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A APPENDIX

A.1 THEORETICAL PROOF

Given the following equation:

∆ = argmin
∆

Lt(0) +∇θLt(0)
T∆ subject to

1

2
∆TFIMt−1

∆ ≤ r2

1. LAGRANGE MULTIPLIER METHOD

We introduce the Lagrange multiplier λ to handle the constraint:

L(∆, λ) = Lt(0) +∇θLt(0)
T∆+ λ

(
1

2
∆TFIMt−1∆− r2

)
Taking the derivative with respect to ∆ and setting it equal to 0:

∂L
∂∆

= ∇θLt(0) + λFIMt−1∆ = 0

Solving for ∆:

∆ = − 1

λ
F−1
IMt−1

∇θLt(0)

2. SOLVING FOR λ

Using the constraint 1
2∆

TFIMt−1
∆ ≤ r2, substitute ∆:

1

2

(
− 1

λ
∇θLt(0)

)T

FIMt−1

(
− 1

λ
F−1
IMt−1

∇θLt(0)

)
≤ r2

Simplifying:
1

2λ2
∇θLt(0)

TF−1
IMt−1

∇θLt(0) ≤ r2

Solving for λ:

λ2 =
1

2r2
∇θLt(0)

TF−1
IMt−1

∇θLt(0)

Thus:

λ =

√
1

2r2
∇θLt(0)TF

−1
IMt−1

∇θLt(0)

3. FINAL UPDATE RULE

Substituting λ back into the expression for ∆, we get the parameter update rule:

∆ = − r√
1
2∇θLt(0)TF

−1
IMt−1

∇θLt(0)
F−1
IMt−1

∇θLt(0)
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it is often approximated by Fisher Information Matrix (FIM) (Liu et al., 2020; Spall, 2005):

Fk = Ep(D̂k|θ)

[
∇θ log p(D̂k|θ)∇θ log p(D̂k|θ)⊤

] ∣∣∣∣∣
θ=µk

≈ Λ(Dk, µk) (1)

Fk represents the Fisher Information Matrix, which measures the sensitivity of the parameter θ to
the uncertainty during training (Kao et al., 2021). ∇θ log p(x|θ) is the gradient of the log-likelihood
function with respect to the parameter θ.

the work by (Wang et al., 2022b) demonstrates that this method leads to a tighter upper bound on

the generalization gap than independent adapters through
√

d ln(Nt/d)+ln(1/δ)
Nt

. See more details in
Appendix A.

max
i∈[1,K]

√
di ln(N1:t−1/di) + ln(2K/δ)

N1:t−1
+

√
d ln(N1:t−1/d) + ln(1/δ)

N1:t−1
, (2)

max
i∈[1,K]

√
di ln(Nt/di) + ln(2K/δ)

Nt
+

√
d ln(Nt/d) + ln(1/δ)

Nt
. (3)

Comparing Eq. ?? and Eq. 3, we conclude that cooperating k adapters facilitates a smaller general-
ization gap over the new and old tasks.

A.2 LIMITATIONS OF OTHER METHODS IN HANDLING TRANSFER AND INTERFERENCE

L2P (Wang et al., 2022d)applies visual prompt tuning to continual learning by learning a prompt
pool to select instance-specific prompts. DualPrompt (Wang et al., 2022c) introduces two types of
prompts, namely, general and expert prompts. CODA-Prompt (Smith et al., 2023) further improves
the prompt selection process by incorporating an attention mechanism. SimpleCIL (Zhou et al.,
2024) freezes the pre-trained weights and extracts the center of each class by averaging the embed-
dings within the same class, resulting in the most representative pattern of that class. ADAM (Zhou
et al., 2024) further advances this approach by comparing the performance of the prototype-based
classifier with that of a fully fine-tuned model on new classes.

Accordingly, the loss function for continual learning can typically be defined as:

L(θ) = Lt(θ) + λL̂1:t−1(θ), (4)

where L̂1:t−1(·) provides the constraint to achieve a proper trade-off between new and old tasks.

Replay-based methods facilitates continual learning by storing and replaying, or generating previ-
ously learned samples (Luo et al., 2024; Rebuffi et al., 2017). L̂1:t−1(·) of them is

∑t−1
k=1 Lk(θ; D̂k),

where D̂k is an approximation of Dk through replaying old training samples. These methods
achieve continual learning through minimizing 1

2(t−1)

∑t−1
j=1 Div(Dj , Dt). Although these meth-

ods are highly effective, they pay less attention to transferring and have the problem of samples
imbalance. This sample imbalance may lead to interference in the performance of previous tasks
with fewer replay samples by those with a larger number of replayed samples. Additionally, it can
negatively impact the learning of new tasks. Moreover, these approaches can result in uncontrolled
expansion of storage and computational resources.

Dynamic network-based methods primarily achieve continual learning by adding new parameters
for new tasks to varying degrees while freezing old parameters (Bonato et al., 2024; Yoon et al.,
2017; Wang et al., 2022a). Most of PTM-based methods are dynamic network-based methods.
L̂1:t−1(·) of them is L̂1:t−1(θ =

⋃t−1
k=1 θ̂k). For every task, θ = {θ̂old, θ̂new}, where θ̂old decides

the extent to which frozen parameters from old tasks are reused varies across methods. In parameter
isolation approaches (Yoon et al., 2017), θ̂old is zero, while in network expansion methods (Wang
et al., 2022a), all frozen parameters are reused. These methods primarily aim to minimize the√

d ln(N1:t−1/d)+ln(1/δ)
N1:t−1

to reduce the upper bound of the loss function. This is because the d when
using a shared set of parameters across all tasks is necessarily larger than the dimensionality when

2
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each task has its own dedicated, smaller set of parameters. Although these methods effectively
preserve the model’s performance on both new and old tasks, they do not facilitate true forward and
backward knowledge transfer between tasks during learning. Furthermore, as the number of tasks
increases, the network size grows uncontrollably, requiring substantial storage and computational
resources.

Both regularization-based and projection matrix approaches achieve continual learning by restricts
parameter updates to directions which do not interfere strongly with previous tasks (Kao et al.,
2021; Saha et al., 2021; Saha & Roy, 2023; Zeng et al., 2019). The essence of these methods lies
in optimizing the model along the flat directions of the prior, which is addressed by focusing on the
Eq. ?? mentioned above. Different methods employ varying approaches to approximate the Fisher
information matrix (Zeng et al., 2019; Lin et al., 2022; Kirkpatrick et al., 2017; Li & Hoiem, 2017;
Yu et al., 2020). As Eq. ?? shows, if inference happens, the learning of new tasks are affected.

A.3 THEORY ANALYSIS OF METHOD

Based on Eq. ??, we analyze the theoretical effectiveness of our algorithm. First, for ÊD1:t−1(θ1:t),
our algorithm shares a set of parameters among tasks that fall within the same flat optimization
region and applies a suitable flat direction search method, thereby tightening the upper bound of
this term. For the second term, 1

2(t−1)

∑t−1
j=1 Div(Dj , Dt), since the FIM closely aligns with task

similarities, reducing the divergence between them. Finally, the MoE mechanism also reduces the
third term. In conclusion, our algorithm effectively tightens the upper bound of the loss function
across all three aspects, enabling strong continual learning performance.

A.4 EXPERIMENTS DETAILS

VTAB contains 50 classes, CIFAR100 has 100 classes, CUB, ImageNet-R, ImageNet-A, and Object-
Net each have 200 classes, and OmniBenchmark includes 300 classes. To ensure a fair comparison,
we use the same training and testing sets as in (Zhou et al., 2024) for all methods.

Following (Zhou et al., 2024), we use two pre-trained models: ViT-B/16-IN21K and ViT-B/16-
IN1K. Both are pre-trained on ImageNet21K, but the latter is further fine-tuned on ImageNet1K.

A.5 THE NUMBER OF ADAPTERS IN DIFFERENT BLOCKS

Table 1: The number of adapters in different blocks of model our proposed method learned during
training.

Settings Number of Adapters

1 2 3 4 5 6 7 8 9 10 11 12

CIFAR B0 Inc5 2 2 2 2 2 2 2 2 2 2 2 2
CUB B0 Inc5 2 2 2 2 2 19 16 18 20 20 20 2
IN-R B0 Inc5 3 3 3 3 3 3 3 3 3 4 5 3
IN-A B0 Inc20 2 2 2 2 2 4 2 2 2 5 5 2
ObjNet B0 Inc5 5 6 5 5 5 6 15 12 16 15 18 5
OmniBench B0 Inc30 9 9 10 10 10 6 6 2 2 2 2 2
VTAB B0 Inc10 4 4 4 4 4 4 4 4 4 4 4 4 4

REFERENCES

Jacopo Bonato, Francesco Pelosin, Luigi Sabetta, and Alessandro Nicolosi. Mind: Multi-task in-
cremental network distillation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 11105–11113, 2024.

Ta-Chu Kao, Kristopher Jensen, Gido van de Ven, Alberto Bernacchia, and Guillaume Hennequin.
Natural continual learning: success is a journey, not (just) a destination. Advances in neural
information processing systems, 34:28067–28079, 2021.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Trgp: Trust region gradient projection for
continual learning. arXiv preprint arXiv:2202.02931, 2022.

Jing Liu, Haidong Yuan, Xiao-Ming Lu, and Xiaoguang Wang. Quantum fisher information ma-
trix and multiparameter estimation. Journal of Physics A: Mathematical and Theoretical, 53(2):
023001, 2020.

Yutian Luo, Shiqi Zhao, Haoran Wu, and Zhiwu Lu. Dual-enhanced coreset selection with class-
wise collaboration for online blurry class incremental learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 23995–24004, 2024.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Gobinda Saha and Kaushik Roy. Continual learning with scaled gradient projection. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 37, pp. 9677–9685, 2023.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning.
arXiv preprint arXiv:2103.09762, 2021.

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim,
Assaf Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual de-
composed attention-based prompting for rehearsal-free continual learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11909–11919, 2023.

James C Spall. Monte carlo computation of the fisher information matrix in nonstandard settings.
Journal of Computational and Graphical Statistics, 14(4):889–909, 2005.

Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Foster: Feature boosting and com-
pression for class-incremental learning. In European conference on computer vision, pp. 398–414.
Springer, 2022a.

Liyuan Wang, Xingxing Zhang, Qian Li, Jun Zhu, and Yi Zhong. Coscl: Cooperation of small
continual learners is stronger than a big one. In European Conference on Computer Vision, pp.
254–271. Springer, 2022b.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. In European Conference on Computer Vision, pp. 631–648.
Springer, 2022c.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-
cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
139–149, June 2022d.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547, 2017.

Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmei Cheng, Shangling
Jui, and Joost van de Weijer. Semantic drift compensation for class-incremental learning. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 6982–
6991, 2020.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continual learning of context-dependent pro-
cessing in neural networks. Nature Machine Intelligence, 1(8):364–372, 2019.

Da-Wei Zhou, Zi-Wen Cai, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Revisiting class-
incremental learning with pre-trained models: Generalizability and adaptivity are all you need.
International Journal of Computer Vision, pp. 1–21, 2024.

5


	Appendix
	Theoretical proof
	Limitations of other methods in handling transfer and interference
	theory analysis of method
	Experiments details
	The number of adapters in different blocks


