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Appendices

A ADDITIONAL DETAILS ON THE EXPERIMENTS

We run all inferences of LLAVA and encoder models on an NVIDIA RTX A5000 GPU, and solving
Equation 2 with 35, 000 multimodal feature vectors on a 64 core Xeon Gold 6226R CPU machine
takes less than 10 minutes. The implementation of CCA is from CCA Zoo Chapman & Wang (2021).

Multimodal Encoders. The multimodal image-text encoder used throughout the experiments is
laion/CLIP-ViT-bigG-14-laion2B-39B-b160k from Huggingface. The multimodal audio-text en-
coder used is laion/larger clap general from Huggingface (Wu* et al., 2023).

Unimodal Encoders. We use several unimodal encoders and show the difference in performance in
Section E. To encode images, we tested DINOv2-Giant (Oquab et al., 2023) and the unimodal part
of the multimodal encoders previously mentioned. To encode text, we tested GTR-t5-large (Ni et al.,
2022) and the unimodal part of the multimodal encoders mentioned above. To show CSA’s ability
to combine unimodal models, we never tried using the paired unimodal encoders of a multimodal
encoder in our experiments, i.e., using CLIP to encode both images and text.

Flickr30k. We trained ASIF and CSA on the Flickr validation set, which includes 145, 000 images
and 5 captions for each image. We then validated the models on a test set of 5, 000 images and
25, 000 captions.

COSMOS. We trained ASIF and CSA on the COSMOS validation set, which includes 41, 006
image-caption pairs. We then validated the models using a test set of 1,700 image-caption pairs,
with half of the captions labeled as misinformation by human annotators.

B TOWARDS MORE MODALITIES—AUDIO AND TEXT

Figure 7: Classification of YouTube audio and genre tags: CSA (blue) performs as well as CLAP, the CLIP-
inspired multimodal audio and text encoder, and outperforms ASIF in classifying genre tags of YouTube audio.

We now show CSA’s generalization ability to more modalities with MusicCaps (Agostinelli et al.,
2023). We use GTR and CLAP to encode YouTube audio along with the tagged genre descriptions
of the audio. We conducted a classification task in which the models input the audio and a tag and
output if the audio aligns with the caption. Similar to the mislabeled ImageNet experiment, we
show the ROC curves and compare the AUC in Figure 7. We trained ASIF and CSA for 3, 777 data
points and tested all methods on 1, 625 data points. We randomly sampled a tag for each data point
during both training and inference. In Figure 7, we see that CSA performs as well as CLAP, the
CLIP-inspired multimodal audio and text encoder, and outperforms ASIF. Thus, we conclude that
CSA extends its capabilities beyond image and text, effectively handling audio and text as well.
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Figure 8: Correlation coefficients of COSMOS image and caption features under CSA: The data are
inherently noisy, as indicated by the correlation coefficients of the unimodal feature spaces, which concentrate
on 0.2 to 0.4. The unimodal encoders here are GTR and DINOv2.

C CORRELATION OF FEATURE SPACES

To take a deeper look into unimodal feature spaces, we show the correlation coefficients of COSMOS
image and caption features under CSA in Figure 8. The data are inherently noisy, as indicated by
the correlation coefficients of the unimodal feature spaces, which concentrate on 0.2 to 0.4. This
distribution of correlation coefficients highlights that, despite the fact that the original multimodal
data are noisy and show complex correlations, CSA can effectively map them to a multimodal space
where the similarity score remains meaningful for the zero-shot downstream tasks.

D SENSITIVITY TO HYPERPARAMETER s

Method s mAP Precision@1 Precision@5
CSA 10 9.5% 18.1% 13.4%
CSA 50 32.7% 53.9% 40.0%
CSA 100 36.0% 58.3% 42.9%
CSA 200 36.6% 59.3% 43.4%
CSA 500 31.8% 56.3% 38.3%
CSA 750 27.3% 50.2% 33.6%
CLIP 7 73.8% 92.9% 77.2%
ASIF 7 14.6% 25.6% 20.0%

(a) Image-to-text retrieval.

Method s Precision@1
CSA 10 15.2%
CSA 50 41.2%
CSA 100 43.8%
CSA 200 44.7%
CSA 500 41.7%
CSA 750 40.1%
CLIP 7 79.5%
ASIF 7 0.1%

(b) Text-to-image retrieval.

Table 3: Cross-modal retrieval on Flickr30k under different s: CSA achieves optimal performance at
s = 200, and its performance degrades with increases and decreases in s, illustrating the trade-off characterized
in Section 5.

We show CSA’s sensitivity to the hyperparameter s in terms of the end performance. In Table 3,
CSA achieves optimal performance in s = 200, and its performance degrades with increases and
decreases in s, illustrating the trade-off characterized in Section 5. However, for tasks other than
retrieval, we find that a larger s improves performance in image classification, mislabeling detec-
tion, and misinformation caption detection. This phenomenon is likely due to the trade-off between
distinguishability and informative embedding features, namely the distance between features. Al-
though retrieval tasks require a more curated balance between these aspects, other tasks benefit from
greater distinguishability of similarity scores.

E SENSITIVITY TO UNIMODAL ENCODERS

We change the unimodal encoders of ASIF and CSA to showcase their generalization ability to
different unimodal encoders. Figure 9 shows the results on the detection of mislabeled ImageNet
data with other encoders, and Figure 10 shows the results on the detection of misinformative captions
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(a) Results for a training size of 5000. (b) Results for a training size of 35000.

Figure 9: Detecting mislabeled ImageNet images (cont’d): CSA (blue) outperforms CLIP, ASIF, and
LLaVA with a higher AUC. (a) and (b) illustrate the results for CSA and ASIF across various training set
sizes, showing the superior performance of CSA with limited noisy training data. The unimodal encoders are
GTR and CLIP (image) here.

Figure 10: Detecting misinformative COSMOS captions (cont’d): CSA (blue) outperforms CLIP, ASIF,
and LLaVA with a higher AUC. The supervised-learning method from the original COSMOS paper is the
orange cross. It is the only method that outperforms CSA, though trained with supervised labels of object
locations. The unimodal encoders are GTR and CLIP (image) here.

with other encoders. CSA again outperforms ASIF and CLIP while outperforming the results of the
combination of GTR and DINOv2 in Section 6.
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