
SAPROT: PROTEIN LANGUAGE MODELING WITH
STRUCTURE-AWARE VOCABULARY

Jin Su1,2∗, Chenchen Han2, Yuyang Zhou2, Junjie Shan2, Xibin Zhou2, Fajie Yuan2†

Zhejiang University1, Westlake University2
{sujin, hanchenchen, zhouyuyang, shanjunjie, zhouxibin,

yuanfajie}@westlake.edu.cn

ABSTRACT

Large-scale protein language models (PLMs), such as the ESM family, have
achieved remarkable performance in various downstream tasks related to pro-
tein structure and function by undergoing unsupervised training on residue se-
quences. They have become essential tools for researchers and practitioners in
biology. However, a limitation of vanilla PLMs is their lack of explicit consid-
eration for protein structure information, which suggests the potential for further
improvement. Motivated by this, we introduce the concept of a “structure-aware
vocabulary” that integrates residue tokens with structure tokens. The structure to-
kens are derived by encoding the 3D structure of proteins using Foldseek. We
then propose SaProt, a large-scale general-purpose PLM trained on an exten-
sive dataset comprising approximately 40 million protein sequences and struc-
tures. Through extensive evaluation, our SaProt model surpasses well-established
and renowned baselines across 10 significant downstream tasks, demonstrating
its exceptional capacity and broad applicability. We have made the code1, pre-
trained model, and all relevant materials available at https://github.com/
westlake-repl/SaProt.

1 INTRODUCTION

Proteins are fundamental to biological functions, and understanding them opens promising avenues
in medical, pharmaceutical, and genetic research. Protein Language Models (PLMs), drawing inspi-
ration from NLP methodologies, have emerged as the pivotal technology for representing proteins
(Rao et al., 2019). Through self-supervised training on vast amounts of protein 1D residue se-
quences, PLMs have proven highly proficient in capturing long-range residue correlations, i.e., co-
evolution (Anishchenko et al., 2017; Rao et al., 2020). Moreover, prominent PLMs like UniRep (Al-
ley et al., 2019), ProtTrans (Elnaggar et al., 2021), ESM (Rives et al., 2019; Meier et al., 2021; Rao
et al., 2021; Lin et al., 2022), and Evoformer (Hu et al., 2022; Jumper et al., 2021) have showcased
outstanding performance across a diverse array of tasks pertaining to protein structure and function.

Despite the success of residue sequence-based pre-training, there’s a growing interest in utilizing
protein 3D structures as training data, given their direct relevance to functions. Some work have
demonstrated the potential of pre-training on experimentally determined protein structures (Yang
et al., 2022; Hermosilla & Ropinski, 2022), but they are limited by the smaller number of highly
accurate structures compared to residue sequences. Meanwhile, the breakthrough achieved by Al-
phaFold2 (AF2) (Jumper et al., 2021) in protein structure prediction has resulted in a substantial
repository of structure data (Varadi et al., 2021), thus igniting interests in utilizing large-scale pro-
tein structures for training PLMs.

∗Work done at Westlake University.
†Corresponding Author. Fajie conceived and supervised this research. Jin conducted this research. Jin,

Junjie, Fajie proposed the new vocabulary together by discussing. Chenchen performed the mutational effect
prediction task. Yuyang and Xibin collected the dataset. Jin, Fajie wrote the paper.

1Unlike ESM models that only offer inference code, we provide code for both training and inference.
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Currently, the development of structure-based PLMs based on large-scale predicted structures is still
in an early stage, and existing research has certain limitations. For instance, well-known models like
GearNet (Zhang et al., 2023b), still depend on a limited set of protein structures, utilizing around
800 thousand predicted structures from AF2. On the other hand, models like ESM-IF (Hsu et al.,
2022) focus exclusively on specific protein tasks, such as protein inverse folding, rather than aiming
for broader and more general-purpose representations.

In this paper, we aim to contribute to the biological community by introducing a large and more
powerful PLM trained on extensive protein sequence and structure data. To achieve this, we intro-
duce a “structure-aware (SA) vocabulary” that encompasses both residue and structure information
of proteins. Specifically, we can employ vector quantization techniques (Van Den Oord et al., 2017)
to discretize protein structures into 3D tokens. These tokens, similar in format to residue tokens,
capture the geometric conformation information of each residue in relation to its spatial neighbors.
Here, we simply utilize Foldseek (van Kempen et al., 2023), a purpose-built tool. Then, by combin-
ing the 3D tokens with residue tokens, we devise a very intuitive yet innovative vocabulary termed
the SA alphabet. This enables the conversion of the original residue sequence into an SA-token se-
quence, serving as the input for existing residue-based PLMs. Through unsupervised training on
massive protein SA-token sequences, we obtain a Structure-aware Protein language model named
SaProt. To assess its performance, we comprehensively evaluate its capabilities across 10 widely
recognized protein tasks. These tasks encompass a broad range of applications, including clinical
disease variant prediction (Frazer et al., 2021), fitness landscape prediction (Dallago et al., 2021;
He et al., 2024), protein-protein interaction (Nooren & Thornton, 2003), as well as diverse protein
function predictions (Bileschi et al., 2022; Yu et al., 2023). To summarize, our main contributions
are as follows:

• We introduce a structure-aware vocabulary that combines residue and 3D geometric fea-
ture for proteins. With the utilization of “SA” tokens, proteins, encompassing both pri-
mary and tertiary structures, can be effectively represented as a sequence of these novel
tokens. The sequential nature, rather than the graph2 structure, of protein representation
allows for seamless integration with advances in large-scale foundation AI models, such as
BERT (Devlin et al., 2018), BART (Lewis et al., 2019), GPT (Brown et al., 2020), etc.

• By utilizing the SA-token protein sequence as input, we train a structure-enhanced PLM
using the ESM (Lin et al., 2022) backbone as a case study, called SaProt. To our knowledge,
SaProt stands out as the PLM currently trained with the largest number of protein structures,
containing 650 million parameters. Its training lasted 3 months and utilized 64 NVIDIA
80G A100 GPUs, with a computational cost similar to ESM-1b (Rives et al., 2019).

• We evaluate SaProt across 10 renowned biological tasks. SaProt consistently exhibited
improved performance compared to strong baselines, particularly models from the ESM
family, including ESM-1b, ESM-1v (Meier et al., 2021), and ESM-2 (Lin et al., 2022),
which are considered leading PLMs in the field.

• We conduct a series of enlightening ablation studies, unveiling previously unknown find-
ings. One such finding is the potential overfitting issues that may arise when training PLMs
by integrating predicted structures with BERT-style training. This discovery highlights a
crucial consideration in the design of protein structure-based PLMs. Additionally, our ex-
perimental section sheds light on several intriguing observations through dissecting SaProt.

Additionally, we have made our code, model weight, and the associated datasets openly available.
These materials are expected to be valuable for both the computational and biological communities.

2 RELATED WORK

2.1 RESIDUE SEQUENCE-BASED PRE-TRAINING

Sequence-based pre-training methods treat protein residue sequences as natural language, enabling
comprehensive representations via masked language modeling (MLM) (Devlin et al., 2018). For-
mally, a protein sequence is denoted as P = (s1, s2, ..., sn), where si is a residue at the ith position

2Prior work employs GNNs for protein structure modeling, but GNNs suffer from the over-smoothing is-
sue (Huang et al., 2021; Chen et al., 2020), thereby hindering large and deep protein model development.
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Figure 1: Framework of SaProt with the structure-aware vocabulary

and n is the sequence length. During pre-training, a set of residues are randomly masked, resulting
in the modified sequence Pmask = (s1, < MASK >, ..., sn). The training objective is to predict
masked residues by capturing dependencies between masked positions and surrounding context.

Residue-based PLMs have shown potential in generating universal protein representations. Rives
et al. (2019), Heinzinger et al. (2019) and Vig et al. (2020) substantiate the ability of PLMs to
predict protein structures and functions, while Rao et al. (2021) enhances capabilities via training on
Multiple Sequence Alignment (MSA) data. For mutational effect prediction, Meier et al. (2021) and
He et al. (2024) adopt ESM-1v for zero-shot prediction, and Notin et al. (2022) incorporate MSA
as supplementary signals. Additionally, Lin et al. (2022), Chowdhury et al. (2022) and Wu et al.
(2022b) predict protein structures from single sequences by applying large PLMs.

2.2 STRUCTURE-BASED PRE-TRAINING

Protein structure governs its function. The release of 200 million protein structures in Al-
phaFoldDB (Varadi et al., 2022) in July 2022 enables the construction of large-scale protein structure
models. Protein structures are usually represented as graphs, denoted by G = (V, E), with V rep-
resenting the set of N residues and E representing the set of edges connecting the residues. These
edges are typically based on the Cα distances between the residues. GNNs utilize G for diverse pre-
training strategies like contrastive learning (Hermosilla & Ropinski, 2022; Zhang et al., 2023b;a),
self-prediction (Yang et al., 2022; Chen et al., 2023) and denoising score matching (Guo et al., 2022;
Wu et al., 2022a). Another way inspired by AF2 involves incorporating structure features as contact
biases into the attention maps within the self-attention module, e.g., Uni-Mol (Zhou et al., 2023).

However, the above structure-based models rely on either real structures from the Protein Data Bank
(PDB) or a limited number of predicted AF2 structures. To the best of our knowledge, there are
currently no “general-purpose” PLMs based on a large-scale set of predicted structures.

2.3 FOLDSEEK

The initial goal of Foldseek (van Kempen et al., 2022) is to facilitate fast and accurate protein
structure searches. To achieve this, Foldseek employs a VQ-VAE model (Van Den Oord et al.,
2017) for encoding protein structures into informative tokens. These tokens, derived from 20 distinct
3Di states, are represented as P = (f1, f2, ..., fn), where fi represents the structure token at the
ith position and n is the sequence length. Foldseek achieves this encoding by identifying nearest
neighbors and extracting features for individual residues.

A preprint by Heinzinger et al. (2023) introduces ProstT5, which enables bidirectional conversion
between residue and Foldseek token sequences. ProstT5 excels at tasks like remote homology de-
tection and protein design. However, it is not considered a general-purpose PLM (see Appendix A).
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Figure 2: Loss trends for three protein structure models. The training set is AF2 structures while in
the validation set, one is AF2 structures and the other comprises real structures from PDB.

3 IDEA OF NEW VOCABULARY

3.1 PRELIMINARY ANALYSIS

The goal of this paper is to develop a general-purpose PLM by leveraging predicted protein struc-
tures to serve multiple protein prediction tasks. Contrastive learning (CL) and BERT-style MLM
training are currently two most prevalent pre-training approaches. However, CL primarily empha-
sizes on protein-level representation learning and performs poorly at the residue-level task. For
instance, GearNet (Zhang et al., 2023b) and 3D-PLM (Hermosilla & Ropinski, 2022) trained by CL
are not directly useful for predicting effects of amino acid mutations (Frazer et al., 2021).

We initially explored two intuitive approaches for protein structure modeling. The first approach
involves treating the predicted structures from AF2 as a graph and employing GNNs for modeling,
following (Yang et al., 2022)3. The second approach is to extract the distance and angle information
between pairwise residues from structures, incorporating it as a structure bias in a Transformer
(Vaswani et al., 2017) attention map. This approach was applied by Uni-Mol, ESMFold (Lin et al.,
2022) and Evoformer. We evaluate the two models4 using the MLM objective as it can support
both protein-level and residue-level tasks. It should be noted that the structure model in Uni-Mol,
ESMFold, and Evoformer were initially designed for specific tasks with different loss functions,
rather than being intended as general-purpose PLM. Therefore, it remains uncertain whether these
neural networks would be effective when trained with predicted structures using the MLM objective.

Through two exploratory experiments, we noted that training directly using predicted structures
yielded poor performance on the validation set containing real PDB structures (Figure 2). The
decrease in loss on predicted structures did not correspond to a decrease in loss on real structures.
This mismatch may be due to the fact that PLM has detected traces of AF2 predictions. Furthermore,
inferior results were reported in downstream tasks (Table 8). Despite a substantial loss decrease on
training data, these models failed to learn meaningful representations for downstream protein tasks.

3.2 STRUCTURE-AWARE VOCABULARY

Inspired by the above discoveries, we aim to incorporate protein structures from a novel perspective.
Our key idea revolves around creating a structure-aware (SA) vocabulary, where each SA token
encompasses both residue and structure information, as illustrated in Figure 1.

3Note that MIF by Yang et al. (2022) utilized only real structures for pre-training, so it is unclear whether
the massive predicted structures from AF2 would be beneficial or not.

4As a basic analysis, we utilized the 35M version of ESM-2 (see Appendix E.1.1) and SaProt. The MIF is
consistent with the one described in the original paper, with a size of 3.4M.
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Given a protein P , its primary sequence can be denoted as (s1, s2, ..., sn), where si ∈ V represents
the residue at the ith site, and V represents residue alphabet. Building upon the concept of Foldseek,
we can introduce an alternative approach for representing protein tertiary structures by using a vector
quantized variational autoencoder (Van Den Oord et al., 2017). This approach enables us to develop
a structure alphabet F , wherein P can be represented as the (f1, f2, ..., fn) sequence, with fj ∈ F
denoting the structure token for the jth residue site. To maintain simplicity, we directly adopt the
default setup of Foldseek, which defines the size m of F as 20.

Now, we can combine the residue and structure tokens per residue site, generating a new structure-
aware sequence P = (s1f1, s2f2, ..., snfn), where sifi ∈ V×F is the token fusing both residue and
geometric conformation information. The structure-aware sequence can then be fed into a standard
Transformer encoder as basic input. It’s important to note that we also introduce a mask signal “#”
to both residue and structure alphabet, which results in “si#” and “#fi” that indicate only residue
or structure information is available. The size of the SA vocabulary is 21× 21 = 441 (see Figure 1).

The design of this new vocabulary is simple yet innovative and fundamental, enabling the represen-
tation of any residue sequence using this “SA” sequence. As a result, protein models that utilize
residue sequences as input can effortlessly integrate the new vocabulary sequence as a substitute.

3.3 SAPROT

3.3.1 MODEL ARCHITECTURE

SaProt employs the same network architecture and parameter size as the 650M version of ESM-
2. The main distinction lies in the expanded embedding layer, which encompasses 441 SA tokens
instead of the original 20 residue tokens. This nearly identical architecture enables straightforward
comparisons with the ESM model. Moreover, the model size strikes a balance between performance
and feasibility for downstream task training, avoiding excessive memory or computation cost.

3.3.2 OBJECTIVE FUNCTION

We train SaProt using the BERT-style MLM objective, similar to ESM-1b and ESM-2, en-
abling the support for both protein-level and residue-level tasks. Formally, For a protein se-
quence P = (s1f1, s2f2, ..., snfn), the input and output can be represented as: input :
(s1f1, ...,#fi, ..., snfn) → output : sifi (see Figure 1). fi in #fi is made visible during training
to reduce the model’s emphasis on predicting it. This is different from the straightforward masking
strategy, i.e. randomly masking SA token sifi by “##”, and then predicting both residue and struc-
ture token directly from the SA vocabulary (see Appendix Figure 7). We do not adopt this strategy
because the SA tokens may be not accurate enough5. Predicting the exact SA tokens may lead the
model in the wrong optimization direction. With the proposed masking objective, although there are
still inaccuracies in certain Foldseek tokens, the global structure information should remain effec-
tive, which provides valuable context for the prediction. From this perspective, it is more reasonable
to predict the residue tokens rather than the Foldseek structural tokens or both of them. We perform
the empirical study on the two masking strategies during pre-training in Appendix F.

To ensure a fair comparison, SaProt was pre-trained using identical training strategies with ESM-
2 (refer to Appendix C). We build the pre-training dataset, which consists of approximately 40
million AF2 structures. Details are included in Appendix B, including how to proceed with the
lower pLDDT region.

4 EXPERIMENTS

We evaluate SaProt across 10 diverse downstream tasks, encompassing residue-level and protein-
level tasks. Given that many proteins in the original datasets lack experimentally determined struc-
tures, we conduct all evaluations using predicted structures obtained from AlphaFoldDB without
special mention. Furthermore, proteins without structures in AlphaFoldDB will not be utilized in all
our experiments.

5The accuracy of SA tokens depends on the accuracy of both AF2 and Foldseek.
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4.1 ZERO-SHOT MUTATIONAL EFFECT PREDICTION

4.1.1 DATASETS

We adopt the ProteinGym (Notin et al., 2022) benchmark and ClinVar (Landrum et al., 2018) dataset
used in Frazer et al. (2021) to evaluate the performance of SaProt on the zero-shot mutational effect
prediction tasks (Meier et al., 2021). For dataset details, we refer readers to Appendix D.2.1.

Dataset ESM-2 ESM-1v ESM-1b Tranception L ESM-IF MIF-ST EVE MSA Transformer SaProt

ClinVar 0.862 0.891 0.900 0.845 0.748 0.891 0.878 0.854 0.909

ProteinGym(w/o MSA retrieval) 0.475 0.448 0.440 0.413 0.409 0.474 - - 0.478

ProteinGym(w/ MSA retrieval) 0.479 0.472 0.472 0.465 0.425 0.480 0.477 0.464 0.489

Table 1: Zero-shot mutational effect prediction. ClinVar uses AUC (area under the ROC curve) and
ProteinGym uses Spearman’s ρ as evaluation metric. They are two distinct biological tasks.

4.1.2 BASELINES & EVALUATION

We compare SaProt with two types of baselines: sequence-based models and structure-based mod-
els. For sequence-based models, we include ESM-1b (Rives et al., 2019), ESM-1v (Meier et al.,
2021) (the results of 5 ESM models are averaged), ESM-2 650M (Lin et al., 2022)6, and Trancep-
tion L (Notin et al., 2022). For structure-based models, we consider the MIF-ST (Yang et al., 2022)
and ESM-IF (Hsu et al., 2022). Additionally, we present the performance of EVE (Frazer et al.,
2021), a renowed model that leverages MSA information for predicting disease variant effects, and
MSA Transformer (Rao et al., 2021), a protein language model pre-trained on large scale of MSA
data (we sample 384 homologous proteins for inference following Notin et al. (2022)). Here, we did
not include comparisons with contrastive learning models like GearNet and 3D-PLM, as they are
not directly applicable to residue-level zero-shot prediction tasks. Also note that with the exception
of EVE on ProteinGym, all baseline models and their weights used in this study were obtained from
the official paper. We solely employed them for prediction without any training. We trained EVE
on ProteinGym ourselves using the official code as it necessitates training on each MSA.

We strictly follow the evaluation used in EVE (Frazer et al., 2021) for assessing the model’s per-
formance on the ClinVar dataset. For the ProteinGym dataset, we employ the evaluation measures
described in (Notin et al., 2022; Meier et al., 2021). Details are provided in Appendix D.2.2.

4.1.3 RESULTS

Table 1 shows the zero-shot results on ProteinGym & ClinVar, resulting in the below conclusions:

• SaProt outperforms all residue sequence-based and structure-based models on both tasks.
As mentioned earlier, SaProt shares an identical network architecture, model size, and train-
ing examples with ESM-2, with the key difference lying in its structure-aware vocabulary.
By comparing SaProt with ESM-2, it clear that SaProt yields consistent improvement for
predicting mutational effects. Then, SaProt shows higher accuracy compared to MIF-ST,
even though the latter model was trained using experimentally determined highly accu-
rate structures.7 The benefit could be attributed to the large-scale structures when training
SaProt. ESM-IF exhibits the poorest performance in both tasks, primarily because it was
originally designed for the inverse folding task. In addition, ESM-IF model size and train-
ing data are nearly 5 times smaller than SaProt.

• MSA information enhances models’ zero-shot ability. Notin et al. (2022) introduces a
technique to enhance autoregressive inference by leveraging MSA information, leading to a
consistent improvement. Following it, we extend the technique to SaProt and all baselines.
The results show that the integration of MSA information greatly enhances the zero-shot
prediction ability of various PLMs, with SaProt still achieving the highest accuracy among
them. The results also suggest that the improvement techniques used for residue sequence-
based models are likely to be useful to SaProt as well.

6The results for 15B ESM-2 are reported in the Appendix D.2.3 which shows worse results.
7MIF-ST exhibits poor accuracy when trained with AF2 structures, as shown in Figure 2 & Appendix E.1.2
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4.2 SUPERVISED FINE-TUNING TASKS

GO DeepLoc
Thermostability HumanPPI Metal Ion Binding EC

MF BP CC Subcellular BinaryModel

Spearman’s ρ Acc% Acc% Fmax Fmax Fmax Fmax Acc% Acc%

ESM-2 0.680 76.67 71.56 0.868 0.670 0.473 0.470 82.09 91.96

ESM-1b 0.708 82.22 73.57 0.864 0.656 0.451 0.466 80.33 92.83

MIF-ST 0.694 75.54 75.08 0.807 0.633 0.375 0.322 78.96 91.76

GearNet 0.571 73.86 71.26 0.874 0.644 0.481 0.476 69.45 89.18

SaProt 0.724 86.41 75.75 0.882 0.682 0.486 0.479 85.57 93.55

ESM-GearNet 0.651 84.09 74.11 0.887 0.676 0.516 0.507 82.30 92.94

SaProt-GearNet 0.660 85.80 74.44 0.889 0.678 0.522 0.508 84.16 93.63

Table 2: Experimental results on 8 downstream tasks.

4.2.1 DATASETS

For protein-level tasks, we evaluate SaProt on a diverse set of datasets from several bench-
marks (Dallago et al., 2021; Xu et al., 2022; Rao et al., 2019), including predicting Thermostability,
Metal Ion Binding, protein localization (DeepLoc), protein annotations (EC and GO) and protein-
protein interaction (HumanPPI). Dataset description and splits are listed in Appendix D.3.

4.2.2 BASELINES

In addition to the above baselines, we compared SaProt to GearNet (Zhang et al., 2023b). Inspired
by ESM-GearNet (Zhang et al., 2023a), we replaced the ESM module in ESM-GearNet with SaProt,
resulting in an ensemble model called SaProt-GearNet. Training details are in Appendix D.3.3.

4.2.3 RESULTS

Experimental results are illustrated in Table 2, shedding light on the following insights:

• SaProt outperforms ESM-2 in all protein-level tasks. Specifically, SaProt shows remark-
able enhancements over ESM-2 in the Thermostability, HumanPPI, Metal Ion Binding, and
DeepLoc tasks. This outcome once again demonstrates that integrating structure informa-
tion into PLMs leads to superior protein representation.

• SaProt outperforms the two structure models, GearNet & MIF-ST, by a substantial margin.
This notable performance difference highlights the efficacy of structure modeling in SaProt.

• While SaProt outperforms the ESM models, SaProt-GearNet also outperforms ESM-
GearNet, which highlights the orthogonality of SaProt with more advanced improvement
techniques. However, it is interesting to note that combining two models does not always
result in higher performance. For example, SaProt-GearNet and ESM-GearNet do not nec-
essarily surpass their respective single models SaProt and ESM.

SaProt exhibits superior performance across all tasks, when also considering the results in Sec-
tion 4.1.3. Its impressive performance positions it as a compelling alternative to the ESM family.

5 ANALYSIS

We conduct insightful ablation studies by dissecting SaProt. One can find more analysis in Ap-
pendix E, including comparisons of masking strategies, masking rates on structure tokens, etc.

5.1 AWARENESS OF PROTEIN STRUCTURE

SaProt incorporates protein structure information by using structure-aware tokens rather than using
explicit 3D coordinates. However, this approach relies on the accuracy of the Foldseek encoding.
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Model
Short Range Medium Range Long Range

P@L P@L/2 P@L/5 P@L P@L/2 P@L/5 P@L P@L/2 P@L/5
ESM-2 44.87 44.90 50.18 45.21 45.80 53.90 35.33 41.96 52.11

SaProt (Residue-only) 40.29 40.22 44.10 36.26 36.69 42.47 22.15 27.63 36.68
SaProt 57.11 57.20 63.71 53.43 55.05 66.45 48.14 59.75 74.32

Table 3: Results on contact prediction. Short range, medium range and long range contacts are con-
tacts between positions that are separated by 6 to 11, 12 to 23 and 24 or more positions, respectively.

Naturally, a question arises: does SaProt truly possess stronger structure information compared to
ESM-2, given that residue-based PLMs also implicitly contain structure information (Rao et al.,
2020)? To answer it, we conduct an additional structure prediction task, namely contact map predic-
tion on the TAPE benchmark (Rao et al., 2019). For both SaProt & ESM-2, we freeze the backbone
and solely fine-tune the contact head. The evaluation of contact map is conducted using PDB data.
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Figure 3: Results for different substitution per-
centage on (structure/residue) tokens.

As shown in Table 3, SaProt exhibits remark-
able superiority over ESM-2 in the contact map
prediction task, evidencing that SaProt contains
more accurate structural information. From this
perspective, PLM with enhanced structure fea-
ture is expected to exhibit improved accuracy
in protein function prediction tasks. We ad-
ditionally evaluate SaProt’s performance with
all structure tokens masked as “#” , named
“SaProt (Residue-only)”. SaProt (Residue-
only) performs worse than ESM-2 but still ex-
hibits a certain degree of structure prediction
ability. This result demonstrates that SaProt
is capable of capturing structural information
even when the structure tokens are not given.

To further study the impact of structure and
residue tokens on SaProt’s performance, we
conduct an additional zero-shot prediction ex-
periment. We randomly replace a percentage of
structure tokens with random (Foldseek) tokens
while keeping the residues unchanged, and then
we do the opposite for residue tokens. SaProt’s performance is evaluated under this setting. As
shown in Figure 3, the accuracy of SaProt decreases when either residue tokens or structure tokens
are randomly substituted, which clearly emphasizes the importance of both residue and structure
tokens.

5.2 PDB VERSUS ALPHAFOLDDB

For proteins with experimentally determined structures, it is essential to investigate how SaProt
performs. To do this, we continuously pre-train SaProt on 60,000 PDB structures, resulting in a
variant called SaProt-PDB. We conduct evaluations by assessing SaProt and SaProt-PDB on both
AF2 structures and real PDB structures. We did not evaluate all tasks due to lack of many PDB
structures on some tasks.

Table 4 shows that when trained solely on AF2 structures, the overall accuracy of SaProt is not
largely affected by the choice between AF2 structures or PDB structures. However, for SaProt-PDB,
it is advisable to use PDB structures directly when available for downstream tasks. This may not
have a substantial impact on supervised tasks such as EC and GO, as the model will be retrained on
the downstream structures. However, it can have a key impact on the zero-shot task, as indicated by
the comparison of 0.454 vs. 0.423 when training/testing data is highly inconsistent for SaProt-PDB.

In general, SaProt exhibits slightly better performance on AF2 structures, while SaProt-PDB
achieves better accuracy on real structures. This outcome is expected as training and testing are
consistent in the optimal performance setting. Note that some protein structures in PDB are not
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stored in AlphaFoldDB, so the column-level (AlphaFoldDB vs. PDB) comparison in Table 4 does
not make much sense. We have released SaProt-PDB weights for utilizing PDB structures.

Model
AF2 PDB

ProteinGym EC GO-MF GO-BP GO-CC ProteinGym EC GO-MF GO-BP GO-CC

SaProt 0.450 0.882 0.682 0.486 0.479 0.423 0.885 0.665 0.460 0.410

SaProt-PDB 0.448 0.880 0.679 0.482 0.472 0.454 0.888 0.669 0.465 0.415

Table 4: Results of SaProt and SaProt-PDB on AlphaFoldDB and PDB structures. Proteins without
PDB structures on the ProteinGym dataset were removed during evaluation.

5.3 VISUALIZATION

For a more intuitive comparison, we employ t-SNE to visualize the protein representations gen-
erated by the last layer of SaProt and ESM-2. Figure 4 shows the visualization results using the
non-redundant version (PIDE < 40%) of the SCOPe (Chandonia et al., 2018) database. For the
alpha and beta proteins, the representations generated by ESM-2 are intertwined, whereas those gen-
erated by SaProt are separated based on structure type. This observation again underscores SaProt’s
capability in discerning structure changes. Furthermore, we visualized the embeddings of all 400
structure-aware tokens (tokens that encompass “#” are ignored). As depicted in Figure 8 (c), we
can observe a certain degree of clustering phenomenon. In the semantic space, the SA tokens that
are in close proximity to each other often correspond to similar types of residues or Foldseek tokens.

ESM-2

All alpha proteins All beta proteins

SaProt

All alpha proteins All beta proteins

Figure 4: Embedding visualizations of ESM-2 and SaProt on SCOPe database.

6 CONCLUSION

In this study, we introduce a novel structure-aware (SA) vocabulary that integrates primary and ter-
tiary protein structure information into the SA-token. This SA-token-based sequence has the poten-
tial to serve as a novel protein representation. Building upon this, we train a general-purpose PLM
called SaProt, which achieves state-of-the-art performance on 10 protein function prediction tasks.
Like the ESM models, SaProt aims to contribute to the advancement of the biological community.

This study has several limitations: (1) The performance of the proposed SA vocabulary heavily
depends on Foldseek, which aims to balance search efficiency and encoding accuracy. Therefore,
there is still room for improving the representation capability of SaProt. (2) Due to computational
constraints, the model size of SaProt may not have reached its maximum capacity. (3) In addition
to the mentioned tasks, there are other applications that could be explored using the SA vocabu-
lary. For instance, predicting protein complex structures by replacing two protein sequences with
SA-token-based sequences could automatically incorporate single-chain structure information. In
protein generation tasks, generating SA-token sequences could potentially provide stronger struc-
ture constraints during the generation process. These avenues remain open for future research.
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José Juan Almagro Armenteros, Casper Kaae Sønderby, Søren Kaae Sønderby, Henrik Nielsen,
and Ole Winther. DeepLoc: prediction of protein subcellular localization using deep learning.
Bioinformatics, 33(21):3387–3395, 07 2017. ISSN 1367-4803. doi: 10.1093/bioinformatics/
btx431. URL https://doi.org/10.1093/bioinformatics/btx431.

Ivan Anishchenko, Sergey Ovchinnikov, Hetunandan Kamisetty, and David Baker. Origins of co-
evolution between residues distant in protein 3d structures. Proceedings of the National Academy
of Sciences, 114(34):9122–9127, 2017.

Maxwell L Bileschi, David Belanger, Drew H Bryant, Theo Sanderson, Brandon Carter, D Sculley,
Alex Bateman, Mark A DePristo, and Lucy J Colwell. Using deep learning to annotate the protein
universe. Nature Biotechnology, 40(6):932–937, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

John-Marc Chandonia, Naomi K Fox, and Steven E Brenner. SCOPe: classification of large macro-
molecular structures in the structural classification of proteins—extended database. Nucleic Acids
Research, 47(D1):D475–D481, 11 2018. ISSN 0305-1048. doi: 10.1093/nar/gky1134. URL
https://doi.org/10.1093/nar/gky1134.

Can Chen, Jingbo Zhou, Fan Wang, Xue Liu, and Dejing Dou. Structure-aware protein self-
supervised learning, 2023.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pp. 3438–3445, 2020.

Ratul Chowdhury, Nazim Bouatta, Surojit Biswas, Christina Floristean, Anant Kharkar, Koushik
Roy, Charlotte Rochereau, Gustaf Ahdritz, Joanna Zhang, George M Church, et al. Single-
sequence protein structure prediction using a language model and deep learning. Nature Biotech-
nology, 40(11):1617–1623, 2022.

Christian Dallago, Jody Mou, Kadina E. Johnston, Bruce J. Wittmann, Nicholas Bhattacharya,
Samuel Goldman, Ali Madani, and Kevin K. Yang. Flip: Benchmark tasks in fitness land-
scape inference for proteins. bioRxiv, 2021. doi: 10.1101/2021.11.09.467890. URL https:
//www.biorxiv.org/content/early/2021/11/11/2021.11.09.467890.

Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning–
based protein sequence design using proteinmpnn. Science, 378(6615):49–56, 2022.

10

https://doi.org/10.1093/bioinformatics/btx431
https://doi.org/10.1093/nar/gky1134
https://www.biorxiv.org/content/early/2021/11/11/2021.11.09.467890
https://www.biorxiv.org/content/early/2021/11/11/2021.11.09.467890


Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rihawi, Yu Wang, Llion Jones,
Tom Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, Debsindhu Bhowmik, and
Burkhard Rost. Prottrans: Towards cracking the language of life’s code through self-supervised
deep learning and high performance computing, 2021.

Jonathan Frazer, Pascal Notin, Mafalda Dias, Aidan Gomez, Joseph K. Min, Kelly Brock, Yarin
Gal, and Debora S. Marks. Disease variant prediction with deep generative models of evolutionary
data. Nature, 599(7883):91–95, Nov 2021. ISSN 1476-4687. doi: 10.1038/s41586-021-04043-8.
URL https://doi.org/10.1038/s41586-021-04043-8.
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A COMPARISON WITH PROSTT5

A very recent preprint in Heinzinger et al. (2023) proposed ProstT5 which pre-trains the protein
language model (PLM) on a mixture of data of Foldseek token sequences and residue sequences.
However, they mainly focused on the bi-lingual translation between Foldseek sequence and residue
sequence. ProstT5 utilizes the protein residue sequence to predict the corresponding Foldseek struc-
ture tokens, and meanwhile, it also predicts the protein residue sequence given the Foldseek structure
tokens.

In contrast to ProstT5, we introduce a novel vocabulary that combines residue and Foldseek tokens,
enabling the transformation of the residue sequence into an SA-token sequence. SaProt is trained
on these new token sequences, effectively incorporating structure information. One acknowledged
drawback of ProstT5, as stated by the original paper, is its limited ability as a general-purpose PLM,
as it exhibits inferior performance in certain protein function prediction tasks.

We conducted several experiments to compare ProstT5 to SaProt, as shown in Table 5. The exper-
imental results show that SaProt consistently outperforms ProstT5 in these protein understanding
tasks, and specifically ProstT5 fails in zero-shot mutational effect prediction task.

Model
ClinVar ProteinGym(w/o MSA retrieval)

DeepLoc
Subcellular Binary

AUC Spearman’s ρ Acc% Acc%

ProstT5 0.620 0.155 81.36 92.84
SaProt 0.909 0.478 85.57 93.55

Table 5: Comparison of performance between ProstT5 and SaProt.

B PRE-TRAINING DATA PROCESSING

We adhere to the procedures outlined in ESM-2 Lin et al. (2022) to generate filtered sequence data,
and then we retrieve all AF2 structures via the AlphaFoldDB website https://alphafold.
ebi.ac.uk/ based on the UniProt ids of protein sequences, collecting approximately 40 million
structures. By employing Foldseek, we encode all structures into the so-called 3Di tokens and pro-
ceed to formulate structure-aware sequences by combining residue and 3Di tokens at each position.

The AF2 structures in our study are accompanied by confidence scores, referred to as pLDDT,
which provide an assessment of the precision of atom coordinates. These scores can be utilized to
identify and filter out regions with low accuracy. During the MLM (masked language modeling) pre-
training process, if regions with lower pLDDT scores (<70 as the threshold throughout this paper)
are selected for the MLM prediction, we will predict the “si#” token, where its input position is
masked using the “##” token (note that both “##” and “si#” are one token, see Figure 1). By
doing so, models are forced to concentrate on predicting residue types in such regions. If regions
with lower pLDDT scores are not selected for the MLM prediction, the input will be entered with the
“si#” token, so that models will only use the residue context in these regions to aid the prediction of
other tokens. For the prediction phase of downstream tasks, we maintain complete consistency with
the training data by handling the plDDT regions. Specifically, tokens within these lower pLDDT
regions are represented as “si#”, with only residue token visible.

C PRE-TRAINING DETAILS

Following ESM-2 and BERT, during training, 15% of the SA tokens in each batch are masked.
We replace the SA token sifi with the #fi token 80% of the time, while 10% of the tokens are
replaced with randomly selected tokens, and the other 10% tokens remain unchanged. For the
optimization of SaProt, we adopt similar hyper-parameters to those employed in the ESM-2 training
phase. Specifically, we employ the AdamW optimizer (Loshchilov & Hutter, 2017), setting β1 =
0.9, β2 = 0.98 and we utilize L2 weight decay of 0.01. We gradually increase the learning rate from
0 to 4e-4 over the first 2000 steps and linearly lower it to 5e-4 from 150K steps to 1.5M steps. The
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overall training phase lasts approximately 3M steps. To deal with long sequences, we truncate them
to a maximum of 1024 tokens, and our batch size consists of 512 sequences. Additionally, we also
employ mixed precision training to train SaProt.

D EXPERIMENTS

D.1 DATA COLLECTION

After the release of the AlphaFoldDB (Varadi et al., 2021), the majority of predicted structures are
now accessible through searching UniProt IDs. We record the UniProt IDs of all proteins and query
the AlphaFoldDB to retrieve all available predicted structures. On the other hand, several tasks need
experimentally determined structures as training data (e.g. EC, GO and Metal Ion Binding). For
these proteins, we map the PDB and chain IDs of proteins to their corresponding UniPort IDs (e.g.
the chain “C” of PDB ID “6D56” will be mapped to UniPort ID “P01112”). It is worth noting that
different PDB and chain IDs may correspond to the same UniProt ID (e.g. both “A” and “B” chain
of PDB ID “6MAF” point to the UniProt ID “Q5D6Y5”), and they typically represent different
segments within the protein. Therefore, we truncate the AF2 structures to match the corresponding
PDB structures.

D.2 ZERO-SHOT PREDICTION

D.2.1 DATASETS

ProteinGym (Notin et al., 2022) is an extensive set of Deep Mutational Scanning(DMS) assays,
enabling thorough comparison among zero-shot predictors. Specifically, we utilize the substitution
branch, filtering out proteins with lengths exceeding 1024 or those without available structures in
AlphaFoldDB. We download all AF2 structures based on UniProt ids. For evaluation, We adopt
Spearman’s rank correlation as our metric.

ClinVar serves as a freely accessible and publicly available repository containing information about
human genetic variants and interpretations of their significance to disease (Landrum et al., 2018). In
our analysis, we harness the data sourced from EVE (Frazer et al., 2021), additionally filtering out
proteins with length greater than 1024 or absent from the AlphaFoldDB. To enhance the reliability
of our data, we opt to consider proteins with labels 1 “Gold Stars” or higher, which indicate higher
credibility. Following the methodology employed in EVE, we evaluate models’ performance using
the AUC metric.

For each mutation dataset, we provide all variants with the wild-type structure, as AF2 cannot differ-
entiate the structural changes caused by single mutations. For proteins without predicted structures
in AlphaFoldDB, we simply remove them during evaluation. This also applies to all supervised task
(see Table 7)

D.2.2 FORMULA

Previous residue-based PLMs like the ESM models predict mutational effects using the log odds
ratio at the mutated position. The calculation can be formalized as follows:∑

t∈T

[logP (xt = smt
t |x\T )− logP (xt = swt

t |x\T )] (1)

Here T represents all mutations and st ∈ V is the residue type for mutant and wild-type sequence.
We slightly modify the formula above to adapt to the structure-aware vocabulary, where the proba-
bility assigned to each residue corresponds to the summation of tokens encompassing that specific
residue type, as shown below:∑

t∈T

[log
∑
f∈F

P (xt = smt
t f |x\T )− log

∑
f∈F

P (xt = swt
t f |x\T )] (2)

Here f ∈ F is the structure token generated by Foldseek and stf ∈ V × F is the structure-aware
token in our new vocabulary.
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Model
ClinVar

ProteinGym
w/o MSA retrieval w/ MSA retrieval

AUC Spearman’s ρ Spearman’s ρ

ESM-2 (15B) 0.843 0.436 0.479

SaProt 0.909 0.478 0.489

Table 6: Zero-shot comparison with ESM-2 15B version. Clearly, ESM-2 15B does not improve its
650M version.

D.2.3 ADDITIONAL COMPARISON

We conducted additional experiments to compare SaProt to the ESM-2 15B version. Our evaluation
focused exclusively on zero-shot prediction tasks, given the GPU memory constraints associated
with fine-tuning the ESM-2 15B model on these supervised downstream tasks. As shown in Table 6,
(1) SaProt outperformed ESM-2 15B on all zero-shot prediction tasks,(2) the larger model is not
always better by comparing ESM-2 15B with ESM-2 650M. One possible reason for this could be
that excessively large models may lead to overfitting issues

D.3 SUPERVISED FINE-TUNING

D.3.1 DATASETS

Protein Function Prediction We compile a set of tasks that predict functions of proteins. Specif-
ically, We employ the “Human-cell” splits of the Thermostability task from FLIP (Dallago et al.,
2021), which predicts the thermostability value of proteins. Additionally, we utilize the Metal Ion
Binding task (Hu et al., 2022), which is designed to predict the presence of metal ion–binding sites
within a protein.

Protein Localization Prediction We employ the DeepLoc (Almagro Armenteros et al., 2017)
dataset to predict the subcellular locations of proteins. DeepLoc comprises two branches for sub-
cellular localization prediction: one involving 10 location categories, and the other involving binary
localization prediction with 2 location categories. We adhere to the original data splits.

Protein Annotation Prediction We make use of two established benchmarks introduced by Deep-
FRI (Gligorijević et al., 2021) to predict protein annotations encompassing multiple functional la-
bels, i.e. Enzyme Commission(EC) number prediction and Gene Ontology(GO) term prediction.
For the GO benchmark, we incorporate all three branches: Molecular Function (MF), Biological
Process (BP), and Cellular Component (CC).

Protein-Protein Interaction Prediction Protein-protein interaction (PPI) prediction has great po-
tential for wide application prospects. Here we employ HumanPPI(Pan et al., 2010) from PEER(Xu
et al., 2022) benchmark to predict whether two proteins interact or not.

Mutational effect Prediction We employ the Fluorescence prediction and Stability prediction tasks
from the TAPE (Rao et al., 2019) benchmark, the AAV dataset from the FLIP (Dallago et al.,
2021) benchmark and β-lactamase landscape prediction from the PEER (Xu et al., 2022) bench-
mark. These datasets encompass mutants derived from wild-type proteins, signifying the absence of
available structures.

Protein Structure Prediction We adopt the contact prediction task from TAPE (Rao et al., 2019)
to investigate SaProt’s awareness to protein structure.

D.3.2 DATASET SPLIT

With the exception of the Metal Ion Binding and DeepLoc tasks, we utilize the official data split in
the related benchmark literature (TAPE (Rao et al., 2019), PEER (Xu et al., 2022) and FLIP (Dallago
et al., 2021)), which includes separate training, validation, and testing sets. Identity clustering and
filtering was conducted on these benchmark datasets. For the Metal Ion Binding dataset, we perform
clustering and split the data into training, validation, and testing sets based on 30% sequence identity.
Note that the original dataset used in Hu et al. (2022) did not have identity clustering on the training
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Dataset Category Evaluation Metric Train Valid Test
Protein Function Prediction

Thermostability (Dallago et al., 2021) Human-Cell Spearman’s ρ 5056 639 1336
Metal Ion Binding (Hu et al., 2022) - Acc% 5067 662 665

Protein Localization Prediction

DeepLoc (Almagro Armenteros et al., 2017)
Subcellular Acc% 8747 2191 2747

Binary Acc% 5477 1336 1731
Protein Annotation Prediction

EC (Gligorijević et al., 2021) - Fmax 13089 1465 1604
GO (Gligorijević et al., 2021) BP / MF / CC Fmax 26224 2904 3350

Protein-Protein Interaction Prediction
HumanPPI (Xu et al., 2022) - Acc% 26319 234 180

Mutation Effect Prediction
Fluorescence (Rao et al., 2019) - Spearman’s ρ 20963 5235 25517

Stability (Rao et al., 2019) - Spearman’s ρ 53614 2512 12851
AAV (Dallago et al., 2021) 2-vs-rest Spearman’s ρ 22246 2462 50432

β-lactamase (Xu et al., 2022) - Spearman’s ρ 4158 520 520
Protein Structure Prediction

Contact Prediction (Rao et al., 2019) - P@L 25299 224 40

Table 7: Downstream dataset descriptions after all data pre-processing. Category represents a spe-
cific branch of the dataset. Note that proteins whose structures were not found in AlphaFoldDB have
been removed for all baseline models during both training and testing evaluation.

and test sets. As the DeepLoc dataset was already clustered by 30% sequence identity, we randomly
split out 20% samples from the training set as the validation set.

We summarize the dataset details in Table 7.

D.3.3 TRAINING DETAILS

In order to perform fair comparisons, we assessed our model and all baselines with the same set
of hyper-parameters. we employed the AdamW optimizer, setting β1 = 0.9, β2 = 0.98 and we
utilized L2 weight decay of 0.01. We consistently used a batch size of 64 and set the learning rate
to 2e-5 (except 1e-3 for contact prediction). We fine-tuned all model parameters until convergence
and selected the best checkpoints based on their performance on the validation set.

E ANALYSIS

E.1 PRE-TRAINING COMPARISON

E.1.1 EVOFORMER-INSPIRED PLM

Evoformer (Jumper et al., 2021) integrates both sequence and structure information through pro-
jecting structure features as biases and incorporating them into the attention maps within the self-
attention module. Nevertheless, the updates of structure features in Transformer layers are extremely
time-consuming, which is infeasible to large-scale pre-training. Therefore, we simplify the interac-
tion modules of Evoformer and employ it on standard ESM-2 model architecture. Specifically, We
remove 4 triangle modules(i.e. Triangle update using outgoing edges, Triangle update using in-
coming edges, Triangle self-attention around starting node and Triangle self-attention around
ending node) and keep the Outer product mean module and the Transition module to enable the
updates of structure features. For preliminary experiments, we adopt ESM-2 35M as base model and
add above modules on it to form a Evoformer-inspired PLM. We follow ProteinMPNN (Dauparas
et al., 2022) to extract distance and angle features from protein structures as biases to be incorporated
into the attention maps.
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Model
ClinVar ProteinGym(w/o MSA retrieval) DeepLoc

Subcellular Binary
AUC Spearman’s ρ Acc% Acc%

Evoformer-inspired ESM(35M) 0.589 0.178 66.11 89.25
MIF 0.638 0.256 61.90 85.90

SaProt(35M) 0.754 0.319 76.63 91.45

Table 8: Downstream task results for the three structure-based models. All structures used were
predicted by AF2.

E.1.2 EXPERIMENTAL RESULTS FOR THREE MODELS

We assessed the performance of three models, i.e. Evoformer-inspired PLM ( ESM-2 35M version),
MIF and SaProt 35M version, on zero-shot prediction and supervised fine-tuning tasks. The results
in Table 8 are aligned with the loss change in Figure 2. For the supervised DeepLoc task, all models
perform well as they are fine-tuned with new labels. Even if the pre-training is not useful, the
performance after fine-tuning on new data can still be relatively good.

E.2 MASK RATE OF STRUCTURE TOKENS

PDB structures’ chains can be linked to proteins in the UniProt database, yet these structures nor-
mally constitute segments of UniProt proteins. For instance, the UniProt id “P05067” corresponds
to a protein containing 770 residues, while the chain “A” within the protein of PDB id “7Y3J” has
merely 110 residues from position 687 to 697 of “P05067”. Regarding AF2 structures, regions with
low pLDDT values signify that certain segments of the structures lack reliability for practical use.
In scenarios as described above, structures are either incomplete or not reliable, requiring models to
be more robust in order to deal with such conditions.
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Figure 5: Results for various mask rates applied to structure tokens. (a) Results in the DeepLoc
Subcellular branch. (b) Results in the DeepLoc Binary branch.

In order to assess the robustness of SaProt, we introduced a masking procedure wherein a specific
percentage of structure tokens are replaced with “#” and then we fine-tuned the model to observe
resultant performance variations. Figure 5 depicts the results of fine-tuning SaProt on the DeepLoc
(Almagro Armenteros et al., 2017) dataset. We employed different mask rates ranging from 0 to
1. The results show that, as the mask rate increases, there is a corresponding reduction in accuracy
for SaProt. Nonetheless, the accuracy remains competitive to ESM-2. This is because even if we
mask out all structural token, residual information still exists, so performance can still be recovered
at least to the ESM-2 level after fine-tuning on new labels. This is different from the zero-shot
prediction tasks, as discussed in Figure 3 (where performance drops significantly by substituting
random structural markers). In zero-shot prediction tasks, the model does not have the opportunity
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to be fine-tuned, and performance is expected to drop significantly if too many structural tokens are
masked, as this will lead to inconsistencies with the training data.

E.3 RESIDUE SEQUENCE-ONLY FINE-TUNING

To explore the broader applications of SaProt, we evaluate its effectiveness by fine-tuning on residue
sequences where all Foldseek structure tokens are substituted with “#”, resulting in “si#”. This
scenario often arises in various protein engineering tasks where the fitness values of protein variants
can be obtained through wet experiments, but experimental structures for them are unavailable.
Please note that the structures generated by AF2 may not exhibit significant distinctions for variants
of the same wild-type protein.

We compare SaProt with ESM-1b and ESM-2 on four supervised mutational effect prediction
datasets (Fluorescence, Stability, β-lactamase, and AAV). As depicted in Figure 6, SaProt performs
on par with ESM-1b and ESM-2 even in the absence of structure information during the fine-tuning
phase. This highlights the effectiveness of SaProt, even in situations where protein structures are not
available.

But in general, in this specific scenario, SaProt may not exhibit a clear advantage over the ESM
models, but it still remains comparable in performance.
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Figure 6: Results for residue sequence-only fine-tuning on several supervised fitness prediction
datasets.

E.4 EVALUATION WITH ESMFOLD

AlphaFold2 (Jumper et al., 2021) has achieved remarkable success in predicting protein structures,
with the quality of the predicted structure heavily dependent on the corresponding MSA data. How-
ever, obtaining high-quality MSA data on a large scale can be computationally intensive and time-
consuming. As an alternative approach, single-sequence-based structure prediction models like
ESMFold (Lin et al., 2022) can be utilized. In this study, we explore the impact of ESMFold on
the performance of SaProt in both zero-shot prediction tasks and supervised fine-tuning tasks, as
shown in Table 9. Our observations indicate that SaProt, utilizing structure tokens generated by
ESMFold, in general achieves better or comparable accuracy to ESM-2, but falls short of its own
performance with tokens generated by AF2. Hence, when feasible, it is highly recommended to
employ the new vocabulary generated by AF2.
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GO DeepLoc
ClinVar ProteinGym Thermostability HumanPPI Metal Ion Binding EC

MF BP CC Subcellular BinaryModel

AUC Spearman’s ρ Spearman’s ρ ACC% ACC% Fmax Fmax Fmax Fmax ACC% ACC%

ESM-2 0.862 0.475 0.680 76.67 71.56 0.868 0.670 0.473 0.470 82.09 91.96

ESM-1b 0.900 0.440 0.708 82.22 73.57 0.864 0.656 0.451 0.466 80.33 92.83

SaProt (EsmFold) 0.896 0.455 0.717 85.78 74.10 0.871 0.678 0.480 0.474 82.82 93.19

SaProt (AF2) 0.909 0.478 0.724 86.41 75.75 0.882 0.682 0.486 0.479 85.57 93.55

Table 9: Results of SaProt using tokens generated from ESMFold and AF2.
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Figure 7: Comparison of two masking strategies.

F MASKING STRATEGY COMPARISON

For a protein structure-aware sequence P = (s1f1, s2f2, ..., snfn), there are two possible masking
strategies that can be used, as shown in Figure 7.

Masking Strategy 1: The most straightforward masking strategy is to randomly mask several SA
tokens sifi using the symbol “##”, and subsequently predict them directly from the SA vocab-
ulary. However, a potential weakness with this approach is that if the SA tokens are not accurate
enough, predicting exact SA tokens may lead the model in the wrong optimization direction. This is
evidenced in Table 10.

Masking Strategy 2: Another potential masking strategy involves either predicting the residue
token si or predicting the Foldseek structure token fi. However, predicting fi encounters the same
issue mentioned above. Due to the high accuracy of residue types in protein primary sequences,
predicting only the residue token seems a more effective training approach. Furthermore, predicting
residue types aligns well with residue-level protein tasks, e.g., mutational effect prediction.

In Table 10, we report the results of two masking strategies on three datasets, namely ClinVar,
ProteinGym, and DeepLoc. Due to highly similar results on other tasks, we omit them directly.
Strategy 2 performs better as we expected, suggesting that during the training process, there might
be a higher emphasis on the loss weight for predicting residues. The Foldseek structure tokens
are primarily used as contextual information to aid residue prediction, rather than being utilized as
labels.

G MORE VISUALIZATIONS

We exhibit more visualizations of learnt representations for ESM-2 and SaProt. In particular, we
adopt subcellular localization and binary localization datasets, visualizing the embeddings by t-
SNE (van der Maaten & Hinton, 2008). As shown in Figure 8 (a) and (b), the extracted representa-
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Mask&predict Strategy
ClinVar ProteinGym DeepLoc

w/o MSA retrieval w/ MSA retrieval Subcellular Binary
AUC Spearman’s ρ Spearman’s ρ Acc% Acc%

Masking Strategy 1 0.907 0.474 0.486 83.65 92.84
Masking Strategy 2 0.909 0.478 0.489 85.57 93.55

Table 10: Results for the two masking strategies during pre-traing phase.

tions from SaProt exhibit similarities or better clustering compared to those of ESM-2. Additionally,
we visualized the embeddings of all 400 structure-aware tokens, as shown in Figure 8 (c). We can
observe a certain degree of clustering phenomenon. In the semantic space, the SA tokens that are in
close proximity to each other often correspond to similar types of residues or Foldseek tokens.
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SaProt
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(a) Embedding visualizations of ESM-2 and SaProt for binary localization dataset.
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(b) Embedding visualizations of ESM-2 and SaProt for subcellular localization dataset.
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(c) Visualizations of SaProt SA token embeddings. Note that all SA tokens are initialized with individual
embeddings before training SaProt. For instance, the tokens ”Dl” and ”Ds” are considered two different tokens
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Figure 8: Embedding visualization
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