
Appendix of the paper: Optimal Weak to Strong Learning

A Weak to strong learning

The following theorem is essentially a restatement of Theorem 1 from the main paper.
Theorem A.1. Assume we are given access to a 𝛾-weak learner for a 0 < 𝛾 < 1/2, using base
hypothesis setH ⊆ X → {−1, 1} of VC-dimension 𝑑. Then there is a universal constant 𝛼 > 0 and
an algorithm A, such that for every 0 < 𝛿 < 1 and every distribution D over X × {−1, 1}, it holds
with probability at least 1 − 𝛿 over a set of 𝑚 samples 𝑆 ∼ D𝑚, that A on 𝑆 outputs a classifier
ℎ𝑆 = A(𝑆) ∈ X → {−1, 1} with

LD (ℎ𝑆) ≤ 𝛼 · 𝑑𝛾
−2 + ln(1/𝛿)

𝑚
.

Theorem 1 of the main paper follows by setting 𝜀 = LD (ℎ𝑆) and solving for 𝑚 and letting the
label in the distribution D be 𝑐(𝑥) for every 𝑥 ∈ X. The algorithm that obtains the guarantees has
been described in the main paper. We thus only present (again) the two algorithms (Algorithm 1
and Algorithm 2), as well as AdaBoost∗𝜈 (Algorithm A.1) by Rätsch et al. [20] that achieves almost
optimal margins and is used in Algorithm 2.

In the remainder of the section, we prove that Algorithm 2 has the guarantees of Theorem A.1.
The proof follows that of Hanneke [13] pretty much uneventfully, although carefully using that a
generalization error of 1/200 suffices. For simplicity, we assume 𝑚 is a power of 4. This can easily
be ensured by rounding 𝑚 down to the nearest power of 4 and ignoring all excess samples. This only
affects the generalization bound by a constant factor. With 𝑚 being a power of 4 we can observe from
Algorithm 1 that the cardinalities of all recursively generated sets 𝐴0 (which are the input to the next
level of the recursion) are also powers of 4. Hence we can ignore all roundings.

A.1 Proof of Optimal Strong Learning

Let C ⊆ X → {−1, 1} be a concept class and assume there is a 𝛾-weak learner for C using hypothesis
set H of VC-dimension 𝑑. Let A∗𝜈 be an algorithm that on a sample 𝑆 consistent with a concept
𝑐 ∈ C, computes a voting classifier 𝑓 ∈ Δ(H) with 𝑦 𝑓 (𝑥) ≥ 𝛾/2 for all (𝑥, 𝑦) ∈ 𝑆 and returns as its
output hypothesis 𝑔(𝑥) = sign( 𝑓 (𝑥)). We could e.g. let A∗𝜈 be AdaBoost∗𝜈 . For a sample 𝑆, we use
the notationM𝛾 (𝑆) to denote the set of hypotheses 𝑔(𝑥) = sign( 𝑓 (𝑥)) for an 𝑓 ∈ Δ(H) satisfying
𝑦 𝑓 (𝑥) ≥ 𝛾 for all (𝑥, 𝑦) ∈ 𝑆. The setM𝛾 (𝑆) is thus the set of all voting classifiers obtained by taking
the sign of a voter that has margins at least 𝛾 on all samples in 𝑆. By definition, the output hypothesis
𝑔 of A∗𝜈 on a set of samples 𝑆 always lies inM𝛾/2 (𝑆).
Let 𝑐 ∈ C be an unknown concept in C and let D be an arbitrary distribution over X. Let
𝑆 = {(𝑥𝑖 , 𝑐(𝑥𝑖))}𝑚𝑖=1 ∈ (X × {−1, 1})𝑚 be a set of 𝑚 samples with each 𝑥𝑖 an i.i.d. sample from D.
Let 𝑆1:𝑘 denote the first 𝑘 samples of 𝑆. Let 𝑐′ ≥ 4 be a constant to be determined later. We will
prove by induction that for every 𝑚′ ∈ ℕ that is a power of 4, for every 𝛿′ ∈ (0, 1), and every finite
sequence 𝐵′ of samples in X × {−1, 1} with 𝑦𝑖 = 𝑐(𝑥𝑖) for each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵′, with probability at
least 1 − 𝛿′, the classifier

ℎ̂𝑚′,𝐵′ = sign ©­«
∑︁

𝐶𝑖 ∈ Sub-Sample(𝑆1:𝑚′ ,𝐵′)
A∗𝜈 (𝐶𝑖)ª®¬

satisfies

LD ( ℎ̂𝑚′,𝐵′) ≤
𝑐′

𝑚′

(
𝑑𝛾−2 + ln(1/𝛿′)

)
. (3)

The conclusion of Theorem A.1 follows by letting 𝐵′ = ∅ and 𝑚′ = 𝑚 (and recalling that we assume
𝑚 is a power of 4). Thus what remains is to give the inductive proof.

As the base case, consider any 𝑚′ ∈ ℕ with 𝑚′ ≤ 𝑐′ and 𝑚′ a power of 4. In this case, the bound
𝑐′(𝑑𝛾−2 + ln(1/𝛿′))/𝑚′ is at least 𝑑𝛾−2 ≥ 1 and LD ( ℎ̂𝑚′,𝐵′) ≤ 1 obviously holds.

For the inductive step, take as inductive hypothesis that, for some 𝑚 ∈ ℕ with 𝑚 > 𝑐′ and 𝑚 a power
of 4, it holds for all 𝑚′ ∈ ℕ with 𝑚′ < 𝑚 and 𝑚′ a power of 4, that for every 𝛿′ ∈ (0, 1) and every
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Algorithm A.1: AdaBoost∗𝜈 [20]
Input: training set 𝑆 = {(𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚)}

number of rounds 𝑇
desired accuracy 𝜈

Result: An ensemble hypothesis 𝐻out with almost optimal margins
1 D (1) ←

(
1
𝑚
, . . . 1

𝑚

)
// uniform initialization of D

2 for 𝑡 ∈ {1, . . . , 𝑇} do
3 ℎ𝑡 ←WL(D (𝑡) , 𝑆) // invoke weak learner

4 𝛾𝑡 ←
∑𝑚

𝑖=1D
(𝑡)
𝑖

𝑦𝑖ℎ𝑡 (𝑥𝑖) // average margin of ℎ𝑡

5 if |𝛾𝑡 | = 1 then
/* ℎ𝑡 is consistent ⇒ taking only ℎ𝑡 as ‘ensemble’ maximizes the margin */

6 𝑤1 ← sign(𝛾𝑡 ), ℎ1 ← ℎ𝑡 , 𝑇 ← 1
7 break
8 𝛾min

𝑡 ← min𝑟 ∈[𝑡 ] 𝛾𝑟 , // update assumed advantage
9 𝜌min

𝑡 ← 𝛾min
𝑡 − 𝜈

10 𝑤𝑡 =
1
2 ln 1+𝛾𝑡

1−𝛾𝑡 −
1
2 ln 1+𝜌𝑡

1−𝜌𝑡 // weight for the current hypothesis

11 for 𝑖 ∈ {1, . . . , 𝑚} do

12 D (𝑡+1)
𝑖

← D (𝑡 )
𝑖

exp
(
−𝑤𝑡 𝑦𝑖ℎ𝑡 (𝑥𝑖)

)∑𝑚
𝑗=1 D

(𝑡 )
𝑖

exp
(
−𝑤𝑡 𝑦 𝑗ℎ𝑡 (𝑥 𝑗 )

) // update D

13 return 𝑓out (𝑥) = 1∑𝑇
𝑖=1 |𝑤𝑖 |

∑𝑇
𝑡=1 𝑤𝑡ℎ𝑡 (𝑥) // (normalized) weighted majority vote

finite sequence 𝐵′ of samples in X × {−1, 1} with 𝑦𝑖 = 𝑐(𝑥𝑖) for each (𝑥𝑖 , 𝑦𝑖) ∈ 𝐵′, with probability
at least 1 − 𝛿′, Eq. (3) holds. We need to prove that the inductive hypothesis also holds for 𝑚′ = 𝑚.

Fix a 𝛿 ∈ (0, 1) and any finite sequence 𝐵 of points in X × {−1, 1} with 𝑦𝑖 = 𝑐(𝑥𝑖) for each
(𝑥𝑖 , 𝑦𝑖) in 𝐵. Since 𝑚 > 𝑐′ ≥ 4, we have that Sub-Sample(𝑆1:𝑚, 𝐵) returns in Step 5 of Algo-
rithm 1. Let 𝐴0, 𝐴1, 𝐴2, 𝐴3 be as defined in Step 4 of Algorithm 1. Also define 𝐵1 = 𝐴2 ∪ 𝐴3 ∪ 𝐵,
𝐵2 = 𝐴1 ∪ 𝐴3 ∪ 𝐵, 𝐵3 = 𝐴1 ∪ 𝐴2 ∪ 𝐵, and for each 𝑖 ∈ {1, 2, 3}, denote

ℎ𝑖 = sign ©­«
∑︁

𝐶𝑖 ∈ Sub-Sample(𝐴0 ,𝐵𝑖)
A∗𝜈 (𝐶𝑖)

ª®¬ .
Note that the ℎ𝑖’s correspond to the majority vote classifiers trained on the sub-samples of the
three recursive calls in Algorithm 1. Moreover, notice that ℎ𝑖 = ℎ̂𝑚/4,𝐵𝑖

. Therefore, the inductive
hypothesis may be used on ℎ1, ℎ2, ℎ3 to conclude that for each 𝑖 ∈ {1, 2, 3}, there is an event 𝐸𝑖 of
probability at least 1 − 𝛿/9, on which

LD (ℎ𝑖) ≤
𝑐′

|𝐴0 |

(
𝑑𝛾−2 + ln(9/𝛿)

)
≤ 4𝑐′

𝑚

(
𝑑𝛾−2 + ln(1/𝛿) + 3

)
≤ 12𝑐′

𝑚

(
𝑑𝛾−2 + ln(1/𝛿)

)
. (4)

Here we chose the probability 1 − 𝛿/9 in order to perform a union bound in the end of the induction
step which is possible since the inductive hypothesis holds for every 𝛿′. Next, define Err(ℎ𝑖)
as the set of points 𝑥 ∈ X for which ℎ𝑖 (𝑥) ≠ 𝑐(𝑥). Now fix an 𝑖 ∈ {1, 2, 3} and denote by
{(𝑍𝑖,1, 𝑐(𝑍𝑖,1)), . . . , (𝑍𝑖,𝑁𝑖

, 𝑐(𝑍𝑖,𝑁𝑖
)} = 𝐴𝑖 ∩ (Err(ℎ𝑖) × {−1, 1}), where 𝑁𝑖 = |𝐴𝑖 ∩ (Err(ℎ𝑖) ×

{−1, 1}) |. Said in words, the set {(𝑍𝑖, 𝑗 , 𝑐(𝑍𝑖, 𝑗 )}𝑁𝑖

𝑗=1 is the subset of samples in 𝐴𝑖 on which ℎ𝑖 makes
a mistake. Notice that ℎ𝑖 is not trained on any samples from 𝐴𝑖 (𝐵𝑖 excludes 𝐴𝑖), hence ℎ𝑖 and 𝐴𝑖 are
independent. Therefore, given ℎ𝑖 and 𝑁𝑖 , the samples 𝑍𝑖,1, . . . , 𝑍𝑖,𝑁𝑖

are conditionally independent
samples with distribution D(· | Err(ℎ𝑖)) (provided 𝑁𝑖 > 0). From Theorem 6 in the main paper, we
get that there is an event 𝐸 ′

𝑖
of probability at least 1 − 𝛿/9, such that if 𝑁𝑖 ≥ 𝑐′′

(
𝑑𝛾−2 + ln(1/𝛿)

)
,

then every ℎ ∈ M𝛾/2
({
(𝑍𝑖, 𝑗 , 𝑐(𝑍𝑖, 𝑗 ))

}𝑁𝑖

𝑗=1
)

satisfies

LD(· |Err(ℎ𝑖)) (ℎ) ≤ 1
200 .

Note that this is a key step where our proof differs from Hanneke’s original proof since we exploit that
a bound of 1

200 on the generalization error suffices for the rest of the proof. We continue by observing
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that for each 𝑗 ∈ {1, 2, 3} \ {𝑖}, the set 𝐵 𝑗 contains 𝐴𝑖 and this remains the case in all recursive
calls of Sub-Sample(𝐴0, 𝐵𝑖). Thus for {𝐶1, . . . , 𝐶𝑘} = Sub-Sample(𝐴0, 𝐵 𝑗 ), it holds for all 𝐶𝑘 that
A∗𝜈 (𝐶𝑘) ∈ M𝛾/2 (𝐵 𝑗 ) ⇒ A∗𝜈 (𝐶𝑘) ∈ M𝛾/2 (𝐴0) ⇒ A∗𝜈 (𝐶𝑘) ∈ M𝛾/2

(
{(𝑍𝑖, 𝑗 , 𝑐(𝑍𝑖, 𝑗 ))}𝑁𝑖

𝑗=1
)
. Thus on

the event 𝐸 ′
𝑖

defined above, if 𝑁𝑖 > 𝑐′′
(
𝑑𝛾−2 + ln(1/𝛿)

)
, then it holds for all 𝑗 ∈ {1, 2, 3} \ {𝑖} and

all 𝐶𝑘 ∈ Sub-Sample(𝐴0, 𝐵 𝑗 ), that the hypothesis ℎ = A∗𝜈 (𝐶𝑘) satisfies

Pr
𝑥∼D

[
ℎ𝑖 (𝑥) ≠ 𝑐(𝑥) ∧ ℎ(𝑥) ≠ 𝑐(𝑥)

]
= LD (ℎ𝑖) · LD(· |Err(ℎ𝑖)) (ℎ)

≤ 1
200 LD (ℎ𝑖).

Assume now that LD (ℎ𝑖) ≥
(
(10/7)𝑐′′(𝑑𝛾−2 + ln(1/𝛿)) + 23 ln(9/𝛿)

)
/(𝑚/4) ≥ 23 ln(9/𝛿)/|𝐴𝑖 |.

Using that ℎ𝑖 and 𝐴𝑖 are independent, it follows by a Chernoff bound that

Pr
[
𝑁𝑖 ≥ (7/10)LD (ℎ𝑖) |𝐴𝑖 |

]
≥ 1 − exp

(
−(3/10)2LD (ℎ𝑖) |𝐴𝑖 |/2

)
≥ 1 − exp

(
−(3/10)2 · 23 ln(9/𝛿)/2

)
> 1 − 𝛿/9.

Thus there is an event 𝐸 ′′
𝑖

of probability at least 1 − 𝛿/9, on which, if

LD (ℎ𝑖) ≥
(10/7)𝑐′′(𝑑𝛾−2 + ln(1/𝛿)) + 23 ln(9/𝛿)

𝑚/4

then

𝑁𝑖 ≥ (7/10)LD (ℎ𝑖) |𝐴𝑖 |
= (7/10)LD (ℎ𝑖) 𝑚/4
≥ 𝑐′′

(
𝑑𝛾−2 + ln(1/𝛿)

)
.

Combining it all, we have that on the event 𝐸𝑖 ∩ 𝐸 ′
𝑖
∩ 𝐸 ′′

𝑖
, which occurs with probability at least

1 − 𝛿/3, if LD (ℎ𝑖) ≥
(
(10/7)𝑐′′(𝑑𝛾−2 + ln(1/𝛿)) + 23 ln(9/𝛿)

)
/(𝑚/4), then every ℎ = A∗𝜈 (𝐶𝑘) for

a 𝐶𝑘 ∈ Sub-Sample(𝐴0, 𝐵 𝑗 ) with 𝑗 ≠ 𝑖 has:

Pr
𝑥∼D

[
ℎ𝑖 (𝑥) ≠ 𝑐(𝑥) ∧ ℎ(𝑥) ≠ 𝑐(𝑥)

]
≤ 1

200LD (ℎ𝑖)

By Eq. (4), this is at most

Pr
𝑥∼D

[
ℎ𝑖 (𝑥) ≠ 𝑐(𝑥) ∧ ℎ(𝑥) ≠ 𝑐(𝑥)

]
≤ 1

200
· 12𝑐′

𝑚

(
𝑑𝛾−2 + ln(1/𝛿)

)
≤ 𝑐′

16𝑚

(
𝑑𝛾−2 + ln(1/𝛿)

)
.

On the other hand, if LD (ℎ𝑖) <
(
𝑐′′(𝑑𝛾−2 + ln(1/𝛿)) + 23 ln(9/𝛿)

)
/(𝑚/4), then

Pr
𝑥∼D

[
ℎ𝑖 (𝑥) ≠ 𝑐(𝑥) ∧ ℎ(𝑥) ≠ 𝑐(𝑥)

]
≤ LD (ℎ𝑖)

≤
(
𝑐′′(𝑑𝛾−2 + ln(1/𝛿)) + 23 ln(9/𝛿)

)
/(𝑚/4)

≤ 4𝑐′′(𝑑𝛾−2 + 24 ln(1/𝛿) + 23 ln 9)/𝑚

Using that 23 · ln 9 < 51 ≤ 51𝑑𝛾−2, the above is at most 204𝑐′′(𝑑𝛾−2 + ln(1/𝛿))/𝑚. Fixing the
constant 𝑐′ to 𝑐′ ≥ (16 · 204)𝑐′′, this is at most

𝑐′

16𝑚

(
𝑑𝛾−2 + ln(1/𝛿)

)
.

We conclude that on the event
⋂

𝑖=1,2,3{𝐸𝑖 ∩ 𝐸 ′
𝑖
∩ 𝐸 ′′

𝑖
}, which occurs with probability at least 1 − 𝛿

by a union bound, it holds for all 𝑖 and all 𝐶𝑘 ∈ Sub-Sample(𝐴0, 𝐵 𝑗 ) with 𝑗 ≠ 𝑖 that the hypothesis
ℎ = A∗𝜈 (𝐶𝑘) satisfies:

Pr
𝑥∼D

[
ℎ𝑖 (𝑥) ≠ 𝑐(𝑥) ∧ ℎ(𝑥) ≠ 𝑐(𝑥)

]
≤ 𝑐′

16𝑚

(
𝑑𝛾−2 + ln(1/𝛿)

)
.
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Now consider an 𝑥 on which ℎ̂𝑚,𝐵 errs. On such an 𝑥, the majority among the classifiers⋃
𝐶𝑖 ∈ Sub-Sample(𝑆1:𝑚 ,𝐵)

{
A∗𝜈 (𝐶𝑖)

}
=

⋃
𝑖=1,2,3

⋃
𝐶𝑘 ∈ Sub-Sample(𝑆1:𝑚/4 ,𝐵𝑖)

{
A∗𝜈 (𝐶𝑘)

}
errs. For the majority to err, there must be an 𝑖 ∈ {1, 2, 3} for which the majority of⋃

𝐶𝑘 ∈ Sub-Sample(𝑆1:𝑚/4 ,𝐵𝑖)

{
A∗𝜈 (𝐶𝑘)

}
errs. This is equivalent to ℎ𝑖 (𝑥) ≠ 𝑐(𝑥). Furthermore, even when all of the classifiers in⋃

𝐶𝑘 ∈ Sub-Sample(𝑆1:𝑚/4 ,𝐵𝑖)

{
A∗𝜈 (𝐶𝑘)

}
err, there still must be another (1/6)-fraction of all the classifiers⋃

𝑖=1,2,3

⋃
𝐶𝑘 ∈ Sub-Sample(𝑆1:𝑚/4 ,𝐵𝑖)

{
A∗𝜈 (𝐶𝑘)

}
that err. This follows since each of the three recursive calls in Sub-Sample generated equally many
classifiers/samples. It follows that if we pick a uniform random 𝑖 ∈ {1, 2, 3} and a uniform random
hypothesis ℎ in ⋃

𝑗∈{1,2,3}\{𝑖 }

⋃
𝐶𝑘 ∈ Sub-Sample(𝑆1:𝑚/4 ,𝐵 𝑗 )

{
A∗𝜈 (𝐶𝑘)

}
then with probability at least (1/3) (1/6) (3/2) = 1/12, we have that ℎ𝑖 (𝑥) ≠ 𝑐(𝑥) ∧ ℎ(𝑥) ≠ 𝑐(𝑥). It
follows by linearity of expectation that on the event

⋂
𝑖=1,2,3{𝐸𝑖 ∩ 𝐸 ′

𝑖
∩ 𝐸 ′′

𝑖
}, we have:

LD ( ℎ̂𝑚,𝐵) ≤ 12 · 𝑐′

16𝑚

(
𝑑𝛾−2 + ln(1/𝛿)

)
<

𝑐′

𝑚

(
𝑑𝛾−2 + ln(1/𝛿)

)
.

This completes the inductive proof and shows Theorem A.1.

B Lower bound

In this section, we prove the following lower bound which directly implies Theorem 2 from the main
paper:
Theorem B.1. There is a universal constant 𝛼 > 0 such that for all integers 𝑑 ∈ ℕ and every
2−𝑑 < 𝛾 < 1/80, there is a finite set X, a concept class C ⊂ X → {−1, 1} and a hypothesis set
H ⊆ X → {−1, 1} of VC-dimension at most 𝑑, such that for every integer 𝑚 ∈ ℕ and 0 < 𝛿 < 1/3,
there is a distribution D over X such that the following holds:

1. For every 𝑐 ∈ C and every distribution D ′ over X, there is an ℎ ∈ H with

Pr
𝑥∼D′

[
ℎ(𝑥) ≠ 𝑐(𝑥)

]
≤ 1/2 − 𝛾.

2. For any algorithmA, there is a concept 𝑐 ∈ C such that with probability at least 𝛿 over a set
of 𝑚 samples 𝑆 ∼ D𝑚, the classifier A(𝑆) ∈ X → {−1, 1} produced by A on 𝑆 and 𝑐(𝑆)
must have

LD (A(𝑆)) ≥ 𝛼 · 𝑑𝛾
−2 + ln(1/𝛿)

𝑚
.

Theorem B.1 immediately implies Theorem 2 by solving the equation in the second statement for
𝜀 = LD (A(𝑆)).
The proof of the term ln(1/𝛿)/𝑚 in the lower bound follows from previous work. In particular, we
could let C = H and invoke the tight lower bounds for PAC-learning in the realizable setting [5].
Thus, we focus on 𝛿 = 1/3 and only need to prove that the loss of A(𝑆) is at least 𝛼𝑑𝛾−2/𝑚 with
probability 1/3 over 𝑆.

For the proof, we make use of the following lemma by Grønlund et al. [9] to construct the ‘hard’
hypothesis setH and concept class C:
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Lemma B.1 (Grønlund et al. [9]). For every 𝛾 ∈ (0, 1/40), 𝛿 ∈ (0, 1) and integers 𝑘 ≤ 𝑢, there
exists a distribution 𝜇 = 𝜇(𝑢, 𝑑, 𝛾, 𝛿) over a hypothesis setH ⊂ X → {−1, 1}, where X is a set of
size 𝑢, such that the following holds.

1. For allH ∈ supp(𝜇), we have |H | = 𝑁; and

2. For every labeling ℓ ∈ {−1, 1}𝑢, if no more than 𝑘 points 𝑥 ∈ X satisfy ℓ(𝑥) = −1, then

Pr
H∼𝜇

[
∃ 𝑓 ∈ Δ(H) : ∀𝑥 ∈ X : ℓ(𝑥) 𝑓 (𝑥) ≥ 𝛾

]
≥ 1 − 𝛿.

where 𝑁 = Θ
(
𝛾−2 ln 𝑢 ln(𝛾−2 ln 𝑢𝛿−1)𝑒Θ(𝛾2𝑘) ) .

To prove Theorem B.1 for a given 𝛾 ∈ (2−𝑑 , 1/80) and 𝑚, 𝑑 ∈ ℕ, let 𝑢 = 𝑘 for a 𝑢 to be determined.
Invoke Lemma B.1 with 𝛿 = 1/2 and 𝛾′ = 2𝛾 to conclude that there exists a hypothesis setH such
that among all labelings ℓ ∈ {−1, 1}𝑢, at least half of them satisfy:

∃ 𝑓 ∈ Δ(H) : ∀𝑥 ∈X : ℓ(𝑥) 𝑓 (𝑥) ≥ 2𝛾.

Moreover, we have 𝑁 = |H | = Θ
(
𝛾−2 ln 𝑢 ln(𝛾−2 ln 𝑢)𝑒Θ(𝛾2𝑢) ) . Let the concept class C be the set of

such labelings.

For the given VC-dimension 𝑑, we need to bound the VC-dimension ofH by 𝑑. For this, note that
the VC-dimension is bounded by lg |H | = Θ(𝛾2𝑢) + lg(𝛾−2 lg 𝑢)). Using that 𝛾 ≥ 2−𝑑 , this is at most
Θ(𝛾2𝑢 + 𝑑 + lg lg 𝑢). We thus choose 𝑢 = Θ(𝛾−2𝑑) which implies the claimed VC-dimension ofH .

Next, we have to argue that any concept 𝑐 ∈ C can be 𝛾-weakly learned fromH . That is, the first
statement of Theorem B.1 holds forH , C. To see this, we must show that for every distribution D
over X, there is a hypothesis ℎ ∈ H such that Pr𝑥∼D [ℎ(𝑥) = 𝑐(𝑥)] ≥ 1/2 + 𝛾. To argue that this is
indeed the case, let 𝑓 ∈ Δ(H) satisfy ∀𝑥 ∈X : 𝑐(𝑥) 𝑓 (𝑥) ≥ 2𝛾. Such an 𝑓 exists by definition of C.
Then, 𝔼𝑥∼D [𝑐(𝑥) 𝑓 (𝑥)] ≥ 2𝛾. Since 𝑓 (𝑥) is a convex combination of hypotheses fromH , it follows
that there is a hypothesis ℎ ∈ H also satisfying 𝔼𝑥∼D [𝑐(𝑥)ℎ(𝑥)] ≥ 2𝛾. But

𝔼
𝑥∼D
[𝑐(𝑥)ℎ(𝑥)] =

∑︁
𝑥∈X
D(𝑥)𝑐(𝑥)ℎ(𝑥)

=
∑︁

𝑥∈X : 𝑐 (𝑥)=ℎ (𝑥)
D(𝑥) −

∑︁
𝑥∈X : 𝑐 (𝑥)≠ℎ (𝑥)

D(𝑥)

= Pr
𝑥∼D
[𝑐(𝑥) = ℎ(𝑥)] − Pr

𝑥∼D
[𝑐(𝑥) ≠ ℎ(𝑥)]

= Pr
𝑥∼D
[𝑐(𝑥) = ℎ(𝑥)] − (1 − Pr

𝑥∼D
[𝑐(𝑥) = ℎ(𝑥)])

= 2 Pr
𝑥∼D
[𝑐(𝑥) = ℎ(𝑥)] − 1.

Hence, 2 · Pr𝑥∼D [𝑐(𝑥) = ℎ(𝑥)] − 1 ≥ 2𝛾 =⇒ Pr𝑥∼D [𝑐(𝑥) = ℎ(𝑥)] ≥ 1/2 + 𝛾 as claimed.

We have thus constructedH and C satisfying the first statement of Theorem B.1, where C contains
at least half of all possible labelings of the points X = {𝑥1, . . . , 𝑥𝑢} with 𝑢 = Θ(𝛾−2𝑑). For the
remainder of the proof, we assume 𝑢 is at least some large constant, which is true for 𝛾 small enough.

What remains is to establish the second statement of Theorem B.1. For this, we first define the hard
distribution D over X. The distribution D returns the point 𝑥1 with probability 1 − (𝑢 − 1)/4𝑚 and
with the remaining probability (𝑢 − 1)/4𝑚 it returns a uniform random sample 𝑥𝑖 among 𝑥2, . . . , 𝑥𝑢.
Also, let 𝑐 be a uniform random concept drawn from C.

Let A be any (possibly randomized) learning algorithm that on a set of samples 𝑆 from X and a
labeling ℓ(𝑆) of 𝑆 that is consistent with at least one concept 𝑐 ∈ C (i.e. ℓ(𝑆) = 𝑐(𝑆)), outputs
a hypothesis ℎ𝑆,ℓ (𝑆) in X → {−1, 1}. The algorithm A is not constrained to output a hypothesis
from Δ(H) orH , but instead may output any desirable hypothesis in X → {−1, 1}, using the full
knowledge of C, ℓ(𝑆),H and the promise that 𝑐 ∈ C. Our goal is to show that

𝔼
𝑐∼C

[
Pr

𝑆∼D𝑚

[
Pr
𝑥∼D
[ℎ𝑆,𝑐 (𝑆) (𝑥) ≠ 𝑐(𝑥)] ≥ 𝛼′

𝑑𝛾−2

𝑚

] ]
≥ 1/3 (5)
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where 𝑐 ∼ C denotes the uniform random choice of 𝑐. Notice that if this is the case, there must exist
a concept 𝑐 for which

Pr
𝑆∼D𝑚

[
Pr
𝑥∼D
[ℎ𝑆,𝑐 (𝑆) (𝑥) ≠ 𝑐(𝑥)] ≥ 𝛼′

𝑑𝛾−2

𝑚

]
≥ 1/3.

To establish Eq. (5), we start by observing that for any randomized algorithm A, there is a determin-
istic algorithm A ′ obtaining a smaller than or equal value of the left hand side of Eq. (5) (by Yao’s
principle). Thus, we assume from here on that A is deterministic.

The main idea in our proof is to first show that conditioned on the set 𝑆 and label 𝑐(𝑆), the concept 𝑐
is still largely unknown. We formally measure this by arguing that the binary Shannon entropy of 𝑐
is large conditioned on 𝑆 and 𝑐(𝑆). Next, we argue that if a learning algorithm often manages to
produce an accurate hypothesis from 𝑆 and 𝑐(𝑆), then that reveals a lot of information about 𝑐, i.e.
the entropy of 𝑐 is small conditioned on 𝑆 and 𝑐(𝑆). This contradicts the first statement and thus the
algorithm cannot produce an accurate hypothesis. We now proceed with the two steps.

Large Conditional Entropy. Consider the binary Shannon entropy of the uniform random 𝑐
conditioned on 𝑆 and 𝑐(𝑆), denoted 𝐻 (𝑐 | 𝑆, 𝑐(𝑆)). We know that 𝐻 (𝑐) = lg |C| ≥ lg(2𝑢/2) =
𝑢 − 1. The random variable 𝑐 is independent of 𝑆, hence 𝐻 (𝑐 | 𝑆) = 𝐻 (𝑐). We therefore have
𝐻 (𝑐 | 𝑆, 𝑐(𝑆)) ≥ 𝐻 (𝑐 | 𝑆) − 𝐻 (𝑐(𝑆) | 𝑆) = 𝑢 − 1 − 𝐻 (𝑐(𝑆) | 𝑆). For a fixed 𝑠 ∈ X𝑚, let
𝑝𝑠 = Pr𝑆∼D𝑚 [𝑆 = 𝑠]. Then 𝐻 (𝑐(𝑆) | 𝑆) = ∑

𝑠∈X𝑚 𝑝𝑠𝐻 (𝑐(𝑆) | 𝑆 = 𝑠) ≤ ∑
𝑠∈X𝑚 𝑝𝑠 |𝑠 |, where the

last step follows from the fact that, conditioned on 𝑠, the labeling 𝑐(𝑠) consists of |𝑠 | signs. Note that
the size of the set |𝑠 | is possibly smaller than 𝑚 due to repetitions.

Now notice that Pr[|𝑆 | > 𝑢/3] is exponentially small in 𝑢 since each of the 𝑚 samples from
D is among 𝑥2, . . . , 𝑥𝑢 with probability only (𝑢 − 1)/(4𝑚). Therefore, we get 𝐻 (𝑐(𝑆) | 𝑆) ≤
𝑢/3 + exp(−Ω(𝑢))𝑢 ≤ 𝑢/2 − 1. It follows that

𝐻 (𝑐 | 𝑆, 𝑐(𝑆)) ≥ 𝑢 − 1 − (𝑢/2 − 1) = 𝑢/2. (6)

Accuracy Implies Low Entropy. Now assume that ℎ𝑆,𝑐 (𝑆) is such that Pr𝑥∼D [ℎ𝑆,𝑐 (𝑆) ≠ 𝑐(𝑥)] <
𝛼′𝑑𝛾−2/𝑚 for a sufficiently small constant 𝛼′. Any point 𝑥𝑖 where 𝑐(𝑥𝑖) disagrees with ℎ𝑆,𝑐 (𝑆) (𝑥𝑖)
adds at least 1/(4𝑚) to Pr𝑥∼D [ℎ𝑆,𝑐 (𝑆) ≠ 𝑐(𝑥)] (the point 𝑥1 would add more), hence ℎ𝑆,𝑐 (𝑆) makes a
mistake on at most 𝛼′𝑑𝛾−2/𝑚 · (4𝑚) = 4𝛼′𝑑𝛾−2 points. Recalling that 𝑢 = Θ(𝑑𝛾−2), we get that for
𝛼′ small enough, this is less than 𝑢/100. Thus, conditioned on Pr𝑥∼D [ℎ𝑆,𝑐 (𝑆) ≠ 𝑐(𝑥)] < 𝛼′𝑑𝛾−2/𝑚
and ℎ𝑆,𝑐 (𝑆) , we get that the entropy of the concept 𝑐 is no more than lg

(∑𝑢/100
𝑖=0

(𝑢
𝑖

) )
since 𝑐 is within

a Hamming ball of radius 𝑢/100 from ℎ𝑆,𝑐 (𝑆) . Now
∑𝑢/100

𝑖=0
(𝑢
𝑖

)
≤ 2𝐻𝑏 (1/100)𝑢, where 𝐻𝑏 is the binary

entropy of a Bernoulli random variable with success probability 1/100. Numerical calculations give
𝐻𝑏 (1/100) = (1/100) lg2 (100) + (99/100) lg2 (100/99) < 0.09. Thus

𝐻

(
𝑐
 ℎ𝑆,𝑐 (𝑆) , Pr

𝑥∼D
[ℎ𝑆,𝑐 (𝑆) ≠ 𝑐(𝑥)] < 𝛼′𝑑𝛾−2/𝑚

)
≤ 0.09𝑢. (7)

Now let 𝑋𝑆,𝑐 be an indicator random variable for the event that Pr𝑥∼D [ℎ𝑆,𝑐 (𝑆) ≠ 𝑐(𝑥)] < 𝛼′𝑑𝛾−2/𝑚.
Then 𝐻 (𝑐 | 𝑆, 𝑐(𝑆)) ≤ 𝐻 (𝑐 | 𝑆, 𝑐(𝑆), ℎ𝑆,𝑐 (𝑆) , 𝑋𝑆,𝑐) + 𝐻 (𝑋𝑆,𝑐). Here we remark that we add
ℎ𝑆,𝑐 (𝑆) in the conditioning for free since it depends only on 𝑆 and 𝑐(𝑆). Adding 𝑋𝑆,𝑐 costs at
most its entropy which satisfies 𝐻 (𝑋𝑆,𝑐) ≤ 1. Since removing variables that we condition on
only increases entropy, we get 𝐻 (𝑐 | 𝑆, 𝑐(𝑆)) ≤ 𝐻 (𝑐 | ℎ𝑆,𝑐 (𝑆) , 𝑋𝑆,𝑐) + 1. Now observe that
𝐻 (𝑐 | ℎ𝑆,𝑐 (𝑆) , 𝑋𝑆,𝑐) = Pr[𝑋𝑆,𝑐 = 1]𝐻 (𝑐 | ℎ𝑆,𝑐 (𝑆) , 𝑋𝑆,𝑐 = 1) +Pr[𝑋𝑆,𝑐 = 0]𝐻 (𝑐 | ℎ𝑆,𝑐 (𝑆) , 𝑋𝑆,𝑐 = 0).
The latter entropy we simply bound by 𝑢 and the former is bounded by 0.09𝑢 by Eq. (7). Thus
𝐻 (𝑐 | 𝑆, 𝑐(𝑆)) ≤ 1 + Pr[𝑋𝑆,𝑐 = 1]0.09𝑢 + (1 − Pr[𝑋𝑆,𝑐 = 1])𝑢.

Combining the Bounds. Combining the above with Eq. (6) we conclude that

1 + Pr[𝑋𝑆,𝑐 = 1]0.09𝑢 + (1 − Pr[𝑋𝑆,𝑐 = 1])𝑢 ≥ 𝑢/2.

It follows that Pr[𝑋𝑆,𝑐 = 1] ≤ 2/3. This completes the proof since

𝔼
𝑐∼C

[
Pr

𝑆∼D𝑚

[
Pr
𝑥∼D
[ℎ𝑆,𝑐 (𝑆) (𝑥) ≠ 𝑐(𝑥)] ≥ 𝛼′

𝑑𝛾−2

𝑚

] ]
= 𝔼

𝑐∼C

[
𝔼

𝑆∼D𝑚
[(1 − 𝑋𝑆,𝑐)]

]
= 1 − Pr[𝑋𝑆,𝑐 = 1]

18



and thus

𝔼
𝑐∼C

[
Pr

𝑆∼D𝑚

[
Pr
𝑥∼D
[ℎ𝑆,𝑐 (𝑆) (𝑥) ≠ 𝑐(𝑥)] ≥ 𝛼′

𝑑𝛾−2

𝑚

] ]
≥ 1

3
.

This finishes the proof of Theorem B.1.

C Proofs for the margin-based generalization bound for voting classifiers

This section covers the proofs of all lemmas needed to show the generalization bound for voting
classifiers with large margins (Theorem 4 in the main paper) that did not fit into the main text.

C.1 Proofs of key properties of D 𝑓,𝑡

First, we present the proofs of Lemma 1, 2, and 3 from the main paper covering different properties
of the distribution D 𝑓,𝑡 .
Restatement of Lemma 1. For any 𝑥 ∈ X, any 𝑓 ∈ Δ(H) and any 𝜇 > 0:

Pr
𝑔∼D 𝑓,𝑡

[
| 𝑓 (𝑥) − 𝑔(𝑥) | ≥ 𝜇

]
< 5 exp(−𝜇2𝑡/32).

Proof. This lemma follows using standard concentration inequalities: In the first step of sampling
𝑔 from D 𝑓,𝑡 , where we draw 𝑡 i.i.d. hypotheses, it follows from Hoeffding’s inequality that the
hypothesis 𝑔′(𝑥) = (1/𝑡)∑𝑡

𝑖=1 ℎ
′
𝑖
(𝑥) satisfies

Pr
𝑔′

[
| 𝑓 (𝑥) − 𝑔′(𝑥) | ≥ 𝜇/2

]
≤ 2 exp

(
−2(𝜇/2)2𝑡2/(4𝑡)

)
= 2 exp(−𝜇2𝑡/8).

In the second step, we first get by a Chernoff bound that Pr[𝑡 ′ < 𝑡/4] < exp(−𝑡/16). Secondly, let us
condition on any fixed value of 𝑡 ′ that is at least 𝑡/4. Then ℎ1, . . . , ℎ𝑡′ is a uniform sample without
replacement from ℎ′1, . . . , ℎ

′
𝑡 . It follows by a Hoeffding bound without replacement that

Pr
[
|𝑔(𝑥) − 𝑔′(𝑥) | ≥ 𝜇/2

]
≤ 2 exp

(
− 2(𝜇/2)2 (𝑡 ′)2/(4𝑡 ′)

)
< 2 exp(−𝜇2𝑡/32).

In total, we conclude that

Pr
[
| 𝑓 (𝑥) − 𝑔(𝑥) | ≥ 𝜇

]
< 2 exp(−𝜇2𝑡/8) + exp(−𝑡/16) + 2 exp(−𝜇2𝑡/32) < 5 exp(−𝜇2𝑡/32). □

Restatement of Lemma 2. For any 𝑥 ∈ X, any 𝑓 ∈ Δ(H) and any 𝜇 ≥ 1/𝑡:

Pr
𝑔∼D 𝑓,𝑡

[
|𝑔(𝑥) | ≤ 𝜇

]
≤ 2𝜇

√
𝑡.

Proof. Let ℎ′1, . . . , ℎ
′
𝑡 be the hypotheses sampled in the first step of drawing 𝑔. Define 𝜎𝑖 to be 1 if

ℎ′
𝑖

is sampled in 𝑔 and −1 otherwise. That is, we have

𝑔(𝑥) = 1
|{𝑖 : 𝜎𝑖 = 1}|

∑︁
𝑖:𝜎𝑖=1

ℎ′𝑖 (𝑥).

Let Γ =
∑𝑡

𝑖=1 ℎ
′
𝑖
(𝑥). Then

Γ +
𝑡∑︁

𝑖=1
𝜎𝑖ℎ

′
𝑖 (𝑥)

=
∑︁

𝑖:𝜎𝑖=1
ℎ′𝑖 (𝑥) +

∑︁
𝑖:𝜎𝑖=−1

ℎ′𝑖 (𝑥) +
𝑡∑︁

𝑖=1
𝜎𝑖ℎ

′
𝑖 (𝑥)

= 2
∑︁

𝑖:𝜎𝑖=1
ℎ′𝑖 (𝑥) = 2𝑡 ′𝑔(𝑥).

Therefore, |𝑔(𝑥) | ≤ 𝜇 if and only if ����Γ +∑𝑖 𝜎𝑖ℎ
′
𝑖
(𝑥)

2𝑡 ′

���� ≤ 𝜇.

19



Since 𝑡 ′ ≤ 𝑡, this implies ����Γ +∑𝑖 𝜎𝑖ℎ
′
𝑖
(𝑥)

2𝑡

���� ≤ 𝜇.

Hence, we have Pr[|𝑔(𝑥) | ≤ 𝜇] ≤ Pr[∑𝑖 𝜎𝑖ℎ
′
𝑖
(𝑥) ∈ −Γ ± 2𝑡𝜇]. By Erdös’ improved Littlewood-

Offord lemma, as long as 2𝑡𝜇 ≥ 2, this happens with probability at most 2𝑡𝜇
( 𝑡
⌊𝑡/2⌋

)
2−𝑡 . The

central binomial coefficient satisfies
( 𝑡
⌊𝑡/2⌋

)
≤ 2𝑡/

√︁
𝜋𝑡/2 ≤ 2𝑡/

√
𝑡 and thus the probability is at most

2𝑡𝜇/
√
𝑡 = 2𝜇

√
𝑡. □

Finally, we prove Lemma 3 from the main paper:
Restatement of Lemma 3. For any distribution D over X × {−1, 1}, any 𝑡 ≥ 36 and any voting
classifier 𝑓 ∈ Δ(H) for a hypothesis setH ⊂ X → {−1, 1}, we have:

LD ( 𝑓 ) ≤ 3L𝑡
D ( 𝑓 ).

For the proof, we first need the following auxiliary lemma:
Lemma C.1. For any 𝑥 ∈ X and any 𝑓 ∈ Δ(H), if 𝑓 (𝑥) ≠ 0, then

Pr
𝑔∼D 𝑓,𝑡

[
sign( 𝑓 (𝑥)) = sign(𝑔(𝑥))

]
≥ 1/2 − 1/

√
𝑡.

Proof. If we condition on 𝑡 ′, then ℎ1, . . . , ℎ𝑡′ are i.i.d samples from D 𝑓 and thus Pr[sign(𝑔(𝑥)) =
sign( 𝑓 (𝑥))] ≥ Pr[sign(𝑔(𝑥)) = − sign( 𝑓 (𝑥))]. We therefore have Pr[sign( 𝑓 (𝑥)) = sign(𝑔(𝑥))] ≥
Pr[𝑔(𝑥) ≠ 0]/2, regardless of 𝑡 ′. We thus only need to bound Pr[𝑔(𝑥) ≠ 0]. For this, Lemma 2 with
𝜇 = 1/𝑡 implies Pr[𝑔(𝑥) = 0] ≤ 2/

√
𝑡. □

Using this lemma, we can prove Lemma 3:

Proof of Lemma 3 from the main paper. Consider any example (𝑥, 𝑦) ∈ X × {−1, 1} for which
Pr𝑔∼D 𝑓,𝑡

[𝑦𝑔(𝑥) ≤ 0] < 1/2 − 1/
√
𝑡. By Lemma C.1, it must be the case that sign( 𝑓 (𝑥)) = 𝑦.

We therefore have by Markov’s inequality:

LD ( 𝑓 ) ≤ Pr
(𝑥,𝑦)∼D

[ Pr
𝑔∼D 𝑓,𝑡

[𝑦𝑔(𝑥) ≤ 0] ≥ 1/2 − 1/
√
𝑡]

≤
𝔼(𝑥,𝑦)∼D [Pr𝑔∼D 𝑓,𝑡

[𝑦𝑔(𝑥) ≤ 0]]
1/2 − 1/

√
𝑡

= L𝑡
D ( 𝑓 )/(1/2 − 1/

√
𝑡)

≤ 3L𝑡
D ( 𝑓 ). □

C.2 Relating generalization error to the ghost set

In the following, we give the proof of Lemma 6 from the main paper:
Restatement of Lemma 6. For 𝑚 ≥ 24002 any 𝑡 and any 𝑓 , it holds that:

Pr
𝑆

[
sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L
𝑡
D ( 𝑓 ) | >

1
1200

]
≤ 2 · Pr

𝑆,𝑆′

[
sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L
𝑡
𝑆′ ( 𝑓 ) | >

1
2400

]
.

Proof. The proof uses standard techniques uneventfully. We can assume Pr𝑆 [sup 𝑓 ∈Δ(H) |L𝑡
𝑆
( 𝑓 ) −

L𝑡
D ( 𝑓 ) | > 1/1200] > 0, otherwise we are done. We have:

Pr
𝑆,𝑆′

[
sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L
𝑡
𝑆′ ( 𝑓 ) | >

1
2400

]
≥ Pr

𝑆,𝑆′

[
sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L
𝑡
𝑆′ ( 𝑓 ) | >

1
2400 ∧ sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L
𝑡
D ( 𝑓 ) | >

1
1200

]
= Pr

𝑆

[
sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L
𝑡
D ( 𝑓 ) | >

1
1200

]
×

Pr
𝑆,𝑆′

[
sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L
𝑡
𝑆′ ( 𝑓 ) | >

1
2400 | sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L
𝑡
D ( 𝑓 ) | >

1
1200

]
.
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Fix a data set 𝑆 in the non-empty event sup 𝑓 ∈Δ(H) |L𝑡
𝑆
( 𝑓 ) − L𝑡

D ( 𝑓 ) | > 1/1200. Let 𝑓 ∗ ∈ H be any
hypothesis on which |L𝑡

𝑆
( 𝑓 ∗) − L𝑡

D ( 𝑓
∗) | > 1/1200. The hypothesis 𝑓 ∗ does not depend on 𝑆′ but

only on 𝑆. We now condition on 𝑆 as well and get:

Pr
𝑆,𝑆′

[
sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L
𝑡
𝑆′ ( 𝑓 ) | >

1
2400

�� 𝑆; sup
𝑓 ∈Δ(H)

|L𝑡
𝑆 ( 𝑓 ) − L

𝑡
D ( 𝑓 ) | >

1
1200

]
≥ Pr

𝑆′

[
|L𝑡

𝑆 ( 𝑓
∗) − L𝑡

𝑆′ ( 𝑓
∗) | > 1

2400
�� 𝑆; sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L
𝑡
D ( 𝑓 ) | >

1
1200

]
≥ Pr

𝑆′

[
|L𝑡

𝑆′ ( 𝑓
∗) − L𝑡

D ( 𝑓
∗) | ≤ 1

2400
�� 𝑆; sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L
𝑡
D ( 𝑓 ) | >

1
1200

]
.

Here the last inequality follows because the events |L𝑡
𝑆′ ( 𝑓

∗) − L𝑡
D ( 𝑓

∗) | ≤ 1/2400 and |L𝑡
𝑆
( 𝑓 ∗) −

L𝑡
D ( 𝑓

∗) | > 1/1200 (which holds by definition of 𝑓 ∗) implies |L𝑡
𝑆
( 𝑓 ∗) − L𝑡

𝑆′ ( 𝑓
∗) | > 1/2400. Since

𝑓 ∗ is fixed and independent of 𝑆′, we may now use Hoeffding’s inequality to conclude

Pr
𝑆′

[
|L𝑡

𝑆′ ( 𝑓
∗) − L𝑡

D ( 𝑓
∗) | ≤ 1/2400

�� 𝑆; sup
𝑓 ∈Δ(H)

|L𝑡
𝑆 ( 𝑓 ) − L

𝑡
D ( 𝑓 ) | > 1/1200

]
≥ 1− 2𝑒−2(1/2400)2𝑚.

For 𝑚 ≥ 24002, this is at least 1 − 2𝑒−2 ≥ 1/2.

Multiplying with Pr[𝑆 | sup 𝑓 ∈Δ(H) |L𝑡
𝑆
( 𝑓 ) − L𝑡

D ( 𝑓 ) | > 1/1200] and integrating over 𝑆, we get∫
𝑆

(
Pr
𝑆′

[
sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L
𝑡
𝑆′ ( 𝑓 ) | >

1
2400

�� 𝑆; sup
𝑓 ∈Δ(H)

|L𝑡
𝑆 ( 𝑓 ) − L

𝑡
D ( 𝑓 ) | >

1
1200

]
× Pr

[
𝑆
�� sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L
𝑡
D ( 𝑓 ) | >

1
1200

] )
≥

∫
𝑆

1
2 Pr

[
𝑆
�� sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L
𝑡
D ( 𝑓 ) | >

1
1200

]
.

The right hand side is simply 1/2 and the left hand side is Pr𝑆,𝑆′ [sup 𝑓 ∈Δ(H) |L𝑡
𝑆
( 𝑓 ) − L𝑡

𝑆′ ( 𝑓 ) | >
1/2400 | sup 𝑓 ∈Δ(H) |L𝑡

𝑆
( 𝑓 ) − L𝑡

D ( 𝑓 ) | > 1/1200]. We finally conclude that for 𝑚 ≥ 24002, we
have:

Pr
𝑆,𝑆′

[
sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L
𝑡
𝑆′ ( 𝑓 ) | >

1
2400

]
≥ 1

2 Pr
𝑆

[
sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L
𝑡
D ( 𝑓 ) | >

1
1200

]
. □

C.3 Relation to the growth function

Last, we prove Lemma 8 from the main paper, which is restated here for convenience:

Restatement of Lemma 8. For any 0 < 𝛿 < 1, every 𝑡, and every 𝜇 ≤ 𝛿/(9600
√
𝑡), we have

Pr
𝑆,𝑆′

[
sup

𝑓 ∈Δ(H)

��L𝑡
𝑆 ( 𝑓 ) − L

𝑡
𝑆′ ( 𝑓 )

�� > 1
2400

]
≤ sup

𝑃

2
��Δ̂𝜇

𝛿
(𝑃)

�� exp
(
− 2𝑚/96002) .

Proof. Let 𝜇 ≤ 𝛿/(9600
√
𝑡). We have that:

Pr
𝑆,𝑆′

[
sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L
𝑡
𝑆′ ( 𝑓 ) | >

1
2400

]
=

∫
𝑃

Pr[𝑃] Pr
𝑆,𝑆′

[
sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L
𝑡
𝑆′ ( 𝑓 ) | >

1
2400

�� 𝑃]
≤ sup

𝑃

Pr
𝑆,𝑆′

[
sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L
𝑡
𝑆′ ( 𝑓 ) | >

1
2400

�� 𝑃]
= sup

𝑃

Pr
𝑆,𝑆′

[
sup

𝑓 ∈Δ(H)
| Pr
(𝑥,𝑦)∼𝑆,𝑔∼D 𝑓,𝑡

[𝑦𝑔(𝑥) ≤ 0] − Pr
(𝑥,𝑦)∼𝑆′,𝑔∼D 𝑓,𝑡

[𝑦𝑔(𝑥) ≤ 0] | > 1
2400

�� 𝑃]
= sup

𝑃

Pr
𝑆,𝑆′

[
sup

𝑓 ∈Δ(H)

����∫
𝑔

Pr[𝑔]
(

Pr
(𝑥,𝑦)∼𝑆

[𝑦𝑔(𝑥) ≤ 0] − Pr
(𝑥,𝑦)∼𝑆′

[𝑦𝑔(𝑥) ≤ 0]
)���� > 1

2400
�� 𝑃] .
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We always have
(
Pr(𝑥,𝑦)∼𝑆 [𝑦𝑔(𝑥) ≤ 0] − Pr(𝑥,𝑦)∼𝑆′ [𝑦𝑔(𝑡) ≤ 0]

)
≤ 1, and by Lemma 13, we have

Pr[𝑔 ∉ Δ
𝜇

𝛿
(H , 𝑃)] ≤ 1/4800, hence����∫

𝑔

Pr[𝑔]
(

Pr
(𝑥,𝑦)∼𝑆

[𝑦𝑔(𝑥) ≤ 0] − Pr
(𝑥,𝑦)∼𝑆′

[𝑦𝑔(𝑥) ≤ 0]
)����

≤ Pr
𝑔∼D 𝑓 ,𝑔

[
𝑔 ∉ Δ

𝜇

𝛿
(H , 𝑃)

]
+ sup

𝑔∈Δ𝜇

𝛿
(H,𝑃)

���� Pr
(𝑥,𝑦)∼𝑆

[𝑦𝑔(𝑥) ≤ 0] − Pr
(𝑥,𝑦)∼𝑆′

[𝑦𝑔(𝑥) ≤ 0]
����

≤ 1
4800 + sup

𝑔∈Δ𝜇

𝛿
(H,𝑃)

���� Pr
(𝑥,𝑦)∼𝑆

[𝑦𝑔(𝑥) ≤ 0] − Pr
(𝑥,𝑦)∼𝑆′

[𝑦𝑔(𝑥) ≤ 0]
���� .

We thus have

Pr
𝑆,𝑆′

[
sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L
𝑡
𝑆′ ( 𝑓 ) | >

1
2400

]
≤ sup

𝑃

Pr
𝑆,𝑆′

[
1

4800 + sup
𝑔∈Δ𝜇

𝛿
(H,𝑃)

���� Pr
(𝑥,𝑦)∼𝑆

[𝑦𝑔(𝑥) ≤ 0] − Pr
(𝑥,𝑦)∼𝑆′

[𝑦𝑔(𝑥) ≤ 0]
���� > 1

2400

��� 𝑃]
= sup

𝑃

Pr
𝑆,𝑆′

[
sup

𝑔∈Δ𝜇

𝛿
(H,𝑃)

���� Pr
(𝑥,𝑦)∼𝑆

[𝑦𝑔(𝑥) ≤ 0] − Pr
(𝑥,𝑦)∼𝑆′

[𝑦𝑔(𝑥) ≤ 0]
���� > 1

4800

��� 𝑃] .
To bound this, let Δ̂𝜇

𝛿
(𝑃) = sign(Δ𝜇

𝛿
(H , 𝑃)). Then the above equals:

sup
𝑃

Pr
𝑆,𝑆′

[
sup

ℎ∈Δ̂𝜇

𝛿
(𝑃)

���� Pr
(𝑥,𝑦)∼𝑆

[ℎ(𝑥) ≠ 𝑦] − Pr
(𝑥,𝑦)∼𝑆′

[ℎ(𝑥) ≠ 𝑦]
���� > 1

4800

��� 𝑃] .
Since we have restricted to the fixed set 𝑃, the set Δ̂𝜇

𝛿
(𝑃) is finite. Hence we may use the union bound

to bound the above by

sup
𝑃

|Δ̂𝜇

𝛿
(𝑃) | sup

ℎ∈Δ̂𝜇

𝛿
(𝑃)

Pr
𝑆,𝑆′

[���� Pr
(𝑥,𝑦)∼𝑆

[ℎ(𝑥) ≠ 𝑦] − Pr
(𝑥,𝑦)∼𝑆′

[ℎ(𝑥) ≠ 𝑦]
���� > 1

4800

���� 𝑃] .
For a set 𝑃 and hypothesis ℎ ∈ Δ̂

𝜇

𝛿
(𝑃), let 𝑝 denote the fraction of samples (𝑥, 𝑦) ∈ 𝑃 for which

ℎ(𝑥) ≠ 𝑦. Recall that 𝑆 and the ghost set 𝑆′ are obtained from 𝑃 by letting 𝑆 be a uniform set
of 𝑚 samples from 𝑃 without replacement, and 𝑆′ are the remaining 𝑚 samples. For shorthand,
define 𝑝𝑆 = Pr(𝑥,𝑦)∼𝑆 [ℎ(𝑥) ≠ 𝑦 | 𝑃] and 𝑝𝑆′ symmetrically. Then 𝑝 = (1/2) (𝑝𝑆 + 𝑝𝑆′). By
Hoeffding’s inequality for sampling without replacement, we have Pr𝑆,𝑆′ [|𝑝𝑆 − 𝑝 | > 𝜀 | 𝑃] =
Pr𝑆 [|𝑝𝑆 − 𝑝 | > 𝜀 | 𝑃] < 2 exp(−2𝜀2𝑚). Setting 𝜀 = 1/9600, we get that for |𝑝 − 𝑝𝑆 | ≤ 1/9600, it
must be the case that 𝑝′

𝑆
= 2𝑝 − 𝑝𝑆 ∈ 𝑝 ± 1/9600. Hence |𝑝𝑆 − 𝑝𝑆′ | ≤ 1/4800 and we conclude

Pr𝑆,𝑆′ [|𝑝𝑆 − 𝑝𝑆′ | > 1/4800 | 𝑃] < 2 exp(−2𝑚/96002). Thus, we end up with the bound

Pr
𝑆,𝑆′

[
sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L
𝑡
𝑆′ ( 𝑓 ) | >

1
2400

]
≤ sup

𝑃

2|Δ̂𝜇

𝛿
(𝑃) | exp(−2𝑚/96002). □
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