
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Practical Content-aware Session-based Recommendation: Deep
Retrieve then Shallow Rank

Yuxuan Lei∗
Xiaolong Chen∗
Defu Lian†

University of Science and Technology
of China

Hefei, China
lyx180812@mail.ustc.edu.cn

chenxiaolong@mail.ustc.edu.cn
liandefu@ustc.edu.cn

Peiyan Zhang
The Hong Kong University of Science

and Technology
Hong Kong, China

pzhangao@cse.ust.hk

Jianxun Lian
Chaozhuo Li†

Xing Xie
Microsoft Research Asia

Beijing, China
jialia@microsoft.com
cli@microsoft.com

xing.xie@microsoft.com

ABSTRACT
This paper presents the solution of our team unirec in the KDD
Cup 2023 Multilingual Recommendation Challenge.

The goal of the competition is to explore ways to improve session-
based recommendation in real-world multilingual and imbalanced
scenarios. Our method comprises a two-stage retrieval-then-rank
strategy. In the first stage, advanced deep single models are used to
score the full set of items, enabling us to obtain a smaller candidates
set along with the corresponding session-item score features. In
the second stage, we employ the shallow but powerful XGBoost
algorithm for ranking to derive the final recommendation results.
Our method ranks 3rd place in the final leaderboard of Task1. Our
implementation using the recommendation library RecStudio and
UniRec is publicly available at this link: https://gitlab.aicrowd.com/
CXL/unirec-task1-amazon-kddcup-2023.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Session-based Recommender Systems, LanguageModels, Tree Boost-
ing System, KDDCup 2023

ACM Reference Format:
Yuxuan Lei, XiaolongChen, Defu Lian, Peiyan Zhang, Jianxun Lian, Chaozhuo
Li, and Xing Xie. 2023. Practical Content-aware Session-based Recommenda-
tion: Deep Retrieve then Shallow Rank. In Proceedings of Amazon KDD Cup
2023 Workshop: Amazon Multilingual Recommendation System (KDDCup ’23).
ACM, New York, NY, USA, 5 pages. https://doi.org/XXXXXXX.XXXXXXX

∗Both authors contributed equally to this research.
†Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDDCup ’23, Aug 09, 2023, Long Beach, CA, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Table 1: Statistics of the datasets

Locale #Sessions #Products Avg. session length

DE 1,340,552 518,327 4.35
JP 1,192,053 395,009 4.48
UK 1,434,054 500,180 4.12

1 INTRODUCTION
Recommender systems are vital in e-commerce platforms as they
can enhance users’ shopping experience while also increasing the
platform’s revenue. Session-based recommendation, which employs
interaction records within a short session to chronologically capture
user interests, is a highly common scenario.

In order to improve the performance of the session-based recom-
mender system in multilingual and imbalanced scenarios, Amazon
provided the "Multilingual Shopping Session Dataset"[6] which
contains millions of user sessions from six locales and hosted the
KDD CUP 2023 Challenge.

1.1 Dataset Description
The dataset for each locale comprises two components: user ses-
sions and product attributes. All sets encompass the sequence of
historical items accessed by users within a session (referred to as
prev_items), with the training set additionally providing the next
item label (referred to as next_item). Product attributes encompass
product ID, locale, title, price, brand, color, size, model, material,
author, and description. The fundamental statistics of the datasets
are summarized in Table 1.

1.2 Task Description
Task 1 focuses on next product recommendation, aiming to predict
the subsequent product a user is likely to engage with, considering
both the user session data and product attributes. The datasets
for Task 1 encompass three locales: German (DE), Japanese (JP),
and English (UK), all characterized by relatively rich interactions.
Participants in Task 1 are required to submit a sorted top 100 items
list for each session in the test set, and the online evaluation metric
employed is mrr@100 (Mean Reciprocal Rank).

2 METHODOLOGY
In real-world recommender systems, a vast number of items are
typically present, as demonstrated in Table 1. Predicting the next

1

https://gitlab.aicrowd.com/CXL/unirec-task1-amazon-kddcup-2023
https://gitlab.aicrowd.com/CXL/unirec-task1-amazon-kddcup-2023
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

KDDCup ’23, Aug 09, 2023, Long Beach, CA, USA Lei et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

item a user is likely to engage with from such a large-scale item set
effectively and efficiently poses a significant challenge for a single
model. Consequently, a two-stage retrieval-then-rank strategy is
commonly employed in recommender system design. For Task 1,
we also adopt this classical two-stage approach, utilizing multi-
ple single models for candidate retrieval and feature construction,
followed by a ranker to reorganize the candidates for enhanced
recommendation performance. Figure 1 illustrates the pipeline of
our solution, while the remainder of this section details the single
models and the ranker employed in this challenge.

Item corpus

Single Models
Deep Session-based

Recommendation Models
Text-based

Models
Statistic-based

Models

Hundreds of
candidates

Session
features

Item
features

Session-Item
features

Ranker

Top 100 Top 1 Top 2 Top 100. . .

Figure 1: The pipeline of our solution.

2.1 Data Processing and Splitting
We describe our data processing and splitting in this section.

Data Processing. Price is treated as a numerical feature, and
we identified an anomalous price of 40,000,000.07 in the dataset
and replaced it with the mean price of items within the respec-
tive locale. The features brand, color, size, model, material, and
author are deemed categorical features. To ensure consistent treat-
ment of categories despite capitalization variations, we convert all
these features to lowercase, and features that appeared fewer than
three times are filtered out. Title and description are treated as text
features, and we utilize both the original text features and those
generated by concatenating the categorical features using the [SEP]
token to obtain diverse models.

Data Splitting. Initially, for each locale, we divide the training
sessions into training and validation datasets at a 0.92 to 0.08 ra-
tio. The next_item field in sessions of validation dataset is used to
assess model performance offline. To fully utilize the data, we ex-
pand the training dataset with sessions (specifically, the prev_items
field) from validation dataset, as well as the test datasets of Task 1
and Task 3. In our experiments we found that such augmentation
improved the model’s online performance.

2.2 Single Models
In the first stage, our primary objective is to obtain a small, high-
quality candidates set and construct features for the second stage.
We employ three classes of models to achieve this goal: deep session-
based recommendation models, text-based models, and statistic-
based models. In the remainder of this section, we will discuss the
details of each model type separately. It is important to note that
all our single models are trained by locale, as this approach yields
significantly better results compared to training a single model for
all three locales.

2.2.1 Deep Session-Based Recommendation Models. Session-based
recommendation has been explored for years. In this competition,
we initially leverage multiple network architectures as backbone
models to model sessions, followed by proposing various methods
to enhance the backbone models. Thanks to RecStudio1(a highly-
modularized recommendation library) and UniRec(to be released),
we can quickly implement models or directly use the models in the
library.

The main models we adopted are:
(1) SASRec[7] is a transformer-based session-based recommen-

dation model, using unidirectional self attention mechanism.
(2) LKNN is our modified version of SASRec to replace the multi-

head attention module with a light convolution layer.
(3) Avghist employs mean pooling of all item embeddings within

a session to generate the session representation.
(4) GRU4Rec[5] utilizes a GRU module for session modeling.
(5) NARM[8] enhances GRU4Rec by adding an attention mecha-

nism to capture users’ primary intent in the current session.
(6) SeqMLP concatenates representations of items in the session

and uses MLP (Multi-Layer Perceptron) to model the session.
Regarding training details, Please refer to section A.1. Building

upon existing models, we introduce the following three improve-
ments based on the dataset’s characteristics.

Feature augmentation.We adopt a direct and natural approach
to incorporate categorical and numerical features into recommen-
dation models. Specifically, we uniformly convert all feature fields
into categorical types (for price, we use equal frequency buckets
to divide it into 100 categories) and subsequently learn an embed-
ding table for each feature field. We directly add embeddings of
all feature fields to the item ID embedding to obtain the final item
representations, which are used for both session modeling and item
encoding.

Text augmentation. The dataset also includes substantial text
information, such as product titles and descriptions. We leverage
language models to enhance the performance of session-based rec-
ommendation models. Due to the significant training cost of jointly
training the recommendation model and language model, we adopt
a simple strategy. In detail, we train a text encoder to obtain pre-
trained text embeddings for each item (refer to section 2.2.2 for
details) and freeze the text embeddings. We then use a learnable
MLP layer to map the text representation to the same vector space
as the item ID embeddings derived from recommendation mod-
els. Similar to feature augmentation, we add the transformed text
representation to the item ID embedding.

1https://github.com/ustcml/RecStudio

2

https://github.com/ustcml/RecStudio

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Practical Content-aware Session-based Recommendation: Deep Retrieve then Shallow Rank KDDCup ’23, Aug 09, 2023, Long Beach, CA, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Continual training. As mentioned before, each session is di-
vided into multiple slices for training. However, this creates a sig-
nificant discrepancy in session length between model training and
testing, potentially leading to suboptimal predictions. To alleviate
this issue, we propose a continual training phase. To be specific,
after normal training, we load model checkpoints and continue
to train the model using only the next item field of each session
as the training target. We find that this process is sensitive to the
learning rate and typically requires a smaller learning rate than
normal training. Nonetheless, it significantly improves the model’s
online performance.

2.2.2 Text-based Models. We employ bert-like[3] pretrained lan-
guage models to obtain the hidden representations of items and
BM25[12] models to model literal similarity between a session and
an item. This serves two primary purposes: one is to enhance the
performance of session-basedmodels (refer to Section 2.2.1), and the
other is to generate features for ranker training, as the text-based
models themselves also function as content-based recommendation
models. For bert-like pretrained language models, we have two
implementations: user2item and item2item.

User2item. We utilize two language models (aka text encoders)
with the same architecture to encode the representations of items
and sessions, respectively. We regard the session and its correspond-
ing next item field as a positive pair.

Item2item. We only use a single text encoder to encode item
representations. We construct positive item pairs for training, con-
sidering every item pair in the same session as positives because
we think they are highly relevant.

For training details, please refer to section A.2.

2.2.3 Statistic-based Models. In addition to the deep session-based
recommendation models and text models that require training,
we also employ statistic-based models to retrieve candidates and
provide more direct and comprehensive features for the ranker,
including classic ItemCF[11], UserCF, and heuristic co-occurrence-
based models.

ItemCF. The core of the ItemCF is to recommend items similar
to those visited in a user’s session. Specifically, we construct an
item similarity matrix based on the bipartite graph of sessions and
items. The score for a new item depends on the sum of similarities
between the items in the session and the new item.

UserCF. In contrast to ItemCF, the core of UserCF is to recom-
mend items that similar users enjoy.

Co-occurrence-based models. The underlying principle of
these models is based on the assumption that items appearing in the
same session are highly related items. The similarity between two
items is measured based on the frequency of their co-occurrence in
the same session. We can retrieve the top n items with the highest
co-occurrence frequency with all the items or the last item in a
session as the recommendation list of the session.

2.3 Ranker
Through multiple single models, we can retrieve a candidate set for
each session and provide various features for the ranker, enabling
a more refined sorting of the candidates. We employ XGBoost[1]
as our ranker (detailed in A.3). Next, we will elaborate on how

we generate candidates for sessions and the features used in our
solution.

2.3.1 Candidates Generation. The objective of candidates genera-
tion is to obtain a more comprehensive candidates set, improving
the hit ratio of the candidates set compared to a single model’s top
100 items set. Therefore, we use three single models from three
different types: SASRec (with feature&text augmentation), xlm-
RoBERTa, and a co-occurrence-based model, to retrieve 150 candi-
dates for each session respectively. The final candidates for each
session are obtained by deduplicating and merging the candidates
retrieved by the three models. The hit ratio of the candidates set
of the initial SASRec is 0.7235, which is improved to 0.7614 after
merging the candidates from the other two models, with an average
of 301 candidates per session in the final candidates set.

2.3.2 Feature Engineering. The features used in ranker can be cate-
gorized into three types: session features, item features, and session-
item features.

Session features. The session features we use include the locale
of the session and the average price of items in the session.

Item features. The item features we mainly use are the popu-
larity of items, including item frequency and next item frequency.
Item frequency refers to the number of occurrences of an item in
data, measuring its popularity. Next item frequency, on the other
hand, counts the occurrences of an item being the next item field in
a session. The motivation for introducing the concept of next item
frequency is the assumption that the behavior associated with the
last item in a session is likely to be a purchase, which better reflects
the popularity and quality of an item. During the final stages of the
competition, next item frequency significantly contributed to our
performance improvement, as demonstrated in the experimental
results in Section 3.

Session-item features. Session-item features refer to the fea-
tures generated by interactions between sessions and candidates,
mainly involving the scores assigned to candidates by various single
models. We utilize three different types of single models (mentioned
in section 2.2) to provide diverse features to the ranker, including
implicit feedback features learned by deep session-based models,
text-based latent representation features and literal features, fea-
tures obtained from statistics, and their fusion. Furthermore, we find
that new features obtained by certain transformations on original
scores also improved the performance of the ranker. We normalize
the scores obtained from models that use softmax normalization
during training by applying softmax function within each session’s
candidates set. For some other models like BM25, we normalize
their scores using the min-max method.

3 RESULTS AND DISCUSSION
In this section, we present our main results and ablation studies for
some crucial components.

3.1 Overall Performance
Table 2 presents the results of some single models and the ranker.

Singlemodels. For deep session-based recommendationmodels,
except for SeqMLP, we augment them with categorical, numerical,
and text features. Among the models we used, SASRec achieved

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

KDDCup ’23, Aug 09, 2023, Long Beach, CA, USA Lei et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 2: Main Results for Task 1

Method Offline mrr@100 Online mrr@100

SeqMLP (ID only) 0.3003 –
Avghist 0.2823 –
GRU4Rec[5] 0.3164 –
NARM[8] 0.3178 –
LKNN 0.3343 –
SASRec[7] 0.3345 0.38665

xlm-RoBERTa-base[2] 0.1851 –
mbart-large-50[9] 0.2177 –
bert-base[3] 0.2238 –

ItemCF[11] 0.2600 –
UserCF 0.2600 –

XGBoost[1] 0.3599 0.40470
XGBoost ensemble – 0.40477

the best performance, with an mrr@100 of 0.3345 on the offline
validation dataset and 0.38665 on the leaderboard. Text-based mod-
els performed worse than session-based recommendation models,
which we believe is because text-based models require significant
training overhead and it is difficult for them to leverage a large num-
ber of negative samples and undergo sufficient training iterations.
Additionally, without using item ID information, they struggle to
effectively differentiate between similar items.

Ranker. Using about 100 features, a single ranker achieves an
mrr@100 of 0.3599 on the validation dataset and 0.40470 on the
leaderboard. It is worth noting that while text-based models and
statistic-based models may not perform as well as deep session-
based recommendation models, the features they generate signifi-
cantly improve the performance of the ranker. On the last day of the
competition, we ensembled three XGBoost models with different
parameters, averaging their scores on the candidates. Finally, we
achieved an mrr@100 of 0.40477 on the leaderboard.

3.2 Ablation Study
Table 3 and Table 4 present the ablation study for SASRec and the
ranker respectively.

For SASRec, feature and text augmentation all resulted in per-
formance improvements. Furthermore, after continual training,
SASRec’s performance experienced a significant enhancement.

In Table 4, XGBoost Base represents a basic ranker obtained
in the initial stage of Phase 2 using partial features. After incor-
porating the next item frequency, the performance of the ranker
significantly improved, with an mrr@100 0.40097 on the leader-
board. Subsequently, we further tuned the models (both single
models and the ranker) and introduced more features to the ranker.
Despite some features overlapping with those used by XGBoost
Base, the performance of the ranker still experienced significant
enhancement.

4 CONCLUSION
In this paper, we introduce our pipeline for the KDD CUP 2023 Chal-
lenge. We adopt a classic two-stage approach. Specifically, in the
first stage, we employ three different types of models for candidates
retrieval and features generation, including deep session-based

Table 3: Ablation Study for SASRec

Method Offline mrr@100 Online mrr@100

SASRec 0.3245 0.38069
+ feature 0.3282 0.38239
+ text 0.3345 0.38665
+ continual training 0.3374 0.39105

Table 4: Ablation Study for Ranker

Method Offline mrr@100 Online mrr@100

XGBoost Base 0.3514 0.39576
+ next item freq 0.3547 0.40097
+ all features &
parameter tuning 0.3599 0.40470

+ ensemble – 0.40477

recommendation models, text-based models, and statistic-based
models. We also introduce several effective methods to enhance
the performance of traditional deep session-based recommendation
models, consisting of content (feature&text) augmentation and con-
tinual training. In the second stage, we merge the scoring features
of various models and hand-designed features to further rank the
candidates set and ultimately ranks 3rd in the Task1 leaderboard.

REFERENCES
[1] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.

In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785–794.

[2] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guil-
laume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer,
and Veselin Stoyanov. 2019. Unsupervised cross-lingual representation learning
at scale. arXiv preprint arXiv:1911.02116 (2019).

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

[4] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. Simcse: Simple contrastive
learning of sentence embeddings. arXiv preprint arXiv:2104.08821 (2021).

[5] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[6] Wei Jin, Haitao Mao, Zheng Li, Haoming Jiang, Chen Luo, Hongzhi Wen, Haoyu
Han, Hanqing Lu, Zhengyang Wang, Ruirui Li, Zhen Li, Monica Xiao Cheng,
Rahul Goutam, Haiyang Zhang, Karthik Subbian, Suhang Wang, Yizhou Sun,
Jiliang Tang, Bing Yin, and Xianfeng Tang. 2023. Amazon-M2: A Multilingual
Multi-locale Shopping Session Dataset for Recommendation and Text Generation.
(2023).

[7] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE international conference on data mining (ICDM). IEEE,
197–206.

[8] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017.
Neural attentive session-based recommendation. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management. 1419–1428.

[9] Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvinine-
jad, Mike Lewis, and Luke Zettlemoyer. 2020. Multilingual denoising pre-training
for neural machine translation. Transactions of the Association for Computational
Linguistics 8 (2020), 726–742.

[10] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108 (2019).

[11] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th
international conference on World Wide Web. 285–295.

[12] Andrew Trotman, Antti Puurula, and Blake Burgess. 2014. Improvements to
BM25 and language models examined. In Proceedings of the 19th Australasian
Document Computing Symposium. 58–65.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Practical Content-aware Session-based Recommendation: Deep Retrieve then Shallow Rank KDDCup ’23, Aug 09, 2023, Long Beach, CA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 5: Hyperparameters for XGBoost

Parameter value

max depth 6
subsample 0.87
colsample bytree 0.47
learning rate 0.046
seed 12158
lambda 2.0
alpha 1.0
objective rank:map

A APPENDIX FOR REPRODUCIBILITY
In this section, we mainly present some details of model train-
ing to enhance the reproducibility of our method. For more de-
tails, please refer to our repository: https://gitlab.aicrowd.com/CXL/
unirec-task1-amazon-kddcup-2023.

A.1 Deep Session-Based Recommendation
Models

During training, each session is divided into multiple slices, using
every item except the first as the training target. Formally, given
a user session (𝑖1, 𝑖2, 𝑖3, ..., 𝑖𝑛), we use (𝑖1) to predict 𝑖2, (𝑖1, 𝑖2) to
predict 𝑖3, and so on, up to (𝑖1, 𝑖2, ..., 𝑖𝑛−1) to predict 𝑖𝑛 . We train
models using the full softmax loss function on the entire item set,
with dot product serving as the similarity score between users and
items. We use 1 32GB NVIDIA Tesla V100 GPU for training a single
model and the batch size is set to 2048.

A.2 Text-based Models
During training, we employ cross-entropy loss and in-batch nega-
tives for contrastive learning[4], with the aim of pulling positive
pairs together and pushing negative pairs apart. We also use dot
product for similarity computation. We concatenate text features
(such as title and description) of an item and input it into the model
to obtain the item embedding. The text for a session is derived
by concatenating text features of up to 5 historical items from the
session. For the user2item setting, we train three models respec-
tively (each model is trained by locale): facebook/mbart-large-50[9],
xlm-RoBERTa-base[2], and bert-base[3]. For the item2item setting,
we use distilbert-base-multilingual-cased[10]. It should be noted
that bert-base models are a little bit different for each locale: we
train bert-base-german-cased for DE, bert-base-japanese-whole-
word-masking for JP and roberta-base for UK. All these models
can be accessed through the HuggingFace library2. We obtain the
final item and user representation for different models by using
either mean pooling or the [CLS] token of the last layer output of
the encoder. This approach is intended to increase the difference
between models and produce a better ensemble result. For the base
model, we use 3 NVIDIA RTX 3090 GPUs with 24GB each, and
for each positive pair, we randomly select additional 5 negative
examples. For the large model, we use 8 NVIDIA Tesla V100 GPUs
with 32GB each.

A.3 XGBoost
We train our XGBoost on validation dataset through 5-fold cross-
validation with about 100 features. We do not perform extensive
hyperparameter tuning. We find that the main useful parameters
are max depth, subsample, colsample bytree, and learning rate. All
parameters are listed in Table 5.
2https://huggingface.co/

5

https://gitlab.aicrowd.com/CXL/unirec-task1-amazon-kddcup-2023
https://gitlab.aicrowd.com/CXL/unirec-task1-amazon-kddcup-2023

	Abstract
	1 Introduction
	1.1 Dataset Description
	1.2 Task Description

	2 Methodology
	2.1 Data Processing and Splitting
	2.2 Single Models
	2.3 Ranker

	3 Results and Discussion
	3.1 Overall Performance
	3.2 Ablation Study

	4 Conclusion
	References
	A appendix for reproducibility
	A.1 Deep Session-Based Recommendation Models
	A.2 Text-based Models
	A.3 XGBoost

