θ̄t+1) = argmax
π∈Π

{⟨ĝt(πt), π − πt⟩ −
1

η′
DΦ(π, πt)} = MA(πt)

(Iterate obtained after running 1 step of mirror ascent starting from πt)
θt+1 := GradientAscent(ℓt(θ), θt,ma)

πt+1 := π(θt+1) ,

where GradientAscent(ℓt(θ), θt,ma) means running GradientAscent for ma iterattions on ℓt(θ) with the initialization705

equal to θt. Since we assume that ℓt satisfies the PL-condition w.r.t. θ for all t, based on the results from Karimi et al. [26],706

we get707

ℓt(θ̄t+1)− ℓt(θt+1) ≤ c1 exp(−c2ma)
(
ℓt(θ̄t+1)− ℓt(θt)

)︸ ︷︷ ︸
:=et
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where c1, c2 are problem-dependent constants related to the smoothness and curvature of ℓt, and et is the approximation708

error diminishes as we increase the value of ma. Following the same steps as before,709

J(πt+1) ≥ J(πt) + ĝ(πt)
⊤(π(θt+1)− πt)−

(
1

η
+

1

c

)
DΦ(π(θt+1), πt)− ϵt (Using Prop. 1)

≥ J(πt) + ĝ(πt)
⊤(π(θ̄t+1)− πt)−

(
1

η
+

1

c

)
DΦ(π(θ̄t+1), πt)− ϵt (Using the above bound for GA)

= J(πt) + ĝ(πt)
⊤(π̄t+1 − πt)−

(
1

η
+

1

c

)
DΦ(π̄t+1, πt)− et − ϵt

≥ J(πt) +
1

η′t
⟨∇Φ(π̃t+1)−∇Φ(πt), π̄t+1 − πt⟩ −

(
1

η
+

1

c

)
DΦ(π̄t+1, πt)− ϵct − et

(Using the MA update)

≥ J(πt) +
1

η′t
{DΦ(π̄t+1, πt) +DΦ(πt, π̃t+1)−DΦ(π̄t+1, π̃t+1)} −

(
1

η
+

1

c

)
DΦ(π̄t+1, πt)− ϵct − et

(using Lemma 15)

= J(πt) +
1

η′t
{DΦ(πt, π̃t+1)−DΦ(π̄t+1, π̃t+1)}︸ ︷︷ ︸

:=A

+

(
1

η′t
− 1

η
− 1

c

)
DΦ(π̄t+1, πt)− ϵct − et

≥ J(πt) +

(
1

η′t
− 1

η
− 1

c

)
DΦ(π̄t+1, πt)− ϵct − et

(A ≥ 0 since π̄t+1 is the projection of π̃t+1 into the simplex)

≥ J(πt) +

(
1

η
+

1

c

)
︸ ︷︷ ︸

:= 1
ζ

DΦ(π̄t+1, πt)− ϵct − et ( setting η′t s.t. 1/η′t ≥ 2/η + 2/c)

Recusing for T iterations and dividing by 1/ζ , picking R uniformly random from {0, 1, 2, . . . T −1} and taking expectation710

we get711

E
DΦ(π̄R+1, πR)

ζ2
=

1

ζ2T

T−1∑
t=0

EDΦ(π̄t+1, πt)

≤ E[J(πT )− J(π0)]

ζT
+

∑T−1
t=0 Eϵct
ζT

+

∑T−1
t=0 Eet
ζT

≤ [J(π∗)− J(π0)]

γT
+

∑T−1
t=0 Eϵct
γT

+

∑T−1
t=0 Eet
γT

=⇒ E
DΦ(π̄R+1, πR)

ζ2
≤ 1

ζT

[
[J(π∗)− J(π0)] +

1

c

T−1∑
t=0

EDΦ∗

(
∇Φ(πt)− c[∇J(πt)− ĝ(πt)],∇Φ(πt)

)
+

T−1∑
t=0

Eet

]

712

Note that it is possible to incorporate a sampling error (in the distribution dπ across states) for the actor update in Algorithm 1.713

This corresponds to an additional error in calculating DΦ, and we can use the techniques from Lavington et al. [30] to714

characterize the convergence in this case.715

D.2 Exact setting with Lifting (Direct representation)716

Recall the mirror ascent update in the functional space.717

π̄t+1 = argmax
π∈Π

[
J(πt) +∇J(πt)

⊤(π − πt)−
1

η′t
DΦ(π, πt)

]
,
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For the direct representation, we define πs := pπ(·|s), ĝ(πt)(s, ·) = dπt(s)Qπt(s, ·) and DΦ(π, πt) =718 ∑
s d

πt(s)Dϕ(π
s, πt

s). Rewriting the MA update,719

π̄t+1 = argmax
{πs∈∆A}s∈S

[
J(πt) +

∑
s

dπt(s)

[
⟨Qπt(s, ·), πs − πt

s⟩ − 1

η′t
Dϕ(π

s, πt
s)

]]

=⇒ π̄s
t+1 = argmax

πs∈∆A

[
⟨Qπt(s, ·), πs − πt

s⟩ − 1

η′t
Dϕ(π

s, πt
s)

]
(Can decompose across states since dπt(s) ≥ 0)

For each state s and Qπt(s, .) we define the set Πs
t = {πs : πs ∈ argmaxps∈∆A

⟨Qπt(s, .), ps⟩} i.e. a set of greedy720

policies w.r.t. Qπt(s, .). Similar to Johnson et al. [23] we define η′t as follows721

η′t ≥
1

ct
max

s

{
min
π∈Πs

t

DΦ(π, πt)

}
(5)

where ct > 0 is a constant. Now we consider the policy parameterization, π = π(θ). We assume that the mapping from722

θ → π is Lπ Lipschitz continuous.723

ℓt(θ) := J(πt) +
∑
s

dπt(s)

[
⟨Qπt(s, ·), π(θ)s − πt

s⟩ − 1

η′t
Dϕ(π(θ)

s, πt
s)

]
θ̃t+1 := argmax

θ
ℓt(θ)

θt+1 := GradientAscent(ℓt(θ), θt,m)

π̃t+1 := π(θ̃t+1)

πt+1 := π(θt+1)

GradientAscent(ℓt(θ), θt,m) means that we run gradient ascent for m iterations to maximize ℓt with θt as the initial value.724

We assume that ℓt satisfies Restricted Secant Inequality (RSI) and is smooth w.r.t. θ. Based on the convergence property of725

Gradient Ascent for RSI and smooth functions [26], we have:726 ∥∥∥θ̃t+1 − θt+1

∥∥∥2
2
≤ O(exp(−m))

=⇒ ∥π̃t+1 − πt+1∥22 =
∥∥∥π(θ̃t+1)− π(θt+1)

∥∥∥2
2
≤ L2

π

∥∥∥θ̃t+1 − θt+1

∥∥∥2
2
≤ e2t := O(exp(−m))︸ ︷︷ ︸

approximation error

( since π(θ) is Lipschitz continuous)

Furthermore, we assume that ∥π̄t+1 − π̃t+1∥22 ≤ b2t for all t which represents the bias because of the function approximation.727

Before stating the main proposition of this section, we restate Johnson et al. [23, Lemma 2].728

Lemma 12 (Lemma 2 of Johnson et al. [23]). For all (s, a) ∈ S ×A we have729

Qπ̄t+1(s, a) ≥ Qπt(s, a).

Now we state the main proposition of this part.730

Proposition 13 (Convergence of tabular MDP with Lifting). Assume that (i) ℓt(θ) is smooth and satisfies RSI condition,731

(ii) π(θ) is Lπ-Lipschitz continuous, (iii) the bias is bounded for all t i.e. ∥π̄t+1 − π̃t+1∥22 ≤ b2t , (iv) ∥Qπ(s, ·)∥ ≤ q for all732

π and s. By setting η′t as in Eq. (5) and running Gradient Ascent for m iterations to maximize ℓt we have733

∥J(π∗)− J(πT )∥∞ ≤ γT

(
∥J(π∗)− J(π0)∥∞ +

T∑
t=1

γ−t

(
ct +

q

1− γ
[et + bt]

))
where π∗ is the optimal policy, π∗s refers to the optimal action in state s. Here, et = O(exp(−m)) is the approximation734

error.735

Proof. This proof is mainly based on the proof of Theorem 3 of Johnson et al. [23]. Using Lemma 12 and the fact that736

πs ≥ 0, we have ⟨Qπt(s, ·), π̄s
t+1⟩ ≤ ⟨Qπ̄t+1(s, ·), π̄s

t+1⟩ = Js(π̄t+1). Using this inequality we get,737

⟨Qπt(s, ·), π∗s − π̄s
t+1⟩ ≥ ⟨Qπt(s, ·), π∗s⟩ − Js(π̄t+1)

= ⟨Qπt(s, ·)−Qπ∗
(s, ·), π∗s⟩+ ⟨Qπ∗

(s, ·), π∗s⟩ − Js(π̄t+1)

≥ −
∥∥∥Qπt(s, ·)−Qπ∗

(s, ·)
∥∥∥
∞

+ Js(π
∗)− Js(π̄t+1) (Holder’s inequality)

≥ −γ ∥J(πt)− J(π∗)∥∞ + Js(π
∗)− Js(π̄t+1)

23



The last inequality is from the definition of Q and J as follows. For any action a,738

Qπt(s, a)−Qπ∗
(s, a) = γ

∑
s′

P (s′|s, a) [Js′(πt)− Js′(π
∗)]

≤ γ
∑
s′

P (s′|s, a) ∥J(πt)− J(π∗)∥∞

≤ γ ∥J(πt)− J(π∗)∥∞

From the above inequality,739

−γ ∥J(πt)− J(π∗)∥∞ + Js(π
∗)− Js(π̄t+1) ≤ ⟨Qπt(s, ·), π∗s − π̄s

t+1⟩
≤ ⟨Qπt(s, ·), pst − π̄s

t+1⟩ (For any pst ∈ Πs
t )

≤
Dϕ(p

s
t , πt

s)−Dϕ(p
s
t , π̄

s
t+1)−Dϕ(π̄

s
t+1, πt

s)

η′t
(Using Lemma 16 with d = Qπt(s, ·), y = π̄s

t+1, x = pst )

≤ Dϕ(p
s
t , πt

s)

η′t

=⇒ −γ ∥J(πt)− J(π∗)∥∞ + Js(π
∗)− Js(π̄t+1) ≤ min

ps
t∈Πs

t

Dϕ(p
s
t , πt

s)

η′t
≤ ct

(Based on the definition of η′ in Eq. (5))
=⇒ −γ ∥J(πt)− J(π∗)∥∞ + Js′(π

∗)− Js′(πt+1) ≤ ct + Js′(π̄t+1)− Js′(πt+1)
(Since s is an arbitrary state, changing s = s′ for convenience)

= ct +
1

1− γ

∑
s

dπ̄t+1(s)⟨Qπt+1(s, ·), π̄s
t+1 − πt+1

s⟩

(Using performance difference lemma 17 with the starting state equal to s′)

≤ ct +
1

1− γ

∑
s

dπ̄t+1(s) ∥Qπt+1(s, ·)∥
∥∥π̄s

t+1 − πt+1
s
∥∥

(Cauchy Schwartz)

≤ ct +
q

1− γ

∑
s

dπ̄t+1(s)
∥∥π̄s

t+1 − πt+1
s
∥∥

≤ ct +
q

1− γ

∑
s

dπ̄t+1(s)
[∥∥π̄s

t+1 − π̃s
t+1

∥∥+ ∥∥π̃s
t+1 − πt+1

s
∥∥]

≤ ct +
q

1− γ
(et + bt)

Since the above equation is true for all s′ we have:740

∥J(π∗)− J(πt+1)∥∞ ≤ γ ∥J(πt)− J(π∗)∥∞ + ct +
q

1− γ
(et + bt)

Recursing for T iterations we get:741

∥J(π∗)− J(πT )∥∞ ≤ γT

(
∥J(π∗)− J(π0)∥∞ +

T∑
t=1

γ−t(ct +
q

1− γ
[et + bt])

)
742

We can control the approximation error et by using a larger m. The bias term bt can be small if our function approximation743

model is expressive enough. ct is an arbitrary value and if we set ct = γtc for some constant c > 0, then
∑T

t=1 γ
−t(ct) =744

Tc and therefore γTTc can diminish linearly. The above analysis relied on the knowledge of the true Q functions, but can745

be easily extended to using inexact estimates of Qπ by using the techniques developed in [60, 23].746

24



D.3 Exact setting with lifting trick (Softmax representation)747

In the softmax representation in the tabular MDP, we consider the case that π is parameterized with parameter θ ∈ Rn. In748

this setting Φ is the Euclidean norm. Using Prop. 1, for η such that J + 1
ηϕ is convex we have for a given πt,749

J(π) ≥ J(πt) + ⟨∇J(πt), π − πt⟩ −
1

η
DΦ(π, πt)

= J(πt) + ⟨∇J(πt), π − πt⟩ −
1

2η
∥π − πt∥22︸ ︷︷ ︸

:=h(π)

(Since ϕ(.) = 1
2 ∥.∥

2
2)

If we maximize h(π) w.r.t. π we get750

π̄t+1 = argmax
π

{h(π)} =⇒ π̄t+1 = πt + η∇πJ(πt)

[36, Lemma 8] proves that J(π) satisfies a gradient domination condition w.r.t the softmax representation. In particular, if751

a∗(s) is the optimal action in state s and µ := minπ
mins pπ(a∗(s)|s)
√
S
∥∥∥ dπ

∗
dπ

∥∥∥
∞

, they prove that for all π,752

∥∇πJ(π)∥ ≥ µ [J(π∗)− J(π)]

Consider optimization in the parameter space where ℓt(θ) := J(πt) + ⟨∇J(π(θt), π(θ)− π(θt)⟩ − 1
η DΦ(π(θ), π(θt)).753

θ̃t+1 := argmax
θ

ℓt(θ)

π̃t+1 = π(θ̃t+1)

θt+1 := GradientAscent(ℓt, θt,m)

πt+1 = π(θt+1)

GradientAscent(ℓt(θ), θt,m) means that we run gradient ascent for m iterations to maximize ℓt with θt as the initial value.754

Assuming that ℓt is Lipschitz smooth w.r.t. θ and satisfies the Polyak-Lojasiewicz (PL) condition, we use the gradient755

ascent property for PL functions [26] to obtain,756

h(π̃t+1)− h(πt+1) = ℓt(θ̃t+1)− ℓ(θt+1) ≤ et := O(exp(−m))︸ ︷︷ ︸
approximation error

757

Proposition 14 (Convergence of softmax+tabular setting with Lifting). Assume (i) J+ 1
ηϕ is convex, (ii) J satisfies gradient758

domination property above with µ > 0, (iii) ℓt(θ) is Lipschitz smooth and satisfies PL condition, (iv) |h(π̄t+1)−h(π̃t+1)| ≤759

bt for all t. Then after running Gradient Ascent for m iterations to maximize ℓt we have760

min
t∈[T−1]

[J(π∗)− J(πt)] ≤

√
J(π∗)− J(π0) +

∑T−1
t=0 [et + bt]

αT

where α := η µ2

2 and et is the approximation error at iteration t and [T − 1] := {0, 1, 2, . . . T − 1}.761

Proof. Since J + 1
ηϕ is convex,762

J(πt+1) ≥ h(πt+1) = J(πt) + ⟨∇J(πt), πt+1 − πt⟩ −
1

2η
∥πt+1 − πt∥22

≥ h(π̃t+1)− et (Using the GA bound from above)

≥ h(π̄t+1)− et − bt = J(πt) + ⟨∇J(πt), π̄t+1 − πt⟩ −
1

2η
∥π̄t+1 − πt∥22 − et − bt

≥ J(πt) +
η

2
∥∇πJ(πt)∥22 − et − bt (Since π̄t+1 = πt + η∇πJ(πt))

≥ J(πt) +
η µ2

2
[J(π∗)− J(πt)]

2 − et − bt (Using gradient domination of J)

=⇒ J(π∗)− J(πt+1) ≤ J(π∗)− J(πt)︸ ︷︷ ︸
:=δt

− η µ2

2︸︷︷︸
:=α

[J(π∗)− J(πt)]
2
+ et + bt

=⇒ δt+1 ≤ δt − αδ2t + et + bt

=⇒ αδ2t ≤ δt − δt+1 + et + bt

25



Summing up for T iterations and dividing both sides by T763

α min
t∈[T−1]

δ2t ≤ 1

T
α

T−1∑
t=0

δ2t

≤ 1

T
[δ0 − δT+1] +

1

T

T−1∑
t=0

[et + bt] ≤
1

T
[δ0] +

1

T

T−1∑
t=0

[et + bt]

=⇒ min
t∈[T−1]

δt ≤

√
δ0 +

∑T−1
t=0 [et + bt]

αT

764

The above analysis relied on the knowledge of the exact gradient ∇J(π), but can be easily extended to using inexact765

estimates of the gradient by using the techniques developed in [62].766

D.4 Helper Lemmas767

Lemma 15 (3-Point Bregman Property). For x, y, z ∈ X ,768

⟨∇ϕ(z)−∇ϕ(y), z − x⟩ = DΦ(x, z) +DΦ(z, y)−DΦ(x, y)

Lemma 16 (3-Point Descent Lemma for Mirror Ascent). For any z ∈ rint dom ϕ, and a vector d, let769

y = argmax
x∈X

{⟨d, x⟩ − 1

η
DΦ(x, z)}.

Then y ∈ rint dom ϕ and for any x ∈ X770

⟨d, y − x⟩ ≥ 1

η
[DΦ(y, z) +DΦ(x, y)−DΦ(x, z)]

Lemma 17 (Performance Difference Lemma [25]). For any π, π′ ∈ Π,771

J(π)− J(π′) =
1

1− γ
Es∼dπ

[
⟨Qπ′

(s, ·), pπ(·|s)− pπ
′
(·|s)⟩

]
772
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E Proofs for Sec. 5773

Proposition 18 (State-wise lower bound). For (i) any representation π that is separable across states i.e. there exists774

πs ∈ RA such that πs,a = [πs]a, (ii) any strictly convex mirror map Φ that induces a Bregman divergence that is separable775

across states i.e. DΦ(π, π
′) =

∑
s d

π(s)Dϕ(π
s, π′s), (iii) any η such that J + 1

ηΦ is convex, if (iv) ∇J(π) is separable776

across states i.e. [∇J(π)]s,a = dπ(s) [∇πsJ(π)a where ∇πsJ(π) ∈ RA, then (v) for any separable (across states)777

gradient estimator ĝ i.e. [ĝ(π)]s,a = dπ(s) [ĝs(π)]a where ĝs(π) ∈ RA, and c ∈ (0,∞)S ,778

J(π) ≥ J(πt) + ⟨ĝ(πt), (π − πt)⟩ −
∑
s

dπt(s)

(
1

η
+

1

cs

)
Dϕ(π

s, πt
s)−

∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− cs δ

s
t ,∇ϕ(πt

s))

cs
779

Proof. Using condition (iii) of the proposition with Lemma 10,780

J(π) ≥ J(πt) + ⟨∇J(πt), π − πt⟩ −
1

η
Dϕ(π, πt)

= J(πt) + ⟨ĝ(πt), π − πt⟩+ ⟨∇J(πt)− ĝ(πt), π − πt⟩ −
1

η
Dϕ(π, πt)

Using conditions (iv) and (v), we know that [∇J(πt)]s,a = dπt(s) [∇πsJ(πt)]a and [ĝ(πt)]s,a = dπt(s) [ĝs(πt)]a.781

Defining δst := ∇πsJ(πt)− ĝs(πt) ∈ RA. Using conditions (i) and (ii), we can rewrite the lower-bound as follows,782

J(π) ≥ J(πt) + ⟨ĝ(πt), (π − πt)⟩+
∑
s

dπt(s) ⟨δst , πs − πt
s⟩ − 1

η

∑
s

dπt(s)Dϕ(π
s, πt

s)

= J(πt) + ⟨ĝ(πt), π − πt⟩+
∑
s

dπt(s)

[
⟨δst , πs − πt

s⟩ − 1

η
Dϕ(π

s, πt
s)

]
Using Lemma 9 with x = δst , y = πs and y′ = πt

s,783

≥ J(πt) + ⟨ĝ(πt), π − πt⟩ −
∑
s

dπt(s)

[
Dϕ∗ (∇ϕ(πt

s)− cs δ
s
t ,∇ϕ(πt

s))

cs
+

(
1

η
+

1

cs

)
Dϕ(π

s, πt
s)

]
J(π) ≥ J(πt) + ⟨ĝ(πt), π − πt⟩ −

∑
s

dπt(s)

(
1

η
+

1

cs

)
Dϕ(π

s, πt
s)−

∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− cs δ

s
t ,∇ϕ(πt

s))

cs

784

Proposition 4. For the direct representation and negative entropy mirror map, c > 0, η ≤ (1−γ)3

2γ |A| ,785

J(π)− J(πt) ≥ C + Es∼dπt

[
Ea∼pπt (·|s)

[
pπ(a|s)
pπt(a|s)

(
Q̂πt(s, a)−

(
1

η
+

1

c

)
log

(
pπ(a|s)
pπt(a|s)

))]]
− Es∼dπt

[
Ea∼pπt (·|s) [Q

πt(s, a)− Q̂πt(s, a)] +
1

c
log

(
Ea∼pπt (·|s)

[
exp

(
−c [Qπt(s, a)− Q̂πt(s, a)]

)])]
where C is a constant and Q̂πt is the estimate of the action-value function for policy πt.786

Proof. For the direct representation, πs,a = pπ(a|s). Using the policy gradient theorem, [∇πJ(π)]s,a = dπ(s)Qπ(s, a).787

We choose ĝ(π) such that [ĝ(π)]s,a = dπ(s) Q̂π(s, a) as the estimated gradient. Using [56, Proposition 2], J + 1
ηΦ is788

convex for η ≤ (1−γ)3

2γ |A| . Defining δst := ∇πsJ(πt)− ĝs(πt) = Qπt(s, ·)− Q̂πt(s, ·) ∈ RA, and using Prop. 18 with cs = c789

for all s,790

J(π) ≥ J(πt) + ⟨ĝ(πt), π − πt⟩ −
∑
s

dπt(s)

(
1

η
+

1

c

)
Dϕ(π

s, πt
s)−

∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c

Since ϕ(πs) = ϕ(pπ(·|s)) =
∑

a p
π(a|s) log(pπ(a|s)), using Lemma 27, Dϕ(π

s, πt
s) = KL(pπ(·|s)||pπt(·|s)). Hence,791

J(π) ≥ J(πt) +
∑
s

dπt(s)
∑
a

Q̂πt(s, a) [pπ(a|s)− pπt(a|s)]−
(
1

η
+

1

c

) ∑
s

dπt(s)KL(pπ(·|s)||pπt(·|s))

−
∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c

27



Using Lemma 24 to simplify the last term,792 ∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c

=
1

c

[∑
s

dπt(s)

[
c ⟨pπt(·|s), δst ⟩+ log

(∑
a

pπt(a|s) exp(−c δst [a])

)]]

=
∑
s

dπt(s)

[∑
a

pπt(a|s) [Qπt(s, a)− Q̂πt(s, a)] +
1

c
log

(∑
a

pπt(a|s) exp
(
−c [Qπt(s, a)− Q̂πt(s, a)]

))]
Putting everything together,793

J(π) ≥ J(πt) +
∑
s

dπt(s)
∑
a

Q̂πt(s, a) [pπ(a|s)− pπt(a|s)]−
(
1

η
+

1

c

) ∑
s

dπt(s)KL(pπ(·|s)||pπt(·|s))

−

[∑
s

dπt(s)

[∑
a

pπt(a|s) [Qπt(s, a)− Q̂πt(s, a)] +
1

c
log

(∑
a

pπt(a|s) exp
(
−c[Qπt(s, a)− Q̂πt(s, a)]

))]]

= J(πt)− Es∼dπt

[
Ea∼pπt (·|s)[Q̂

πt(s, a)]
]

︸ ︷︷ ︸
:=−C

+Es∼dπt

[
Ea∼pπ(·|s)

[
Q̂πt(s, a)−

(
1

η
+

1

c

)
log

(
pπ(a|s)
pπt(a|s)

)]]

−

[∑
s

dπt(s)

[∑
a

pπt(a|s) [Qπt(s, a)− Q̂πt(s, a)] +
1

c
log

(∑
a

pπt(a|s) exp
(
−c[Qπt(s, a)− Q̂πt(s, a)]

))]]

J(π) ≥ J(πt) + C + Es∼dπt

[
Ea∼pπt (·|s)

[
pπ(a|s)
pπt(a|s)

(
Q̂πt(s, a)−

(
1

η
+

1

c

)
log

(
pπ(a|s)
pπt(a|s)

))]]
− Es∼dπt

[
Ea∼pπt (·|s) [Q

πt(s, a)− Q̂πt(s, a)] +
1

c
log
(
Ea∼pπt (·|s)

[
exp

(
−c [Qπt(s, a)− Q̂πt(s, a)]

)])]
794

Proposition 6. For the softmax representation and log-sum-exp mirror map, c > 0, η ≤ 1− γ,795

J(π)− J(πt) ≥ Es∼dπt Ea∼pπt (·|s)

[(
Âπt(s, a) +

1

η
+

1

c

)
log

(
pπ(a|s)
pπt(a|s)

)]
− 1

c
Es∼dπtEa∼pπt (·|s)

[(
1− c [Aπt(s, a)− Âπt(s, a)]

)
log

(
1− c [Aπt(s, a)− Âπt(s, a)]

)]
,

where Âπt is the estimate of the advantage function for policy πt.796

Proof. For the softmax representation, πs,a = z(s, a) s.t. pπ(a|s) = exp(z(s,a))∑
a′ exp(z(s,a′)) . Using the policy gradient theorem,797

[∇πJ(π)]s,a = dπ(s) pπ(a|s)Aπ(s, a). We choose ĝ(π) such that [ĝ(π)]s,a = dπ(s) pπ(a|s) Âπ(s, a) as the estimated798

gradient. Using [56, Proposition 3], J + 1
ηΦ is convex for η ≤ 1 − γ. Define δs ∈ RA such that δst [a] := ∇πsJ(πt) −799

ĝs(πt) = pπt(a|s) [Aπt(s, a)− Âπt(s, a)]. Using Prop. 18 with cs = c for all s,800

J(π) ≥ J(πt) + ⟨ĝ(πt), π − πt⟩ −
∑
s

dπt(s)

(
1

η
+

1

c

)
Dϕ(π

s, πt
s)−

∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c

Since ϕ(πs) = ϕ(z(s, ·)) = log (
∑

a exp(z(s, a))), using Lemma 28, Dϕ(π
s, πt

s) = KL(pπt(·|s)||pπ(·|s)) where801

pπ(a|s) = exp(z(s,a))∑
a′ exp(z(s,a′)) and pπt(a|s) = exp(zt(s,a))∑

a′ exp(zt(s,a′)) . Hence, the above bound can be simplified as,802

J(π) ≥ J(πt) +
∑
s

dπt(s)
∑
a

Âπt(s, a) pπt(a|s) [z(s, a)− zt(s, a)]−
(
1

η
+

1

c

)∑
s

dπt(s)KL(pπt(·|s)||pπ(·|s))

−
∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c

28



Using Lemma 25 to simplify the last term,803 ∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c

=
1

c

[∑
s

dπt(s)

[∑
a

(pπt(a|s)− c δst [a]) log

(
pπt(a|s)− c δst [a]

pπt(a|s)

)]]

=
1

c

∑
s

dπt(s)

∑
a

(
pπt(a|s)− c

[
pπt(a|s) [Aπt(s, a)− Âπt(s, a)]

])
log

pπt(a|s)− c
[
pπt(a|s) [Aπt(s, a)− Âπt(s, a)]

]
pπt(a|s)


=

1

c

[∑
s

dπt(s)

[∑
a

pπt(a|s)
[(

1− c [Aπt(s, a)− Âπt(s, a)]
)
log
(
1− c [Aπt(s, a)− Âπt(s, a)]

)]]]
Putting everything together,804

J(π) ≥ J(πt) +
∑
s

dπt(s)
∑
a

Âπt(s, a) pπt(a|s) [z(s, a)− zt(s, a)]−
(
1

η
+

1

c

)∑
s

dπt(s)KL(pπt(·|s)||pπ(·|s))

− 1

c

[∑
s

dπt(s)

[∑
a

pπt(a|s)
[(

1− c [Aπt(s, a)− Âπt(s, a)]
)
log
(
1− c [Aπt(s, a)− Âπt(s, a)]

)]]]

= J(πt) +
∑
s

dπt(s)
∑
a

[
pπt(a|s) Âπt(s, a) [z(s, a)− zt(s, a)]−

(
1

η
+

1

c

)
pπt(a|s) log

(
pπt(a|s)
pπ(a|s)

)]
− 1

c
Es∼dπtEa∼pπt (·|s)

[(
1− c [Aπt(s, a)− Âπt(s, a)]

)
log
(
1− c [Aπt(s, a)− Âπt(s, a)]

)]
Let us focus on simplifying

∑
a

[
pπt(a|s) Âπt(s, a) [z(s, a)− zt(s, a)]

]
for a fixed s. Note that

∑
a p

πt(a|s) Âπt(s, a) =805

0 =⇒ log (
∑

a′ exp(z(s, a′)))
∑

a p
πt(a|s) Âπt(s, a) = 0.806 ∑

a

[
pπt(a|s) Âπt(s, a) z(s, a)

]
=
∑
a

[
pπt(a|s) Âπt(s, a)

(
z(s, a)− log

(∑
a′

exp(z(s, a′))

))]

=
∑
a

[
pπt(a|s) Âπt(s, a)

(
log(exp(z(s, a))− log

(∑
a′

exp(z(s, a′))

))]

=
∑
a

[
pπt(a|s) Âπt(s, a) log

(
exp(z(s, a))∑
a′ exp(z(s, a′))

)]
= Ea∼pπt (·|s)

[
Âπt(s, a) log(pπ(a|s))

]
Similarly, simplifying

∑
a

[
pπt(a|s) Âπt(s, a) zt(s, a)

]
807 ∑

a

[
pπt(a|s) Âπt(s, a) zt(s, a)

]
= Ea∼pπt (·|s)

[
Âπt(s, a) log(pπt(a|s))

]
=⇒

∑
a

[
pπt(a|s) Âπt(s, a) [z(s, a)− zt(s, a)]

]
= Ea∼pπt (·|s)

[
Âπt(s, a) log

(
pπ(a|s)
pπt(a|s)

)]
Using the above relations,808

J(π) ≥ J(πt) +
∑
s

dπt(s)Ea∼pπt (·|s)

[
Âπt(s, a) log

(
pπ(a|s)
pπt(a|s)

)
−
(
1

η
+

1

c

)
log

(
pπt(a|s)
pπ(a|s)

)]
− 1

c
Es∼dπtEa∼pπt (·|s)

[(
1− c [Aπt(s, a)− Âπt(s, a)]

)
log
(
1− c [Aπt(s, a)− Âπt(s, a)]

)]
= J(πt) + Es∼dπt Ea∼pπt (·|s)

[(
Âπt(s, a) +

1

η
+

1

c

)
log

(
pπ(a|s)
pπt(a|s)

)]
− 1

c
Es∼dπtEa∼pπt (·|s)

[(
1− c [Aπt(s, a)− Âπt(s, a)]

)
log
(
1− c [Aπt(s, a)− Âπt(s, a)]

)]
.

809
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Proposition 8. For the stochastic value gradient representation and Euclidean mirror map, c > 0, η such that J + 1
ηΦ is810

convex in π.811

J(π)− J(πt) ≥ C + Es∼dπtEε∼χ

[
∇̂aQπt(s, a)

∣∣
a=πt(s,ε)

π(s, ε)− 1

2

(
1

η
+

1

c

)
[πt(s, ϵ)− π(s, ϵ)]

2

]
− c

2
Es∼dπtEε∼χ

[
∇aQ

πt(s, a)
∣∣
a=πt(s,ε)

− ∇̂aQπt(s, a)
∣∣
a=πt(s,ε)

]2
where C is a constant and ∇̂aQπt(s, a)

∣∣
a=πt(s,ε)

is the estimate of the action-value gradients for policy π at state s and812

a = πt(s, ϵ).813

Proof. For stochastic value gradients with a fixed ε,
∂J(π)

∂π(s, ϵ)
= dπ(s)∇aQ

π(s, a)
∣∣
a=π(s,ϵ)

. We choose ĝ(π)814

such that [ĝ(π)]s,a = dπ(s)∇̂aQπ(s, a)
∣∣
a=π(s,ϵ)

. Define δst ∈ RA such that δst [a] := ∇aQ
πt(s, a)

∣∣
a=πt(s,ϵ)

−815

∇̂aQπt(s, a)
∣∣
a=πt(s,ϵ)

. Using Prop. 18 with cs = c for all s,816

J(π) ≥ J(πt) + Eε∼χ

[∑
s

dπt(s) ∇̂aQπt(s, a)
∣∣
a=πt(s,ϵ)

[π(s, ε)− πt(s, ε)]−
∑
s

dπt(s)

(
1

η
+

1

c

)
Dϕ(π

s, πt
s)

−
∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c

]
For a fixed ε, since ϕ(πs) = ϕ(π(s, ϵ)) = 1

2 [π(s, ϵ)]
2, Dϕ(π

s, πt
s) = 1

2 [π(s, ϵ)− πt(s, ϵ)]
2. Hence,817

J(π) ≥ J(πt) + Eε∼χ

[∑
s

dπt(s) ∇̂aQπt(s, a)
∣∣
a=πt(s,ϵ)

[π(s, ε)− πt(s, ε)]−
1

2

(
1

η
+

1

c

) ∑
s

dπt(s) [π(s, ϵ)− πt(s, ϵ)]
2

−
∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c

]
Simplifying the last term, since ϕ(π(s, ϵ)) = 1

2 [π(s, ϵ)]
2,818

Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c
=

c

2
[δst ]

2 =
c

2

[
∇aQ

πt(s, a)
∣∣
a=πt(s,ϵ)

− ∇̂aQπt(s, a)
∣∣
a=πt(s,ϵ)

]2
Putting everything together,819

J(π) ≥ J(πt) + Eε∼χ


∑
s

dπt(s) ∇̂aQπt(s, a)
∣∣
a=πt(s,ϵ)

π(s, ε)−
∑
s

dπt(s)∇aQ
πt(s, a)

∣∣
a=πt(s,ϵ)

πt(s, ε)]︸ ︷︷ ︸
:=−C


− Eε∼χ

[
1

2

(
1

η
+

1

c

) ∑
s

dπt(s) [π(s, ϵ)− πt(s, ϵ)]
2 − c

2

∑
s

dπt(s)
[
∇aQ

πt(s, a)
∣∣
a=πt(s,ϵ)

− ∇̂aQπt(s, a)
∣∣
a=πt(s,ϵ)

]2]

J(π) ≥ J(πt) + C + Eε∼χ

[
Es∼dπt

[
∇̂aQπt(s, a)

∣∣
a=πt(s,ϵ)

π(s, ε)− 1

2

(
1

η
+

1

c

)
[π(s, ϵ)− πt(s, ϵ)]

2

]]
− c

2
Eε∼χ

[
Es∼dπt

[
∇aQ

πt(s, a)
∣∣
a=πt(s,ϵ)

− ∇̂aQπt(s, a)
∣∣
a=πt(s,ϵ)

]2]
820
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Proposition 19. For the softmax representation and Euclidean mirror map, c > 0, η ≤ (1−γ)3

8 then821

J(π) ≥ J(πt) + C + Es∼dπt (s)

[
Ea∼pπt (.|s)

[
Âπt(s, a) z(s, a)

]
− 1

2

(
1

η
+

1

c

)
||z(s, ·)− zt(s, ·)||2

]
− c

2
Es∼dπtEa∼pπt (.|s)

[
Aπt(s, a)− Âπt(s, a)

]2
where C is a constant and Âπ is the estimate of advantage function for policy πt.822

Proof. For the softmax representation, πs,a = z(s, a) s.t. pπ(a|s) = exp(z(s,a))∑
a′ exp(z(s,a′)) . Using the policy gradient theorem,823

[∇πJ(π)]s,a = dπ(s) pπ(a|s)Aπ(s, a). We choose ĝ(π) such that [ĝ(π)]s,a = dπ(s) pπ(a|s) Âπ(s, a) as the estimated824

gradient. Define δs ∈ RA such that δst [a] := ∇πsJ(πt)− ĝs(πt) = pπt(a|s) [Aπt(s, a)− Âπt(s, a)]. Using [36, Lemma825

7], J + 1
ηΦ is convex for η ≤ 1− γ. Using Prop. 18 with cs = c for all s,826

J(π) ≥ J(πt) + ⟨ĝ(πt), π − πt⟩ −
(
1

η
+

1

c

) ∑
s

dπt(s)Dϕ(π
s, πt

s)−
∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c

Since ϕ(πs) = ϕ(z(s, ·)) = 1
2

∑
a[zs,a]

2, Dϕ(π
s, πt

s) = 1
2 ∥z(s, ·)− zt(s, ·)∥22. Hence,827

J(π) ≥ J(πt) +
∑
s

dπt(s)
∑
a

Âπt(s, a) pπt(a|s) [z(s, a)− zt(s, a)]−
1

2

(
1

η
+

1

c

) ∑
s

dπt(s) ∥z(s, ·)− zt(s, ·)∥22

−
∑
s

dπt(s)Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c

Simplifying the last term, since ϕ(z(·, a)) = 1
2 [z(s, a)]

2,828 ∑
s d

πt(s)Dϕ∗ (∇ϕ(πt
s)− c δst ,∇ϕ(πt

s))

c
=

c

2

∑
s

dπt(s)
∑
a

[δst (a)]
2

=
c

2

∑
s

dπt(s)
∑
a

pπt(a|s)2 [Aπt(s, a)− Âπt(s, a)]2

≤ c

2

∑
s

dπt(s)
∑
a

pπt(a|s)
[
Aπt(s, a)− Âπt(s, a)

]2
(Since pπt(a|s) ≤ 1)

Putting everything together,829

J(π) ≥ J(πt) +
∑
s

dπt(s)
∑
a

Âπt(s, a) pπt(a|s) [z(s, a)− zt(s, a)]−
1

2

(
1

η
+

1

c

)∑
s

dπt(s) ∥z(s, ·)− zt(s, ·)∥22

− c

2

∑
s

dπt(s)
∑
a

pπt(a|s)
[
Aπt(s, a)− Âπt(s, a)

]2
= J(πt)−

∑
s

dπt(s)
∑
a

Âπt(s, a) pπt(a|s) zt(s, a)︸ ︷︷ ︸
:=−C

+
∑
s

dπt(s)

[∑
a

Âπt(s, a) pπt(a|s) z(s, a)− 1

2

(
1

η
+

1

c

)
∥z(s, ·)− zt(s, ·)∥22

]

− c

2

∑
s

dπt(s)
∑
a

pπt(a|s)
[
Aπt(s, a)− Âπt(s, a)

]2
= J(πt) + C + Es∼dπt

[
Ea∼pπt (·|s)

[
Âπt(s, a) z(s, a)

]
− 1

2

(
1

η
+

1

c

)
∥z(s, ·)− zt(s, ·)∥22

]
− c

2
Es∼dπtEa∼pπt (·|s)

[
Aπt(s, a)− Âπt(s, a)

]2
830
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Proposition 20. For both the direct (with the negative-entropy mirror map) and softmax representations (with the log-831

sum-exp mirror map), for a fixed state s, if δ ∈ RA := ∇πsJ(πt) − ĝs(πt), the second-order Taylor expansion of832

f(c) = Dϕ∗(∇ϕ(πt
s)− cδ,∇ϕ(πt

s)) around c = 0 is equal to833

f(c) ≈ c2

2

∑
a

pπt(a|s)[A(s, a)− Â(s, a)]2 .

834

Proof.

f(c) = Dϕ∗(∇ϕ(πt
s)− cδ,∇ϕ(πt

s)) =⇒ f(0) = D∗
ϕ(∇ϕ(πt

s),∇ϕ(πt
s)) = 0

f(c) = Dϕ∗(∇ϕ(πt
s)− cδ,∇ϕ(πt

s)) = ϕ∗(∇ϕ(πt
s)− cδ)− ϕ∗(∇ϕ(πt

s))− ⟨∇ϕ∗(∇ϕ(πt
s)),∇ϕ(πt

s)− cδ −∇ϕ(πt
s)⟩

=⇒ f ′(c) = ⟨∇ϕ∗(∇ϕ(πt
s)− cδ),−δ⟩+ ⟨πt

s, δ⟩ =⇒ f ′(0) = ⟨πt
s,−δ⟩+ ⟨πt

s, δ⟩ = 0

f ′′(c) = ⟨δ,∇2ϕ∗(∇ϕ(πt
s)− cδ)δ⟩ =⇒ f ′′(0) = ⟨δ,∇2ϕ∗(∇ϕ(πt

s)) δ⟩.

By the second-order Taylor series expansion of f(c) around c = 0,835

f(c) ≈ f(0) + f ′(0)(c− 0) +
f ′′(0) (c− 0)2

2
=

c2

2
⟨δ,∇2ϕ∗(∇ϕ(πt

s)) δ⟩

Let us first consider the softmax case with the log-sum-exp mirror map, where πs = z(s, ·) and ϕ(z(s, ·)) =836

log(
∑

a exp(z(s, a))), ϕ
∗(pπ(·|s)) =

∑
a p

π(a|s) log(pπ(a|s)). Since the negative entropy and log-sum-exp are Fenchel837

conjugates (see Lemma 26), ∇ϕ(zt(s, ·)) = pπt(·|s). Hence, we need to compute ∇2ϕ∗(pπt(·|s)).838

∇ϕ∗(pπt(·|s)) = 1 + log(pπt(·|s)) ; ∇2ϕ∗(pπt(·|s)) = diag (1/pπt (·|s))

For the softmax representation, using the policy gradient theorem, [δ]a = pπt(a|s)[A(s, a)− Â(s, a)] and hence,839

⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩ =
∑
a

pπt(a|s)[A(s, a)− Â(s, a)]2 .

Hence, for the softmax representation, the second-order Taylor series expansion around c = 0 is equal to,840

f(c) ≈ c2

2

∑
a

pπt(a|s)[A(s, a)− Â(s, a)]2 .

Now let us consider the direct case, where πs = pπ(·|s), ϕ(pπ(·|s)) =
∑

a p
π(a|s) log(pπ(a|s)), ϕ∗(z(s, ·)) =841

log(
∑

a exp(z(s, a))). Since the negative entropy and log-sum-exp are Fenchel conjugates (see Lemma 26),842

∇ϕ(pπt(·|s)) = zt(s, ·). Hence, we need to compute ∇2ϕ∗(zt(s, ·)).843

[∇ϕ∗(zt(s, ·))]a =
exp zt(s, a)∑

a′ exp(zt(s, a′))
= pπt(a|s) ; [∇2ϕ∗(zt(s, ·))]a,a = pπt(a|s)− [pπt(a|s)]2

[∇2ϕ∗(zt(s, ·))]a,a′ = −pπt(a|s) pπt(a′|s) =⇒ ∇2ϕ∗(zt(s, ·)) = diag(pπt(·|s))− pπt(·|s) [pπt(·|s)]T .

For the direct representation, using the policy gradient theorem, [δ]a = Qπt(s, a)− Q̂πt(s, a) and hence,844

⟨δ,∇2ϕ∗(∇ϕ(πt)) δ⟩ = [Qπt(s, ·)− Q̂πt(s, ·)]T [diag(pπt(·|s))− pπt(·|s) [pπt(·|s)]T] [Qπt(s, ·)− Q̂πt(s, ·)]

=
∑
a

pπt(a|s) [Qπt(s, a)− Q̂πt(s, a)]2 −
[
⟨pπt(a|s), Qπt(s, ·)− Q̂πt(s, ·)⟩

]2
=
∑
a

pπt(a|s) [Qπt(s, a)− Q̂πt(s, a)]2 −
[
Js(πt)− Ĵs(πt)

]2
(where Ĵs(πt) is the estimated value function for starting state s)
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Hence, for the direct representation, the second-order Taylor series expansion around c = 0 is equal to,845

f(c) ≈ c2

2

[∑
a

pπt(a|s) [Qπt(s, a)− Q̂πt(s, a)]2 −
[
Js(πt)− Ĵs(πt)

]2]

=
c2

2

[∑
a

pπt(a|s) [Qπt(s, a)− Q̂πt(s, a)]2 − 2
[
Js(πt)− Ĵs(πt)

]2∑
a

pπt(a|s) +
[
Js(πt)− Ĵs(πt)

]2∑
a

pπt(a|s)

]

=
c2

2

[∑
a

pπt(a|s) [Qπt(s, a)− Q̂πt(s, a)]2 − 2
[
Js(πt)− Ĵs(πt)

]∑
a

pπt(a|s)[Qπt(s, a)− Q̂πt(s, a)]

+
[
Js(πt)− Ĵs(πt)

]2∑
a

pπt(a|s)
]

=
c2

2

[∑
a

pπt(a|s)
[
[Qπt(s, a)− Q̂πt(s, a)]2 − 2

[
Js(πt)− Ĵs(πt)

]
[Qπt(s, a)− Q̂πt(s, a)] +

[
Js(πt)− Ĵs(πt)

]2]]

=
c2

2

[∑
a

pπt(a|s)
(
[Qπt(s, a)− Q̂πt(s, a)]− [Js(πt)− Ĵs(πt)]

)2]

=
c2

2

[∑
a

pπt(a|s)
[
Aπt(s, a)− Âπt(s, a)

]2]
846

E.1 Bandit examples to demonstrate the benefit of the decision-aware loss847

Proposition 21 (Detailed version of Prop. 5). Consider a two-armed bandit example with deterministic rewards where arm848

1 is optimal and has a reward r1 = Q1 = 2 whereas arm 2 has reward r2 = Q2 = 1. Using a linear parameterization849

for the critic, Q function is estimated as: Q̂ = xω where ω is the parameter to be learned and x is the feature of the850

corresponding arm. Let x1 = −2 and x2 = 1 implying that Q̂1(ω) = −2ω and Q̂2(ω) = ω. Let pt be the probability of851

pulling the optimal arm at iteration t, and consider minimizing two alternative objectives to estimate ω:852

(1) Squared loss: ω
(1)
t := argmin TD(ω) := argmin

{
pt
2
[Q̂1(ω)−Q1]

2 + 1−pt
2

[Q̂2(ω)−Q2]
2
}

.853

(2) Decision-aware critic loss: ω
(2)
t := argminLt(ω) := pt [Q1 − Q̂1(ω)] + (1 − pt) [Q2 − Q̂2(ω)] +854

1
c
log

(
pt exp

(
−c [Q1 − Q̂1(ω)] + (1− pt) exp

(
−c [Q2 − Q̂2(ω)]

))]
.855

Using the tabular parameterization for the actor, the policy update at iteration t is given by: pt+1 =856

pt exp(ηQ̂1)

pt exp(ηQ̂1)+(1−pt) exp(ηQ̂2)
, where η is the functional step-size for the actor. For p0 < 2

5 , minimizing the squared857

loss results in convergence to the sub-optimal action, while minimizing the decision-aware loss (for c, p0 > 0) results in858

convergence to the optimal action.859

Proof. Note that Q̂1(ω) − Q1 = −2(ω + 1) and Q̂2(ω) − Q2 = ω − 1. Calculating ω(1) for a general policy s.t. the860

probability of pulling the optimal arm equal to p,861

TD(ω) =
p

2
[Q̂1(ω)−Q1]

2 +
1− p

2
[Q̂2(ω)−Q2]

2 =
1

2

[
4p (ω + 1)2 + (1− p) (ω − 1)2

]
=⇒ ∇ωTD(ω) = 4p (ω + 1) + (1− p) (ω − 1)

Setting the gradient to zero,862

=⇒ ω(1) =
1− 5p

3p+ 1

Calculating ω(2) for a general policy s.t. the probability of pulling the optimal arm equal to p,863

Lt(ω) = 2p (ω + 1)− (1− p) (ω − 1) +
1

c
log(p exp(−2c (ω + 1)) + (1− p) exp(c (ω − 1)))

=⇒ ∇ωLt(ω) = (3p− 1) +
1

c
∇ω [log(p exp(−2c (ω + 1)) + (1− p) exp(c (ω − 1)))]

Setting the gradient to zero,864

=⇒ ∇ω [log(p exp(−2c (ω + 1)) + (1− p) exp(c (ω − 1)))] = (1− 3p) c
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Define A := exp(−2c (ω + 1)) and B := exp(c (ω − 1)))865

=⇒ −2p cA+ (1− p) cB

pA+ (1− p)B
= (1− 3p) c =⇒ A

pA+ (1− p)B
= 1 =⇒ ω(2) =

−1

3
.

Now, let us consider the actor update,866

pt+1 =
pt exp(ηQ̂1)

pt exp(ηQ̂1) + (1− pt) exp(ηQ̂2)
=⇒ pt+1

pt
=

1

pt + (1− pt) exp(η (Q̂2 − Q̂1))

Since arm 1 is optimal, if pt+1

pt
< 1 for all t, the algorithm will converge to the sub-optimal arm. This happens when867

1
pt+(1−pt) exp(η (Q̂2−Q̂1))

< 1 =⇒ Q̂2− Q̂1 > 0 =⇒ ω > 0. Hence, for any η and any iteration t, if ωt > 0, pt+1 < pt.868

For the decision-aware critic loss, ω(2)
t = − 1

3 for all t, implying that pt+1 > pt and hence the algorithm will converge869

to the optimal policy for any η and any initialization p0 > 0. However, for the squared TD loss, ω(2)
t = 1−5pt

3pt+1 , ω(2)
t > 0870

if pt < 1
5 . Hence, if p0 < 1

5 , p1 < p0 < 1
5 . Using the same reasoning, p2 < p1 < p0 < 1/5, and hence the policy will871

converge to the sub-optimal arm.872

Proposition 22. Consider two-armed bandit problem with deterministic rewards - arm 1 has a reward r1 = Q1 whereas873

arm 2 has a reward r2 = Q2 such that arm 1 is the optimal, i.e. Q1 ≥ Q2. Using a linear parameterization for874

the critic, Q function is estimated as: Q̂ = xω where ω is the parameter to be learned and x is the feature of875

the corresponding arm. Let pt be the probability of pulling the optimal arm at iteration t, and consider minimiz-876

ing the decision-aware critic loss to estimate ω: ωt := argminLt(ω) := pt [Q1 − Q̂1(ω)] + (1 − pt) [Q2 − Q̂2(ω)] +877

1
c
log

(
pt exp

(
−c [Q1 − Q̂1(ω)] + (1− pt) exp

(
−c [Q2 − Q̂2(ω)]

))]
.878

Using the tabular parameterization for the actor, the policy update at iteration t is given by: pt+1 =879

pt exp(ηQ̂1)

pt exp(ηQ̂1)+(1−pt) exp(ηQ̂2)
, where η is the functional step-size for the actor. For the above problem, minimizing the880

decision-aware loss (for c, p0 > 0) results in convergence to the optimal action, and Lt(ωt) = 0 for any iteration t.881

Proof. Define A := exp(−c[Q1 − Q̂1(ω)]) and B := exp(−c[Q2 − Q̂2(ω)]). Calculating the gradient of Lt w.r.t ω and882

setting it to zero,883

∇ωLt(ω) = pt x1 + (1− pt)x2 −
pt x1 A+ (1− pt)x2 B

pt A+ (1− pt)B
= 0

=⇒ pt (1− pt)A (x1 − x2) = pt (1− pt)B (x1 − x2)

=⇒ Q1 − x1 ωt = Q2 − x2 ωt =⇒ ωt =
Q1 −Q2

x1 − x2
.

Observe that Q1 − Q̂1(ωt) = Q2 − Q̂2(ωt) and thus Lt(ωt) = 0 for all t. Writing the actor update,884

pt+1 =
pt exp(η x1 ωt)

pt exp(η x1 ωt) + (1− pt) exp(η x2 ωt)

=⇒ pt+1

pt
=

1

pt + (1− pt) exp(η (x2 − x1)ωt)
=

1

pt + (1− pt) exp(η (Q2 −Q1))
≥ 1

885

Proposition 23 (Detailed version of Prop. 7). Consider a two-armed bandit example and define p ∈ [0, 1] as the886

probability of pulling arm 1. Given p, let the advantage of arm 1 be equal to A1 := 1
2 > 0, while that of arm 2 is887

A2 := − p
2 (1−p) < 0 implying that arm 1 is optimal. For the critic, consider approximating the advantage of the two arms888

using a discrete hypothesis class with two hypotheses that depend on p for: H0 : Â1 = 1
2 + ε , Â2 = − p

1−p

(
1
2 + ε

)
and889

H1 : Â1 = 1
2 − ε sgn

(
1
2 − p

)
, Â2 = − p

1−p

(
1
2 − ε sgn

(
1
2 − p

))
where sgn is the signum function and ε ∈

(
1
2 , 1
)
. If pt890

is the probability of pulling arm 1 at iteration t, consider minimizing two alternative loss functions to choose the hypothesis891

Ht:892

(1) Squared (TD) loss: Ht = argmin{H0,H1}

{
pt
2
[A1 − Â1]

2 + 1−pt
2

[A2 − Â2]
2
}

.893

(2) Decision-aware critic loss (DA) with c = 1 : Ht = argmin{H0,H1}894 {
pt (1− [A1 − Â1]) log(1− [A1 − Â1]) + (1− pt) (1− [A2 − Â2]) log(1− [A2 − Â2])

}
.895

Using the tabular parameterization for the actor, the policy update at iteration t is given by: pt+1 =896

34



pt (1+η Â1)

pt (1+η Â1)+(1−pt) (1+η Â2)
. For p0 ≤ 1

2 , the squared loss cannot distinguish between H0 and H1, and depending897

on how ties are broken, minimizing it can result in convergence to the sub-optimal action. On the other hand, minimizing898

the divergence loss (for any p0 > 0) results in convergence to the optimal arm.899

Proof. First note that when p > 1
2 , H0 and H1 are identical, ensure that Â1 > Â2 and the algorithm will converge to the900

optimal arm no matter which hypothesis is chosen. The regime of interest is therefore when p ≤ 1
2 and we focus on this901

case. Let us calculate the TD and decision-aware (DA) losses for H0.902

A1 − Â1 =
1

2
−
(
1

2
+ ε

)
= −ε ; A2 − Â2 = − p

1− p
[1− (1 + ε)] =

p

1− p
ε

TD(Â1, Â2) = p ε2 + (1− p)

(
p

1− p
ε

)2

= pε2 +
ε2 p2

1− p

DA(Â1, Â2) = p (1 + ε) log(1 + ε) + (1− p)

(
1− ε p

1− p

)
log

(
1− ε p

1− p

)
Similarly, we can calculate the TD and decision-aware losses for H1.903

A1 − Â1 =
1

2
−
(
1

2
− ε

)
= ε ; A2 − Â2 = − p

1− p

[
1

2
−
(
1

2
− ε

)]
= − p

1− p
ε

TD(Â1, Â2) = p ε2 + (1− p)

(
p

1− p
ε

)2

= pε2 +
ε2 p2

1− p

DA(Â1, Â2) = p (1− ε) log(1− ε) + (1− p)

(
1 +

ε p

1− p

)
log

(
1 +

ε p

1− p

)
For both H0 and H1, the TD loss is equal to pε2 + ε2 p2

1−p and hence it cannot distinguish between the two hypotheses.904

Writing the actor update,905

pt+1 =
pt (1 + η Â1)

pt (1 + η Â1) + (1− pt) (1 + η Â2)
=⇒ pt+1

pt
=

1

pt + (1− pt)
1+ηÂ2

1+ηÂ1

Hence, in order to ensure that pt+1 > pt and eventual convergence to the optimal arm, we want that Â2 < Â1. For906

ε ∈
(
1
2 , 1
)
, for H0, Â1 > 0 while Â2 < 0. On the other hand, for H1, Â1 < 0 and Â2 > 0. This implies that the algorithm907

should choose H0 in order to approximate the advantage. Since the TD loss is the same for both hypotheses, convergence to908

the optimal arm depends on how the algorithm breaks ties. Next, we prove that for the decision-aware loss and any iteration909

such that pt < 0.5, the loss for H0 is smaller than that for H1, and hence the algorithm chooses the correct hypothesis and910

pulls the optimal arm. For this, we define f(p) as follows,911

f(p) :=

[
p (1 + ε) log(1 + ε) + (1− p)

(
1− ε p

1− p

)
log

(
1− ε p

1− p

)]
−
[
p (1− ε) log(1− ε) + (1− p)

(
1 +

ε p

1− p

)
log

(
1 +

ε p

1− p

)]
For f(p) to be well-defined, we want that, 1 − ϵ > 0 =⇒ ϵ < 1 and 1 − ϵ p

1−p > 0 =⇒ p < 1
1+ϵ . Since ϵ ∈ (1/2, 1),

p < 1
2 . In order to prove that the algorithm will always choose H0, we will show that f(p) ≤ 0 for all p ∈ [0, 1/2] next.

First note that,912

f(0) = 0 ; f(1/2) =
1 + ε

2
log(1 + ε) +

(1− ε)

2
log(1− ε)− 1− ε

2
log(1− ε)− 1 + ε

2
log(1 + ε) = 0

Next, we will prove that f(p) is convex. This combined with the fact f(0) = f(1/2) = 0 implies that f(p) < 0 for all913

p ∈ (0, 1/2). For this, we write f(p) = g(p) + h1(p)− h2(p) where,914

g(p) = p (1 + ε) log(1 + ε)− p (1− ε) log(1− ε)

h1(p) = (1− p)

(
1− ε p

1− p

)
log

(
1− ε p

1− p

)
= (1− ϵ′ p) log

(
1− ϵ′ p

1− p

)
(ϵ′ = 1 + ϵ)

h2(p) = (1− p)

(
1 +

ε p

1− p

)
log

(
1 +

ε p

1− p

)
= (1− ϵ′′ p) log

(
1− ϵ′′ p

1− p

)
(ϵ′′ = 1− ϵ)
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Differentiating the above terms,915

g′(p) = (1 + ε) log(1 + ε)− (1− ε) log(1− ε) ; g′′(p) = 0

h′
1(p) = −ϵ′ log

(
1− ϵ′ p

1− p

)
+

1− ϵ′

1− p

h′′
1(p) = − ϵ′

1− ϵ′ p

1− ϵ′

1− p
− (1− ϵ′)2

(1− p)2
=

(ϵ′ − 1) p
[
(ϵ′ − 1)

2
+
(

1
p − 1

)]
(1− ϵ′p) (1− p)2

> 0

Similarly,916

h′′
2(p) =

(ϵ′′ − 1) p
[
(ϵ′′ − 1)

2
+
(

1
p − 1

)]
(1− ϵ′′p) (1− p)2

< 0

Combining the above terms, f ′′(p) = g′′(p) + h′′
1(p)− h′′

2(p) > 0 for all p ∈ (0, 1/2) and hence f(p) is convex. Hence,917

for all p < 1
2 , minimizing the divergence loss results in choosing H0 and the actor pulling the optimal arm. Once the918

probability of pulling the optimal arm is larger than 0.5, both hypotheses are identical and the algorithm will converge to919

the optimal arm regardless of the hypothesis chosen.920

E.2 Lemmas921

Lemma 24. For a probability distribution p ∈ RA, the negative entropy mirror map ϕ(p) =
∑

i pi log(pi), δ ∈ RA,922

c > 0,923

Dϕ∗

(
∇ϕ(p)− c δ,∇ϕ(p)

)
= c⟨p, δ⟩+ log

∑
j

pj exp(−cδj)

 .

924

Proof. In this case, [∇ϕ(p)]i = 1 + log(pi). Hence, we need to compute Dϕ∗(z′, z) where z′i := 1 + log(pi)− cδi and925

zi := 1 + log(pi). If ϕ(p) =
∑

i pi log(pi), using Lemma 26, ϕ∗(z) = log (
∑

i exp(zi)) where zi − log(
∑

i exp(zi)) =926

log(pi).927

Define distribution q such that qi :=
exp(1+log(pi)−cδi)∑
j exp(1+log(pj)−cδj)

. Using Lemma 28,928

Dϕ∗(z′, z) = KL(p||q) =
∑
i

pi log

(
pi
qi

)
Simplifying q,929

qi =
exp(1 + log(pi)− cδi)

exp(
∑

j(1 + log(pj)− cδj))
=

pi exp(−cδi)∑
j pj exp(−cδj)

=⇒ Dϕ∗(z′, z) =
∑
i

pi log

(
pi
∑

j pj exp(−cδj)

pi exp(−cδi)

)
=
∑
i

pi log

exp(cδi)
∑
j

pj exp(−cδj)


= c

∑
i

pi δi +
∑
i

pi log

∑
j

pj exp(−cδj)

 = c⟨p, δ⟩+ log

∑
j

pj exp(−cδj)


930
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Lemma 25. For z ∈ RA, the log-sum-exp mirror map ϕ(z) = log(
∑

i exp(zi)), δ ∈ RA s.t.
∑

i δi = 0, c > 0,931

Dϕ∗

(
∇ϕ(z)− c δ,∇ϕ(z)

)
=
∑
i

(pi − cδi) log

(
pi − cδi

pi

)
,

where pi =
exp(zi)∑
j exp(zj)

.932

Proof. In this case, [∇ϕ(z)]i =
exp(zi)∑
j exp(zj)

= pi. Define distribution q s.t. qi := pi − cδi. Note that since
∑

i δi = 0,933 ∑
i qi =

∑
i pi = 1 and hence, q is a valid distribution. We thus need to compute Dϕ∗(q, p). Using Lemma 26,934

ϕ∗(p) =
∑

i pi log(pi) where pi =
exp(zi)∑
j exp(zj)

. Using Lemma 27,935

Dϕ∗(q, p) = KL(q||p) =
∑
i

(pi − cδi) log

(
pi − cδi

pi

)
936

Lemma 26. The log-sum-exp mirror map on the logits and the negative entropy mirror map on the corresponding probability937

distribution are Fenchel duals. In particular for z ∈ Rd, if ϕ(z) := log (
∑

i exp(zi)), then ϕ∗(p) =
∑

i pi log(pi) where938

pi = exp(zi)∑
j exp(zj)

. Similarly, if ϕ(p) =
∑

i pi log(pi), then ϕ∗(z) = log (
∑

i exp(zi)) where zi − log(
∑

i exp(zi)) =939

log(pi).940

Proof. If ϕ(z) := log (
∑

i exp(zi)),941

ϕ∗(p) := sup
z

[⟨p, z⟩ − ϕ(z)] = sup
z

[∑
i

pizi − log

(∑
i

exp(zi)

)]

Setting the gradient to zero, we get that pi =
exp(z∗

i )∑
j exp(z∗

j )
for z∗ ∈ Z∗ where Z∗ is the set of maxima related by a shift (i.e.

if z∗ ∈ Z∗, z∗ + C ∈ Z∗ for a constant C). Using the optimality condition, we know that
∑

i pi = 1 and942

log(pi) = z∗i − log

∑
j

exp(z∗j )

 =⇒ z∗i = log(pi) + ϕ(z∗)

Using this relation,943

ϕ∗(p) =

[∑
i

piz
∗
i − log

(∑
i

exp(z∗i )

)]
=

[∑
i

pi log(pi) + ϕ(z∗)
∑
i

pi − ϕ(z∗)

]
=⇒ ϕ∗(p) =

∑
i

pi log(pi)

The second statement follows since the ϕ∗(ϕ∗) = ϕ.944

Lemma 27. For probability distributions, p and p′, if ϕ(p) =
∑

i p log(pi), then Dϕ(p, p
′) = KL(p||p′).945

Proof. Note that [∇ϕ(p)]i = 1 + log(pi). Using the definition of the Bregman divergence,946

Dϕ(p, p
′) := ϕ(p)− ϕ(p′)− ⟨∇ϕ(p′), p− p′⟩

=
∑
i

[pi log(pi)− p′i log(p
′
i)− (1 + log(p′i))(pi − p′i)]

=
∑
i

[
pi log

(
pi
p′i

)]
−
∑
i

pi +
∑
i

p′i

Since p and p′ are valid probability distributions,
∑

i pi =
∑

i p
′
i = 1, and hence, Dϕ(p, p

′) = KL(p||p′).947
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Lemma 28. If ϕ(z) = log(
∑

i exp(zi)), then Dϕ(z, z
′) = KL(p′||p), where pi :=

exp(zi)∑
j exp(zj)

and p′i :=
exp(z′

i)∑
j exp(z′

j)
.948

Proof. Note that [∇ϕ(z)]i =
exp(zi)∑
j exp(zj)

= pi where pi :=
exp(zi)∑
j exp(zj)

. Using the definition of the Bregman divergence,949

Dϕ(z, z
′) := ϕ(z)− ϕ(z′)− ⟨∇ϕ(z′), z − z′⟩

= log

∑
j

exp(zj)

− log

∑
j

exp(z′j)

−
∑
i

[
exp(z′i)∑
j exp(z

′
j)
(zi − z′i)

]

=
∑
i

p′i

log
∑

j

exp(zj)

− log

∑
j

exp(z′j)

− zi + z′i

 (Since
∑

i p
′
i = 1)

=
∑
i

p′i

log
∑

j

exp(zj)

− log

∑
j

exp(z′j)

− log(exp(zi)) + log(exp(z′i))


=
∑
i

p′i

[
log

(
exp(z′i)∑
j exp(z

′
j)

)
− log

(
exp(zi)∑
j exp(zj)

)]

=
∑
i

p′i [log(p
′
i)− log(p′i)] =

∑
i

p′i

[
log

(
p′i
pi

)]
= KL(p′||p)

950
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F Implementation Details951

F.1 Heuristic to estimate c952

We estimate c to maximize the lower-bound on J(π). In particular, using Prop. 1,953

J(π) ≥ J(πt) + ĝ(πt)
⊤(π − πt)−

(
1

η
+

1

c

)
DΦ(π, πt)−

1

c
DΦ∗

(
∇Φ(πt)− c[∇J(πt)− ĝ(πt)],∇Φ(πt)

)
For a fixed ĝ(πt), we need to maximize the RHS w.r.t π and c, i.e.954

max
c>0

max
π∈Π

J(πt) + ĝ(πt)
⊤(π − πt)−

(
1

η
+

1

c

)
DΦ(π, πt)−

1

c
DΦ∗

(
∇Φ(πt)− c[∇J(πt)− ĝ(πt)],∇Φ(πt)

)
(6)

Instead of maximizing w.r.t π and c, we will next aim to find an upper-bound on the RHS that is independent of π and aim955

to maximize it w.r.t c. Using Lemma 9 with y′ = π, y = πt, x = −ĝ(πt) and define c′ such that 1
c′ =

1
η + 1

c .956

⟨−ĝ(πt), π − πt⟩ ≥ − 1

c′
[DΦ(π, πt) +D∗

Φ(∇Φ(πt) + c′ĝ(πt),∇Φ(πt))]

=⇒ J(πt) + ⟨ĝ(πt), π − πt⟩ −
(

1

η′
+

1

c

)
DΦ(π, πt) ≤ J(πt) +

1

c′
D∗

Φ(∇Φ(πt) + c′ĝ(πt),∇Φ(πt))

Using the above upper-bound in Eq. (6),957

max
c>0

[
J(πt) +

1

c′
D∗

Φ(∇Φ(πt) + c′ĝ(πt),∇Φ(πt))−
1

c
DΦ∗

(
∇Φ(πt)− c[∇J(πt)− ĝ(πt)],∇Φ(πt)

)]
This implies that the estimate ĉ can be calculated as:958

ĉ = argmax
c>0


(
1

η
+

1

c

)
D∗

Φ

∇Φ(πt) +
1(

1
η + 1

c

) ĝ(πt),∇Φ(πt)

− 1

c
DΦ∗

(
∇Φ(πt)− c[∇J(πt)− ĝ(πt)],∇Φ(πt)

)
In order to gain some intuition, let us consider the case where DΦ(u, v) =

1
2 ∥u− v∥22. In this case,959

ĉ = argmax
c>0

 ∥ĝ(πt)∥22
2
(

1
η + 1

c

) − c

2
∥ĝ(πt)−∇J(πt)∥22


If ∥ĝ(πt)−∇J(πt)∥22 → 0,960

ĉ = argmax
c>0

 ∥ĝ(πt)∥22
2
(

1
η + 1

c

)
 =⇒ c → ∞

If ∥ĝ(πt)−∇J(πt)∥22 → ∞,961

ĉ = argmax
c>0

{
− c

2

}
=⇒ c → 0

F.2 Environments and constructing features962

Cliff World: We consider a modified version of the CliffWorld environment [52, Example 6.6]. The environment is963

deterministic and consists of 21 states and 4 actions. The objective is to reach the Goal state as quickly as possible. If the964

agent falls into a Cliff, it yields reward of −100, and is then returned to the Start state. Reaching the Goal state yields a965

reward of +1, and the agent will stay in this terminal state. All other transitions are associated with a zero reward, and the966

discount factor is set to γ = 0.9.967

Frozen Lake: We Consider the Frozen Lake v.1 environment from gym framework [6]. The environment is stochastic and968

consists of 16 states and 4 actions. The agent starts from the Start state and according to the next action (chosen by the969

policy) and the stochastic dynamics moves to the next state and yields a reward. The objective is to reach the Goal state as970

quickly as possible without entering the Hole States. All the Hole states and the Goal are terminal states. Reaching the goal971

state yields +1 reward and all other rewards are zero, and the discount factor is set to γ = 0.9.972
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Sampling: We employ the Monte-Carlo method to sample from both environments and we use the expected return to973

estimate the action-value function Q. Specifically, we iteratively start from a randomly chosen state-action pair (s, a), run a974

roll-out with a specified length starting from that pair, and collect the expected return to estimate Q(s, a).975

Constructing features: Also, in order to use function approximation on the above environments, we use tile-coded976

features [52]. Specifically, tilde-coded featurization needs three parameters to be set: (i) hash table size (equivalent977

to the feature dimension) d, (ii) number of tiles N and (iii) size of tiles s. For Cliff world environment, we consider978

following pairs to construct features: {(d = 40, N = 5, s = 1), (d = 50, N = 6, s = 1), (d = 60, N = 4, s = 3), (d =979

80, N = 5, s = 3), (d = 100, N = 6, s = 3)}. This means whenever we use d = 40, the number of tiles is N = 5 and980

the tiling size is s = 1. The reported number of tiles and tiling size parameters are tuned and have achieved the best981

performance for all algorithms. Similarly for Frozen Lake environment, we use the following pairs to construct features:982

{(d = 40, N = 3, s = 3), (d = 50, N = 4, s = 13), (d = 60, N = 5, s = 3), (d = 100, N = 8, s = 3)}.983

F.3 Critic optimization984

We explain implementation of TD, advantage-TD and decision-aware critic loss functions. We use tile-coded features985

X(s, a) and linear function approximation to estimate action-value function Q, implying that Q̂(s, a) = ωTX(s, a) where986

ω ,X(s, a) ∈ Rd.987

Baselines: For policy π, the TD objective is to return the ω that minimizes the squared norm error of the action-value988

function Qπ across all state-actions weighted by the state-action occupancy measure µπ(s, a).989

ωTD = argmin
ω∈Rd

E(s,a)∼µπ(s,a)[Q
π(s, a)− ωTX(s, a)]2

Taking the derivative with respect to ω and setting it to zero:990

E(s,a)∼µπ(s,a)

[(
Qπ(s, a)− ωTX(s, a)

)
X(s, a)T

]
= 0

=⇒
∑
s,a

µπ(s, a)Qπ(s, a)X(s, a)T︸ ︷︷ ︸
:=y

=
[∑

s,a

µπ(s, a)X(s, a)X(s, a)T
]

︸ ︷︷ ︸
:=K

ω

Given features X, the true action-value function Qπ and state-action occupancy measure µπ, we can compute K, y and991

solve ωTD = K−1y.992

Similarly for policy π, the advantage-TD objective is to return ω that minimizes the squared error of the advantage function993

Aπ across all state-actions weighted by the state-action occupancy measure µπ .994

ωAdv-TD = argmin
ω∈Rd

E(s,a)∼µπ(s,a)

[
Aπ(s, a)− ωT

(
X(s, a)−

∑
a′

X(s, a′)
)]2

Taking the derivative with respect to ω and setting it to zero:995

E(s,a)∼µπ(s,a)

[[
Aπ(s, a)− ωT

(
X(s, a)−

∑
a′

X(s, a′)
)][

X(s, a)−
∑
a′

X(s, a′)

]T
= 0

=⇒
∑
s,a

µπ(s, a)Aπ(s, a)

[
X(s, a)−

∑
a′

X(s, a′)

]T
︸ ︷︷ ︸

:=y

=
∑
s,a

µπ(s, a)

[
X(s, a)−

∑
a′

X(s, a′)

][
X(s, a)−

∑
a′

X(s, a′)

]T
︸ ︷︷ ︸

:=K

ω

Given features X, the true advantage function Aπ and state-action occupancy measure µπ, we ca compute K and y and996

solve wAdv-TD = K−1y.997

Decision-aware critic in direct representation: Recall that for policy π, the decision-aware critic loss in direct representa-998

tion is the blue term in Prop. 4, which after linear parameterization on Q̂π would be as follows:999

Es∼dπ

[
Ea∼pπ(·|s) [Q

π(s, a)− ωTX(s, a)] +
1

c
log
(
Ea∼pπ(·|s)

[
exp

(
−c [Qπ(s, a)− ωTX(s, a)]

)])]
The above term is a convex function of ω for any c > 0. We minimize the term using gradient descent, where the gradient1000

with respect to ω is:1001
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−Es∼dπ

[
Ea∼pπ(·|s)X(s, a)−

Ea∼pπ(·|s)
[
exp

(
−c
[
Qπ(s, a)− ωTX(s, a)

])
X(s, a)

]
Ea∼pπ(·|s) [exp (−c [Qπ(s, a)− ωTX(s, a)])]

]

The step-size of gradient ascent is determined using Armijo line-search [3] where the maximum step size is set to 1000 and1002

it decays with the rate β = 0.9. The number of iteration for critic inner-loop, mc in Algorithm 1, is set to 10000, and if the1003

gradient norm becomes smaller than 10−6 we terminate the inner loop.1004

Decision-aware critic in softmax representation: Recall that for policy π, the decision-aware critic loss in softmax1005

representation is the blue term in Prop. 6, which after linear parameterization on Q̂π and substituting Âπ(s, a) with1006

ωT (X(s, a)−
∑

a′ X(s, a′)) would be as follows:1007

1

c
Es∼dπtEa∼pπt (·|s)

[(
1− c [Aπt(s, a)− ωT (X(s, a)−

∑
a′

X(s, a′))]

)
log

(
1− c [Aπt(s, a)− ωT (X(s, a)−

∑
a′

X(s, a′))

)]
Similarly, the above term is convex with respect to ω and we minimize it using gradient descent. The step-size is determined1008

using Armijo line-search with the same parameters as mentioned in direct case. The number of iterations in inner loop is1009

set to 10000 and we terminate the loop if the gradient norm becomes smaller than 10−8. The gradient with respect to ω:1010

Es∼dπtEa∼pπt (·|s)

[(
1 + log

(
1− c [Aπt(s, a)− ωT (X(s, a)−

∑
a′

X(s, a′))

))(
X(s, a)−

∑
a′

X(s, a′)

)]

F.4 Actor optimization1011

Direct representation: For all actor-critic algorithms, we maximize the green term in Prop. 4 known as MDPO [55].1012

Es∼dπt

[
Ea∼pπt (·|s)

[
pπ(a|s)
pπt(a|s)

(
Q̂πt(s, a)−

(
1

η
+

1

c

)
log

(
pπ(a|s)
pπt(a|s)

))]]
In tabular parameterization of the actor, θs,a = pπ(s, a), the actor update is exactly natural policy gradient [24] and can be1013

solved in closed-form. We refer the reader to Appendix F.2 of [56] for explicit derivation. At iteration t, given policy πt,1014

the estimated action-value function from the critic Q̂πt and η as the functional step-size, the update at iteration t is:1015

pπt+1(a|s) =
pπt(a|s) exp

(
ηQ̂πt(s, a)

)
∑

a′ pπt(a′|s) exp
(
ηQ̂πt(s, a′)

) =⇒ θs,a =
θs,a exp

(
ηQ̂πt(s, a)

)
∑

a′ θs,a′ exp
(
ηQ̂πt(s, a′)

)
When we linearly parameterize the policy, implying that for policy π, pπ(a|s) = exp (θT X(s,a))∑

a′ exp (θT X(s,a′))
where θ, X(s, a) ∈ Rn1016

and n is the actor expressivity, we use the off-policy update loop (Lines 10-13 in Algorithm 1) and we iteratively update the1017

parameters using gradient ascent. The MDPO objective with linear parameterization will be:1018

Es∼dπt

[
Ea∼pπt (·|s)

[
exp (θTX(s, a))

pπt(a|s)
∑

a′ exp (θTX(s, a′))

(
Q̂πt(s, a)−

(
1

η
+

1

c

)
log

(
exp (θTX(s, a))

pπt(a|s)
∑

a′ exp (θTX(s, a′))

))]]
And the gradient of objective with respect to θ is:1019

Es∼dπt

[
Ea∼pπt (·|s)

[
pπ(a|s)
pπt(a|s)

(
X(s, a)−

∑
a′ exp(θTX(s, a))X(s, a′)∑

a′ exp(θTX(s, a′))

)(
Q̂πt(s, a)−

(1
η
+

1

c

)(
1 + log(

pπ(a|s)
pπt(a|s)

)
))]]

Softmax representation: For all actor-critic algorithms, we maximize the green term in Prop. 6 known as sMDPO [56].1020

Es∼dπt Ea∼pπt (·|s)

[(
Âπt(s, a) +

1

η
+

1

c

)
log

(
pπ(a|s)
pπt(a|s)

)]
In tabular parameterization of the actor, θs,a = pπ(s, a), at iterationt given the policy πt, the estimated advantage function1021

from the critic Âπt(s, a) = Q̂πt(s, a)−
∑

a′ pπt(a|s)Q̂πt(s, a′), and functional step-size η, the actor update can be solved1022

in closed-form and is as follows:1023

pπt+1(a|s) = pπt(a|s)max(1 + ηAπt(s, a), 0)∑
a′ pπt(a′|s)max(1 + ηAπt(s, a′), 0)

=⇒ θs,a =
θs,a max(1 + ηAπt(s, a), 0)∑
a′ θs,a′ max(1 + ηAπt(s, a′), 0)
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We refer the reader to Appendix F.1 of [56] for explicit derivation. When we linearly parameterize the policy, implying that1024

for policy π, pπ(a|s) = exp (θT X(s,a))∑
a′ exp (θT X(s,a′))

, we need to maximize the following with respect to θ:1025

Es∼dπt Ea∼pπt (·|s)

[(
Âπt(s, a) +

1

η
+

1

c

)
log

(
exp (θT X(s, a))

pπt(a|s)
∑

a′ exp (θT X(s, a′))

)]
Similar to direct representation, we use the off-policy update loop and we iteratively update the parameters using gradient1026

ascent. The gradient with respect to θ is:1027

Es∼dπt Ea∼pπt (·|s)

[(
Âπt(s, a) +

1

η
+

1

c

) (
X(s, a)−

∑
a′ exp(θTX(s, a))X(s, a′)∑

a′ exp(θTX(s, a))

)]
F.5 Parameter Tuning1028

Parameter Value/Range
Sampling # of samples {1000, 5000}

length of episode {20, 50}
Actor Gradient termination criterion {10−3, 10−4}

ma {1000, 10000}
Armijo max step-size 1000

Armijo step-size decay β 0.9
Policy initialization (linear) N (0, 0.1)
Policy initialization (tabular) Random

Linear Critic Gradient termination criterion
(direct) {10−6, 10−8}

Gradient termination criterion
(softmax) {10−8, 10−10}

mc {1000, 10000}
Armijo max step-size 1000

Armijo step-size decay β 0.9
Others η in direct {0.001, 0.005, 0.01, 0.1, 1}

c in direct {0.001, 0.01, 0.1, 1}
η in softmax {0.001, 0.005, 0.01, 0.1, 1}
c in softmax {0.001, 0.01, 0.1}

d {40, 50, 60, 80, 100}
Table 1: Parameters for the Cliff World environment

Parameter Value/Range
Sampling # of samples {1000, 10000}

length of episode {20, 50}
Actor Gradient termination criterion {10−4, 10−5}

ma {100, 1000}
Armijo max step-size 1000

Armijo step-size decay β 0.9
Policy initialization (linear) N (0, 0.1)
Policy initialization (tabular) Random

Linear Critic Gradient termination criterion
(direct) {10−6, 10−8}

Gradient termination criterion
(softmax) {10−6, 10−8}

mc {10000, 1000000}
Armijo max step-size 1000

Armijo step-size decay β 0.9
Others η in direct {0.01, 0.1, 1, 10}

c in direct {0.01, 0.1, 1}
η in softmax {0.01, 0.1, 1, 10}
c in softmax {0.01, 0.1}

d {40, 50, 60, 100}
Table 2: Parameters for the Frozen Lake environment
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G Additional Experiments1029

Figure 2: Cliff World – Linear actor and Linear critic with exact Q computation Assessing the impact of c (trade-off
parameter in decision-aware framework) on the performance. We perform the experiment on the same setting as Fig. 1,
linear actor and linear (with four different dimensions) critic with known MDP on Cliff World environment. We consider two
values of functional step-size η ∈ {0.01, 0.1} and three values of c ∈ {0.01, 0.1, 1} for direct and c ∈ {0.001, 0.01, 0.1}
for softmax representations, and compare the performance of 6 combinations. Overall, among different critic capacities and
step-sizes, the value of c = 0.01 demonstrates superior performance in both policy representations.
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(a) Linear policy parameterization

(b) Tabular policy parameterization

Figure 3: Cliff World – Linear/Tabular actor and Linear critic with exact Q computation: Comparison of decision-
aware, AdvTD, and TD loss functions using a linear actor Fig. 3a and Fig. 3b coupled with a linear (with four different
dimensions) critic in the Cliff World environment for direct and softmax policy representations with known MDP. For
d = 100 (corresponding to an expressive critic) in both actor parameterizations and d = 80 in linear parameterization,
all algorithms have almost the same performance. In other scenarios, minimizing TD loss function with any functional
step-size leads to a sub-optimal policy. In contrast, minimizing Adv-TD and decision-aware loss functions always result in
reaching the optimal policy even in the less expressive critic d = 40. Additionally, decision-aware convergence is faster
than Adv-TD particularly when the critic has limited capacity (e.g. In d = 40 for direct and softmax representations and
for both actor parameterizations, decision-aware reaches the optimal policy faster.)
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(a) Linear policy parameterization

(b) Tabular policy parameterization

Figure 4: Cliff World – Linear/Tabular actor and Linear critic with estimated Q: Comparison of decision-aware,
AdvTD, and TD loss functions using a linear actor Fig. 4a and Fig. 4b coupled with a linear (with three different dimensions)
critic in the Cliff World environment for direct and softmax policy representations with Monte-Carlo sampling. When
employing a linear actor alongside an expressive critic (d = 80), all algorithms have nearly identical performance.
However, minimizing the TD loss with a linear actor and a less expressive critic (d = 40, 60) leads to a loss of monotonic
policy improvement and converging towards a sub-optimal policy in both representations. Conversely, minimizing the
decision-aware and AdvTD losses enables reaching the optimal policy. Notably, decision-aware demonstrates a faster
rate of convergence when the critic has limited capacity (e.g., d = 40) in both policy representations. The disparity
among algorithms becomes more apparent when using tabular parameterization. In this case, the decision-aware loss either
achieves a faster convergence rate (in d = 80 and d = 60), or it alone reaches the optimal policy (d = 40).
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(a) Linear policy parameterization

(b) Tabular policy parameterization

Figure 5: Frozen Lake – Linear/Tabular actor and Linear critic with exact Q computation: Comparison of decision-
aware, AdvTD, and TD loss functions using a linear actor Fig. 5a and Fig. 5b coupled with a linear (with four different
dimensions) critic in the Frozen Lake environment for direct and softmax policy representations with known MDP. For
d = 100 (corresponding to an expressive critic) in both actor paramterizations and d = 60 in linear paramterization, all
algorithms have the same performance. In other scenarios, minimizing TD loss functions leads to worse performance
than decision-aware and Adv-TD loss functions and for d = 40 in linear parameterization TD does not have monotonic
improvement. AdvTD and decision-aware almost have a similar performance for all scenarios except d = 50 with tabular
actor where decision-aware reaches a better sub-optimal policy.
Frozen Lake – Linear/Tabular actor and Linear critic with estimated Q: For the Frozen Lake environment, when1030

estimating the Q functions using Monte Carlo sampling (all other choices being the same as in Fig. 5), we found that the1031

variance resulting from Monte Carlo sampling (even with ≥ 1000 samples) dominates the bias. As a result, the effect of the1032

critic loss is minimal, and all algorithms result in similar performance.1033
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