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A Appendix

A.1 Proofs

Theorem 1. With FiP (x;h) as defined in Eq @, limy, 00 FEP(2;h) = Sy ().

Proof. Our proof relies upon our earlier observation that the min-max transformation S ~(x) is the c.d.f of a
uniform distribution over [X (1), X(n)], showing that as h — oo, the distribution with c.d.f. represented by
our transformation converges to this uniform distribution. First, we claim that a bounded distribution over a
fixed region [A, B] with density proportional to the density of a normal distribution A(u1, 0% over that same
region, converges as 0 — oo to the uniform distribution over [A, B]. Relying heavily upon the proof of (Yuan,
2023)), this bounded distribution has density
exp ( - 7(;8;5)2)
g(x) =

 Jyexp (= )

The unnormalized density is §(x) = exp ( — ((73;7;‘)2), with g(x) <1 and g(z) > exp (— max((A_“);’(B_“)Z)).

o

Thus, we have
exp (_maX((A—/;);,(B—M)Q)) exp (_ (I;g)z) 1
<

B—-A <o) = ff exp (,(90;72#)2> - (B—A)exp (* maX((Aiu);’(Bi“)Q)) |

[ea
and therefore lim,_, o g(x) = ﬁ.

Without loss of generality, consider a particular sample X;, and the corresponding distribution N'(X;, h?).
Plugging in p := X;,0 := h, A := X(1), B := X, we have that the bounded distribution based on N (X, h?)
converges to the uniform distribution over [A, B]. Because samples are assumed to be i.i.d., we have FXPI(x; h)
as the c.d.f. of a distribution whose p.d.f. is the mean of these bounded distributions. The p.d.f. therefore
converges to the p.d.f of the uniform distribution, and therefore F}G‘DI(m; h) converges to the c.d.f. of the
uniform distribution, which is Sy (z).

O
Theorem 2. With FiP (x;h) as defined in Eq @, limy, o FEPY (2 h) = Fy(x).

Proof. We first show that FﬁDLnaive(aB; h) as defined in Eq converges to FN(QC) We note that the KDE
distribution represented by Eq. [3 converges to the empirical distribution as h — 0, and therefore the c.d.f.
of the KDE converges to the c.d.f. of the empirical distribution. The c.d.f. of the KDE is FEDLHEM(:L’; h),
and the c.d.f. of the empirical distribution is the quantile transformation function Fy(z). Therefore,
limy, o Fal " (s h) = Fy ().

We next address F}éDI(x; h), utilizing the above result. By construction, F}ém(a:; h) = Fy(z) for z < Xa)
and Xy < z. For [X(1), X(n)), we show that limj, o F]{,(Dl(a:; h) =limy,_,o FEDLMWG(J:; h) on this interval.

. P (X1, x)
. KDI(,..72\ _ 1; (1)
wy (z:h) = T Pr(X), X))

iy Fr(=00,7) = Ph(—00, X))
h—0 1 — Py(—00, X)) — Ph(X(n), 00)
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where the second last step uses limp, o Pn(—00, X(1)) = limp 0 Pr(X(ny,00) = 0 and continuity at these
values. L]
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A.2 Implementation details for polynomial-exponential kernel

The poly(|z|)e~!*! class of kernels is defined as the set of kernels which can be represented as
K. (z) = Ce 17! Zﬁimi, (11)
i=0

where & is the order of the polynomial and of the kernel, and C' is the normalizing constant. We use kernels
from the differentiable subclass of the poly(|z|)e~|*! kernels. Namely, for order %, we choose coefficients 3; as
Bicgo,...,k} o 1/il, so that the kernel takes the form

L NS af
K = Rl =12,... 12
R DI R (12)

To make the polynomial-exponential kernel approximate the Gaussian kernel as closely as possible, we
need to rescale the Gaussian kernel bandwidth. For a given Gaussian kernel bandwidth hy = aox, the
polynomial-exponential kernel bandwidth is calculated as follows:

0TS 3 BB (i 4 ) 02
> har (13)

i=0 j=0
hpolyexp = 3 2
(2 > Bili+ 2)!)
i=0

This rescaling factor is derived from the asymptotic mean integrated squared error (AMISE) optimal
bandwidth for density estimation. For an arbitrary kernel K, its bandwidth h is AMISE optimal if

- (IIKhII2>°-2.

(0%, )?

Obtaining the expressions on the right-hand side for both the Gaussian kernel and the polynomial-exponential
kernel, then setting them equal to each other, gives the above rescaling factor. The needed expressions for
the polynomial-exponential kernel are given in (Hofmeyr, [2019).

A.3 Additional experiments on bandwidth vs sample size

We repeat the experiments from Figure A) with CA Housing (with N = 20460), but with subsampling to
determine whether the optimal bandwidth depends on sample size. We follow the same experimental setup
as before, but in each of the 100 simulations, we use an independent subsample (without replacement) of
1000, 2000, 5000, and 10000 samples. Results are shown in Figure [I2. We see that the optimal bandwidth
stays constant rather than vanishing as the sample size increases.
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Figure 12: Root mean-squared error (rMSE) on subsampled CA housing datasets, with reduced sizes (A)

KD-integral bandwidth factor

N = 1000, (B) N = 2000, (C) N = 5000, and (D) N = 10000.
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