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A Local Linear Approximations vs Additive Feature Attribution Methods

In the following, we characterise two different approaches to ‘local’ explainability tools with neigh-
bourhood sampling for black box models

A) Local model approximations where a simple model, g(x), is fitted to predict the black box
model, f(x), in a neighbourhood around the prediction point x.

B) Additive feature attribution methods where a model-free estimator describes how the model
outcome at a point x changes when some of its features are removed and sampled from a
reference distribution n(x∗ | x).

A black box model can be approximated with a simpler model, such as a linear function g(x) =∑m
j=1 βjxj at test instance x by sampling reference data {x∗i }Li=1 from a neighbourhood distribution

n(x∗ | x) around x, and subsequently minimising the squared error loss En(X∗ | x)[(g(X∗) −
f(X∗))2] ≈

∑L
i=1(g(x∗i )− f(x∗i ))

2. Such an approach resembles a first-order Taylor approximation
of f in a local neighbourhood around x defined by n(x∗ | x). It has been used for instance by [10, 2].

Thus, local approximations [A] capture the model’s behaviour within a neighbourhood of x, while
additive feature attribution methods [B] such as SHAP and LIME capture the changes in the model’s
outcome corresponding to x, comparing when a feature is included again after being removed from x.
Although there are different flavors of removing a feature, feature removal is typically simulated by
sampling a random observation x∗ from the statistical population given by some background data
set {xi}Ni=1. The feature attribution of feature j then answers the question how the model outcome
changes when we move feature j from a random x∗j to the test instance xj . Based on the feature
attributions, a linear explanation model g(z) = φ0 +

∑m
j=1 φjzj can be defined where z ∈ {0, 1}m.

To illustrate the difference between local linear approximations and additive explanation models,
consider explaining a black box f(x) = I(x1 > 0)2x22 − I(x1 ≤ 0)x22 given i.i.d. realisations
{xi}Ni=1 of X ∼ Normal(0, 1). Results are depicted in Figure 1. As we see the attribution of
Feature-1 computed by SHAP and LIME is constant no matter how far we are from the decision
boundary. This result is expected since for fixed Feature-2 the change in model outcome is constant
for removing Feature-1 whenever Feature-1 is positive (or negative respectively). [9] define locality
as the aim to understand a prediction by asking ‘if the input is changed slightly, how does the model’s
∗equal contribution
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Figure 1: Attributions at x = (x1, 2) with x1 varying for a reference distribution of X ∼
Normal(0, 1) and black box f(x) = I(x1 > 0)2x22 − I(x1 ≤ 0)x22 averaged over 10 runs dis-
played with 95% confidence intervals (see next section for details). While (Tabular) LIME and SHAP
assign the same absolute attribution to Feature-1 no matter how large x1 is, our neighbourhood ap-
proach takes its distance to the decision boundary into consideration. A local linear approximation to
the black box trained with an euclidean distance based exponential kernel weighted Ridge Regressor,
i.e. on the same neighbourhood as Neighbourhood SHAP, gives misleading attributions to Feature-1
for −0.4 < x1 < 0.
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Figure 2: Feature attributions for the earlier example for different bandwidths (differentiated by the
hue) for Neighbourhood SHAP (first row) and a local linear approximation (second row). As we see,
the local linear model has a higher variance in general. We also note that the local linear attribution
of Feature-2 goes to 0 for larger values of x1 which is not desired. This results from the fact that
neighbourhoods around x are sparser the larger x gets. For σ = 0.1, we note that Neighbourhood
SHAP also suffers under high variance in the Feature-2 attribution for extreme values.

prediction change?’. As this example shows, LIME and SHAP capture global patterns of the black
box model, despite being referred to as ‘local’ explanation models. This observation motivates the use
of Neighbourhood SHAP. A linear approximation model such as MeLIME fits a linear approximation
around x. Since at small negative values for Feature-1, observations with a positive value for Feature-1
are also included in the neighbourhood, the linear approximation is influenced by the higher positive
effect of the black box and thus attributes the feature positively.

Note that LIME is a general framework that has been defined as additive feature attribution method
(also see Supplement E). However, its implementation allows to also train a linear approximation

2



by sampling data from the reference distribution, weighting it with its distance to the test instance
x, and training a linear model such as Ridge on the weighted data. Some extensions such as
MeLIME [2] or MAPLE [10] extend LIME by proposing more meaningful neighbourhood sampling
schemes. However they only consider a linear approximation setting. It has been noted that LIME
underperforms compared to linear approximation methods [9, 2] when performance is measured by
prediction accuracy within a small neighbourhood around x. This is not surprising as the Tabular
version of LIME as additive feature attribution method (which the papers compare to) is not defined
by taking local neighbourhoods into consideration.

In contrast to local linear approximations, our proposal, Neighbourhood SHAP, increases the ‘locality’
of SHAP by sampling the removed features from a neighbourhood around x, instead of from the
(global) statistical population. There are several reasons why a user might be more interested in an
additive feature attribution (referred to as method [B]) that builds upon neighbourhood distributions
than a local linear approximation (referred to as method [A]):

• Approach [A] requires the subjective choice of the parametric local model g(x). As has
been pointed out elsewhere [12], if g(x) is a good approximation to f(x) for all x ∼ X then
the user should adopt g(x) as their preferred model (as it is explainable). If g(x) is not a
faithful local representation of f(x) then it is challenging to trust its interpretability.

• Approach [A] translates the local behaviour of f(x) through g(x) and hence any interpreta-
tion and statement of explanations must be contextualised in light of this, as the translator’s
version of f(x). Instead approach [B], and in particular Neighbourhood SHAP, has an
interpretation in terms of the expected change in f(x) that does not require a surrogate
model.

• Approach [B] is model free, i.e. it does not make any parametric assumptions. The method
attributes changes in the local expectations of f(x) to features of x through a sum-of-squares
(variance) decomposition [8].

Taken together we believe approach [B] has strong merit as a local explainability measure.

B Axioms of Shapley Values

Shapley values have been shown to satisfy the following axioms.

• According to the Dummy axiom, a feature j receives a zero attribution if it has no possible
contribution, i.e. v(S ∪ j) = v(S) for all S ⊆ {1, ...,m}.

• According to the Symmetry axiom, two features that always have the same contribution
receive equal attribution, i.e. v(S ∪ i) = v(S ∪ j) for all S not containing i or j then
φi(v) = φj(v).

• According to the Efficiency axiom, the attributions of all features sum to the total value of
all features. Formally,

∑
j φj(v) = v({1, ..,m}).

• According to the Linearity axiom, for any value function v that is a linear combination of
two other value functions u and w (i.e. v(S) = αu(S) + βw(S)), the Shapley values of
v are equal to the corresponding linear combination of the Shapley values of u and w (i.e.
φi(v) = αφi(u) + βφi(w)).

Since all these axioms have been defined conditionally on the value function v, they hold if the
value function is changed. We have expressed both Neighbourhood SHAP and Smoothed SHAP as a
change in the value function of standard Shapley values. As such they also adhere to the axioms.

C Computational Burden

In this section, we want to illustrate the computational complexity of Neighbourhood SHAP. Please
refer to Figures 3 for plots that describe the additional computational complexity of computing the
proposed SHAP values.
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Computation using the Shapley formula. One way of computing Shapley values is to use a mean
estimator. For marginal reference distributions, it holds in particular that

φ(j, x) = E
r(X∗

S
| x)

[
E
S

[f(xS∪j , X
∗
S\j)− f(xS , X

∗
S

)]
]

= E
x∗∼r(X∗

S
| x)

[φx∗(j)] .

Then,

φx∗(j) = E
S

[f(xS∪j , x
∗
S\j)− f(xS , x

∗
S

)] (1)

is referred to as single-reference Shapley value [7], which can be characterised as the expected change
in model outcome when feature j of observation x∗ is set equal to xj after a random subset of features
x∗S has already been set equal to xS . When the reference distribution is marginal, we can write the
local Shapley value as a weighted average of the single-reference Shapley values

φ̂local(j) =
1∑L

i=1 d(x∗
i,S
| xS)

L∑
i=1

d(x∗
i,S
| xS)φx∗i (j)

where {x∗i }Li=1 are samples from r(x∗ | x). Computing Neighbourhood SHAP is then just a linear
transformation of the single-reference Shapley values. As such the complexity for computing
Neighbourhood SHAP for any additional σN for all features is O(L ·m): after the computation of L
weights, these have to multiplied with the single-reference Shapley values and the weighted values
are added up.

Computation using KernelSHAP. The KernelSHAP optimisation of

E
S

[( E
r(X∗

S
| x)

[f(xS , X
∗
S

)]− g(S))2] ≈
L∑
l=1

C∑
i=1

wi(f(xSi , x
∗
l,Si

)− g(Si))
2 (2)

can be simplified to

E
S

[( E
r(X∗

S
| x)

[f(xS , X
∗
S

)]− g(S))2] ≈
C∑
i=1

wi(
1

L

L∑
l=1

f(xSi
, x∗
l,Si

)− g(Si))
2. (3)

As such we only add weighting to the optimisation

E
S

[( E
r(X∗

S
| x)

[f(xS , X
∗
S

)]− g(S))2] ≈
C∑
i=1

wi(

L∑
l=1

d(x∗l | x)∑L
k=1 d(x∗k | x)

f(xSi , x
∗
l,Si

)− g(Si))
2. (4)

Computing the weights can be done inO(L ·m), while the cost for aggregation of the model outcome
over coalitions is an additional O(L · C). Finally, the optimisation using matrix multiplication is of
complexity O(C ·m). All in all, the computational cost is thus O(max (L,m) · C).

Time Complexity of Smoothed SHAP. Once N Shapley values have been computed, Smoothed
SHAP can be computed in O(N ·m).

D Anti-Neighbourhood SHAP

Among others, Shapley values satisfy the linearity axiom [6] which says that two attribu-
tions φv(j), φw(j) with value functions v, w add up to φv+w(j). As a result, we can charac-
terise the difference between the marginal Shapley values φEr(X∗ | x)[f(xS ,X∗

S
)] and the Neigh-

bourhood Shapley values φEn(X∗ | x)[f(xS ,X∗
S
)] as Anti-Neighbourhood Shapley values φanti =

φEr(X∗ | x)[f(xS ,X∗
S
)]−En(X∗ | x)[f(xS ,X∗

S
)]

E
r(x∗ | x)

[
f(xS , x

∗
S

)
]
− E
n(x∗ | x)

[
f(xS , x

∗
S

)
]
≈ 1

L

L∑
i=1

f(xS , x
∗
i,S

)

1−
d(x∗

i,S
| xS)

1
L

∑L
l=1 d(x∗

l,S
| xS)

 .

4



0 250 500 750 1000
0

2

4

6

8

tim
e

Number of Features

0 250 500 750 1000

Number of Imputations

0 250 500 750 1000

Number of Bandwidths

0 250 500 750 1000

Number of Coalitions

Figure 3: Plots of the computational time (seconds in clock time) to compute Neighbourhood SHAP
w.r.t the number of imputations L (default: 100), the number of features m (default: 11), the number
of coalitions C (default: 211), and the number of bandwidths (default: 50) averaged over 10 runs
displayed with 95% confidence intervals, run on a 2.4 GHz 6-Core Intel Core i5-9300H CPU, using
the SHAP package [6].

While Neighbourhood SHAP computes the expected change in model outcome when the features of a
random observation in the neighbourhood of x are set equal to x, Anti-neighbourhood SHAP weights
the change in model outcome higher for observations that are farther away from x. This might be
of interest, if the user is worried about loss in information from only using Neighbourhood SHAP.
Consider the black box from Supplement A. Even though Feature-1 has no local effect on the black
box for large values of Feature-1, it affects the value of the test instance globally: this is reflected by
Anti-Neighbourhood SHAP.

E Explaining LIME

LIME [11] is defined as an optimisation problem in the binary coalition space

ε(x) = argmin
∑
z,z′∈Z

d(z|x)(f(z)− g(z′))2 + Ω(g) (5)

where Ω(g) is a penalty on the complexity of g, i.e. an l1 loss, z are samples drawn from the feature
space, and z′ are the corresponding binary representations. While the computation of LIME differs
depending on the data type (i.e. image, text or tabular data), we will focus on tabular data here, as its
corresponding implementation is used for comparisons on simulated data sets [2] or to determine
predictive accuracy [10].

In order to compute the attribution at a local observation x, Tabular LIME follows the following
steps:

1. Given a background data set, learn the k quantiles q1, ..., qk of the data distribution with
their summary statistics (mean and standard deviation).

2. Compute each dimension j of each imputation i, zi,j , with i ∈ {1, ..., L}, j ∈ {1, ...,m} as
follows

a) Sample a quantile bi,j for each feature j by uniformly sampling from {q1, ..., qk}.
b) Sample an observation zi,j from a truncated Gaussian fitted with the summary statistics

of quantile bi,j for each feature j.
c) Turn the observation zi into its discretised mapping z′i by setting zi,j equal to 1 if

feature j of the test instance, i.e. xj , falls in quantile bi,j , and 0 otherwise.
3. Solve the optimisation problem in Equation 5 with d(z|x) replaced by d(z′|x′) where
x′ = 1m is a vector of all ones as xj always falls in the same bin as xj .

For a more in depth depiction of the algorithm, we refer the reader to [4]. Note that any observation
u where each dimension falls into the same bin as the corresponding dimension from x, i.e. q(uj) =
q(xj) where q returns the quantile of its argument, gets the same attribution as x. As such, LIME
is an aggregated attribution measure. However only observations that fall into the same bin in
each dimension get the same attribution. As such it uses naive histogram weights, i.e. I(q(zj) =
q(xj) for all j) To analyse the smoothness of the LIME attributions, let the lower bound of q be
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Feature 1 2 3
LIME 0.028 0.018 0.624
SHAP 0.090 0.090 0.819

(Ours) Neighbourhood SHAP (σ = 0.5) 0.063 0.074 0.079

Table 1: Attributions at x = (1.001, 1.001, 1.001) for a reference distribution of X ∼
Uniform(−2, 2) and black box f(x) = I(x1 > 1 or x2 > 1)x3 computed over 10 runs.

denoted by ql while the upper bound is denoted by qu. Now consider two observations x and u
with xj = q1,l + 1

2

√
ε/m and uj = ql(xj)− 1

2

√
ε/m for each feature j for an arbitrary ε. It then

follows that ‖x− u‖ ≤ ε. Since we cannot make any statement about the difference in attributions
of any two such observations without additional assumptions, Lipschitz continuity does not have to
hold necessarily. Note that a difference to Smoothed SHAP is that the smoothing is applied to each
dimension independently.

Some other interesting properties of this algorithm include:

• The reference values z are sampled from a global reference distribution which consists of a
mixture of non-overlapping truncated Gaussian distributions where each mixture component
has the same probability.

• Each dimension of z is sampled independently.

• The probability of a coalition z′, or as earlier defined by S, is P (S) ∝
exp(−(|S|−m)2/σ2)/k|S| where k is the number of quantiles.

Note that often LIME is understood as sampling local data by weighting it with a distribution that
depends on the distance in the data space [14, 2]. However, interestingly enough this is not how
Tabular LIME is implemented by [11].

Instead, observations with a close coalition representation z′ are weighted higher. This does not
ensure that close observations receive a higher importance. Consider a three dimensional feature
space and a test instance of x = (1, 1, 1), the model outcome f(1, 1, 10000) for coalition S = {1, 2}
will be weighted higher in the optimisation than the model outcome f(1, 2, 2) for coalition S = {1}.
This enforced locality in the coalition space of LIME will lead to lower attributions of a feature if
its effect is reduced by the presence of another feature. Consider for instance a simple rule based
model such as f(x) = I(x1 > 1 or x2 > 1)x3 at x = (1.001, 1.001, 1.001). Perturbing, either
Feature-1 or Feature-2 does not have any effect on the model outcome. For a reference distribution of
X ∼ Uniform(−2, 2), the attributions of x1 and x2 are therefore almost zero (Table 1). In contrast,
Shapley values find a relatively higher attribution for Features-1 and 2, but still a considerably higher
attribution for Feature-3. In a small neighbourhood around x, this attribution can be misleading.

F Nadaraya-Watson Estimator

We show that the Nadaraya-Watson estimator can be interpreted as an importance sampling estimator.
In kernel regression the aim is to model the non-linear relationship between a dependent variable
Y and an independent variable Z, by approximating the conditional expectation E[Y | Z]. This is
traditionally argued for by an approximation of the conditional density p(y|z) by estimating both
p(z, y) and p(z) with kernel regressors, i.e.

E[Y |Z = z] =

∫
y · p(y|z)dy =

∫
y
p(z, y)

p(z)
dy with estimators p̂(x) =

1

L

L∑
i=1

d(zi|z),

p̂(z, y) =
1

L

L∑
i=1

d(zi|z)d(yi|y) and thus Ê[Y |Z = z] =

∑L
i=1 d(zi|z)yi∑L
j=1 d(zj |z)

.
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G Lipschitz Continuity of Smoothed SHAP

For a data set {xi}Ni=1 and bounded black box f , we show that Smoothed SHAP increases Lipschitz
continuity. To ensure this, for any two values z, y ∈ Rm with k ∈ {1, . . . ,m} it has to hold that

∥∥∥φ̂smoothed(k, z)− φ̂smoothed(k, y)
∥∥∥2 ≤ L2 ‖z − y‖2

for a constant L. Note that not any bounded function is Lipschitz continuous, and that this is thus a
non-trivial proof.

For simplicity we drop the index k in the following. Let δ2 = ‖z − y‖2. Because of the triangle
inequality it follows that ‖xi − z‖2 ≤ ‖xi − y‖2 + δ2. Building upon this, we derive that

∥∥∥φ̂smoothed(z)− φ̂smoothed(y)
∥∥∥

=

∥∥∥∥∥ 1∑N
j=1 d(xj | z)

N∑
i=1

φ̂(xi)d(xi | z)−
1∑N

j=1 d(xj | y)

N∑
i=1

φ̂(xi)d(xi | y)

∥∥∥∥∥
=

∥∥∥∥∥
N∑
i=1

φ̂(xi)

(
d(xi | z)∑N
j=1 d(xj | z)

−
d(xi | y)

∑N
j=1 d(xj | z)∑N

j=1 d(xj | y)
∑N
j=1 d(xj | z)

)∥∥∥∥∥
=

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

φ̂(xi)

(
exp(−‖xi − z‖2 /σ2)∑N
j=1 exp(−‖xj − z‖2 /σ2)

−
exp(−‖xi − y‖2 /σ2)

∑N
j=1 exp(−‖xj − z‖2 /σ2)∑N

j=1 exp(−‖xj − y‖2 /σ2)
∑N
j=1 exp(−‖xj − z‖2 /σ2)

)∣∣∣∣∣
∣∣∣∣∣

≤

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

φ̂(xi)

(
exp(−‖xi − z‖2 /σ2)∑N
j=1 exp(−‖xj − z‖2 /σ2)

−
exp(−‖xi − z‖2 /σ2) exp(−δ2/σ2)

∑N
j=1 exp(−‖xj − y‖2 /σ2) exp(−δ2/σ2)∑N

j=1 exp(−‖xj − y‖2 /σ2)
∑N
j=1 exp(−‖xj − z‖2 /σ2)

)∣∣∣∣∣
∣∣∣∣∣

=

∥∥∥∥∥
N∑
i=1

φ̂(xi)
exp(−‖xi − z‖2 /σ2)(1− exp(−2δ2/σ2))∑N

j=1 exp(−‖xj − z‖2 /σ2)

∥∥∥∥∥
=

∥∥∥∥∥∥∥φ̂smoothed(z)
≤δ︷ ︸︸ ︷

1− exp(−2δ2)

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥∥∥∥∥
φ̂smoothed(z)

1∑N
j=1 exp(−‖xj − z‖ /σ2)︸ ︷︷ ︸

L=maxx(φ̂smoothed(x))

δ

∥∥∥∥∥∥∥∥∥∥∥
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L exists as long as any Shapley value is bounded which follows from the bound on f(·). The
inequality 1− exp(−2δ2) ≤ δ holds trivially for δ ≥ 1. For 0 < δ < 1, it holds that

1− exp(−2δ2) < δ

−2δ2 > log(1− δ)

−2δ2 > −
∞∑
k=1

δk

k

δ2 <
1

2

∞∑
k=1

δk

k

1 <
1

2δ
+

1

4
+
δ

6
<

1

2

∞∑
k=1

δk−2

k

The last inequality follows from the fact that the roots of the polynomial
1

2
+

1

4
δ +

δ2

6
are outside of

(0, 1).

H Smoothed SHAP as Kernel Regressor

When smoothing is formulated as a kernel regressor, we can use this relationship to quantify the bias
and the variance of the smoothed estimator from the true Shapley values building upon results for the
multivariate Nadaraya-Watson estimator, as we will do in the following.

Assuming that φ̂(j, xi) for i ∈ {1, . . . , N} was computed as a mean over single-reference Shapley
values 1, that for each i the background data set has been sampled i.i.d., and that the black box f is
bounded, then φ̂(j, xi) is a mean estimator and it follows from the Central Limit Theorem for a large
number of references L→∞ that

φ̂(j, xi) ≈ φ(j, xi) + εi (6)

where εi ∼ Normal(0, σ2
ref/L) denotes i.i.d. normal noise with σ2

ref being the variance of the single-
reference Shapley values. Note that this form (with possibly different noise distribution) follows for
each unbiased estimator φ̂ of φ. Since KernelSHAP is assumed to be biased, a bias-corrected version
such as the one proposed by [3] can be used.

Let Σ denote the matrix of bandwidths, i.e. here Σ = diag(σ1, . . . , σm). We then make the following
assumptions

1. The Shapley estimator is unbiased, i.e. Equation 6 holds.

2. The variance of Var[φ̂(j, x) | x] =: σ2
φ̂

, is continuous and positive.

3. The test instance x lies in the support of f . The probability density function of φ̂(j, x),
p(φ̂(j, x)), is continuously differentiable and bounded away from zero.

4. The kernel, i.e. density d(x∗|x), is a symmetric and bounded PDF with finite second moment
and square integrable, such as the exponential kernel.

5. The sequence of Σ is a deterministic sequence of positive definite symmetric matrices such
that N−1|Σ| and each entry of Σ tend to 0 when n→∞.

Note that the first two assumptions hold for Shapley values computed with KernelSHAP or the
Shapley formula, as long as f has a finite expectation. It then holds that [13]

Bias[φ̂smoothed(j, x), φ(j, x)] =
1

2
µ2(d) tr

(
ΣHφ(j)(x)

)
+ o (tr(Σ))

Var[φ̂smoothed(j, x) | x1, . . . , xN ] =
1

Nσ1 · . . . σm
‖d‖22

σ2
φ̂

p(φ̂(j, x))
(1 + o(1)))
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(a) The coloured exponential kernels illustrate
how the smoothed Shapley values can be com-
puted in a moving average like manner from
the standard Shapley values.

(b) Log MSE for the black box f(x) = x with X ∼
Normal(0, 1) with 100 reference points for 1000 instances.
The smoothed Shapley values were corrected by their offset
f(x)− Ep(X)[f(X)].

Figure 4: Illustrations of Smoothed SHAP.

where µ2 =
∫
uuT d(u|0)du, ‖d‖22=

∫
d(s|0)2ds, Hf is the Hessian matrix of f , and tr(H) is the

trace of the matrix H . For an exponential kernel it is ‖d‖22= 2−mπ−m/2. The Hessian Hφ(j), as
a measure of the complexity of the Shapley value function φ(j)(x) := φ(j, x), in the bias term
signalises that the bias increases the more instable Shapley values are to small perturbations of x. For
smooth functions, i.e. linear functions, smoothing can indeed decrease the bias as seen in Figure 4b.

I Modelling Measurement Error with Smoothed SHAP

As explained in the main part of the paper, Smoothed SHAP relates to modelling feature inclusion
which allows to take the volatility in the measurement of the test instance into consideration.

In a first simulated example, we assume a one-dimensional test instance x is measured with standard
normal measurement error and linear black box, as presented in Figure 5. Since the measurement
error is attributed to the only present feature, observations with close true value x′ can have highly
varying attributions because of the measurement error in x.

We will now illustrate Smoothed SHAP in the context of real-world examples. For simplicity we
consider the prediction task with a boosted regressor on the bike data set with four features: season,
month, hour and humidity. In a first scenario, we assume that we do not have access to the hourly
humidity of the test instances, but only to their daily average. In a second case, we assume that the
humidity measurement of the test instances is noisy, i.e. perturbed with normal noise of scale 0.1.
Smoothed SHAP was then computed as a weighted average over the Shapley values of the training
data and the SHAP values of the test data with measurement error. We set the bandwidths of the
first three features close to 0 such that Smoothed SHAP of x′ only depends on observations x that
equal x′ in the first three dimensions. The bandwidth of hour was tuned on a validation set. We also
repeated a similar set up on the adult data set: a boosted classifier predicted high income based on the
features Workclass, Education-Num, Marital Status and Age. In the test data, we do not have
access to the age of an individual, but only to his age group (0-10, 10-30, 30-50, 50+). Again we only
average over the SHAP values of individuals with the same first features as the test instance. Results
are presented in Table 2.

J Variance Analysis

Shapley values can be estimated by

φ̂(j, x) =
1

m

∑
S⊆{1,...,m}/j

[
1(

m−1
|S|
) ( 1

L

L∑
i=1

f(xS∪j , x
∗
i,S/j

)− 1

L

L∑
i=1

f(xS , x
∗
i,S

)

)]
.
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Figure 5: Smoothed SHAP for different band-
widths (where σ = 0 denotes the standard marginal
Shapley values) for f(x) = x = x′ + ε and
X ′, ε ∼ Normal(0, 1) for 1000 imputations and
exponential kernel. Without smoothing, SHAP
is misleading for the test instance x as the noise
in measurement is attributed to the only present
feature.

MSE
bike - daily average as measurement

SHAP 291.8637±0.8304
Smoothed SHAP 287.7668±0.8195

bike - noisy measurement
SHAP 195.0134±0.6174

Smoothed SHAP 190.6908±0.6026
adult - age groups

SHAP 0.0037±0.0000
Smoothed SHAP 0.0030±0.0000

Table 2: MSE±standard error averaged over
5,000 runs on bike data. The bandwidth for
the humidity feature of Smoothed SHAP was
tuned on a validation set (20% of train data as
described in Supplement K) over a range of
0.5 and 2. We see that Smoothed SHAP has
always a significantly smaller MSE.

We note that φ(j, x) is the expectation of a discrete variable V | {X∗
i,S/j

, X∗
S
}S⊆{1,...,m}/j with

V | {X∗
S/j

, X∗
S
}S⊆{1,...,m}/j = E

r(X∗
S/j
| x)

[
f(xS∪j , X

∗
S/j

)
]
− E
r(X∗

S
| x)

[
f(xS , X

∗
S

)
]

with a support of size 2m−1 and probabilities
{

1

m(m−1
|S| )

for S ⊆ {1, ...,m}/j
}

. Since the support

of this discrete variable is estimated using a mean estimator, we can compute the variance of the
estimated Shapley value as

Var[φ̂(j)] =
1

m2

∑
S⊆{1,...,m}

 1(
m−1
|S|
)2
(
σ2
S∪j

L
+
σ2
S

L

)
by independence and Var[aX] = a2 Var[X] where σ2

S is the variance of f(xS , X
∗
S

) which we
estimate with the squared standard deviation of {f(xS , x

∗
i,S

)}Li=1. For computing the variance of
Neighbourhood SHAP, we use results from self-normalised importance sampling (see [5] or http:
//statweb.stanford.edu/~owen/mc/Ch-var-is.pdf) and estimate the variance σ2

S now by

σ̂2
S =

1

(
∑L
k=1 d(xS |x∗k,S))2

L∑
i=1

d(xS |x∗i,S)2(f(xS , x
∗
i,S

)− f̄w(xS , x
∗
i,S

))2

where f̄w(xS , x
∗
i,S

) denotes the weighted average of {f(xS , x
∗
i,S

)}Li=1 with weights{
d(xS |x∗i,S)

(
∑L

k=1 d(xS |x∗k,S))2

}L
i=1

.

Since we do not know p(φ̂) to use the results from Supplement H, we instead approximate the
variance of the smoothed Shapley values by

Var[φ̂smoothed(j, x)] =
1

(
∑L
i=1 wi)

2

∑
S⊆{1,...,m}

w2
i σ

2
φ̂i

which follows again by independence and Var[aX] = a2 Var[X] where σ2
φ̂i

is the variance of the

estimator φ̂(j, xi).
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Data Set # Observations # Features URL
adult 32.561 11 https://archive.ics.uci.edu/ml/datasets/adult
bike 17.389 15 https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

Boston 506 14 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
compas 6.172 12 https://github.com/dylan-slack/Fooling-LIME-SHAP/tree/master/data
mnist 60.000 784 https://pytorch.org/vision/stable/datasets.html

Table 3: Details on all real-world data sets used in the experiments.

Experiment Type of Compute Amount of Compute (in clock-time seconds)
Simulated experiment 2.4 GHz 6-Core Intel Core i5-9300H CPU 177

Adversarial attack 2.6 GHz 4-Core Intel Xeon Gold 6240 CPU 4,377
Lipschitz continuity 2.4 GHz 6-Core Intel Core i5-9300H CPU ≈ 14,400 (correct up to hour)

adult 2,6 GHz 6-Core Intel Core i7 2,968
Boston 2,6 GHz 6-Core Intel Core i7 2,741

bike 2,6 GHz 6-Core Intel Core i7 427

Table 4: Total amount of compute for selected experiments.

K Experimental Details and Additional Experimental Results

In this section, we provide additional details on the experiments as presented in the main part, present
complete results and add additional experiments which illustrate how our approaches perform.

K.1 Experimental Details

For our experiments, we used the code from the following public resources:

• KernelSHAP [6], available at https://github.com/slundberg/shap with MIT License

• Explanation GAME [7], available at https://github.com/fiddler-labs/
the-explanation-game-supplemental (no license)

• LIME [11], available at https://github.com/marcotcr/lime with MIT License

• Fooling-LIME-SHAP [15], available at https://github.com/dylan-slack/
Fooling-LIME-SHAP with MIT License

• MeLIME [2], available at https://github.com/tiagobotari/melime with MIT Li-
cense

• Robust-interpret [1], available at https://github.com/dmelis/robust_interpret
(no license)

Black box models and other classification algorithms were trained using sklearn with default
parameters. Please refer to Table 3 for details on the data sets. Data was splitted with a 80/20 split
into train and test data randomly given the seeds, unless otherwise specified. All models were trained
after data scaling with a standard scaler. We used the euclidean distance as a distance measure for
continuous features. For categorical data, distance was set to one if the reference point had a different
feature value, 0 otherwise. We used an exponential kernel as distance distribution d(x∗|x). Following
[7], we limited the visual inspection of the SHAP attributions on the UCI data sets presented in the
main part of the paper in Figure 6 to the top 5 features which were selected using the Light GBM
"split" feature importance, computed from the numbers of times the feature is used in a model.

K.2 Simulated Experiments

Simulated experiments comparing Neighbourhood SHAP and standard SHAP are included and
explained in Figure 6. The local linear approximation presented in the main part and in Supplement
A were computed with a weighted Ridge Regression using the LimeBASE function of the LIME
package. The data was sampled from the corresponding background data sets and the weights were
computed with euclidean distance based exponential kernels.

11

https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/bike+sharing+data set
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
https://github.com/dylan-slack/Fooling-LIME-SHAP/tree/master/data
https://pytorch.org/vision/stable/datasets.html
https://github.com/slundberg/shap
https://github.com/fiddler-labs/the-explanation-game-supplemental
https://github.com/fiddler-labs/the-explanation-game-supplemental
https://github.com/marcotcr/lime
https://github.com/dylan-slack/Fooling-LIME-SHAP
https://github.com/dylan-slack/Fooling-LIME-SHAP
https://github.com/tiagobotari/melime
https://github.com/dmelis/robust_interpret


3 2 1 0 1 2 3
x

3

2

1

0

1

2

3

Ne
ig

hb
ou

rh
oo

d 
Sh

ap
le

y

0.1
0.5
1.0
2.0
20.0

(a) For σ = 20, the Neighbourhood Shapley values
of f(x) = x are visually not distinguishable from
Shapley values. The smaller σ, the smaller the Shapley
values since the expected model outcome within the
neighbourhood of x gets closer to f(x). Further, local
Shapley values with small bandwidths are instable in
the boundary areas where data is sparse.
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(b) Here the black box function is the CDF
of the balanced mixture of Normal(−2, 0.6) and
Normal(0.4, 1). The Shapley value attribution at
x = −1 is positive, even though increasing x in a small
neighbourhood would lead to a decrease in f(x). The
Neighbourhood Shapley values reflect this behaviour.

Figure 6: Neighbourhood Shapley values for 1000 different x sampled from Normal(0, 1) and
different bandwidths σ.

LIME DeepSHAP Neighbourhood 
DeepSHAP

Smoothed
DeepSHAP

Global
DeepSHAP

Anti-Neighbourhood
DeepSHAP

(a) Attributions for the digit ’3’ of images trained on 100
background samples consisting of images of a 3 or an 8. We
used 100 reference points and a bandwidth of 0.1 · 784 for
the DeepSHAP alternatives. The Quickshift segmentation
algorithm with a kernel size of 1, maximal distance of 1 and
ratio of 0.95 was trained to obtain the highest possible number
of segments (here 28) for the LIME algorithm.

(b) Change in Log odds when masking 100 ran-
domly sampled images of an 8 to explain a 3,
with a background data set of 100. We obtained
a bandwidth of 0.25 · 784 for the Neighbour-
hood DeepSHAP approach and of 0.1 · 784 for
the Smoothed DeepSHAP on a validation data
set by optimising the bandwidth over a grid of
[0.05, 0.1, ... 0.25, 0.3].

Figure 7: Predictive results on the MNIST data set.

K.3 Image Classification

We applied the Neighbourhood and the Smoothed Shapley values also on the MNIST data set. We
trained a convolutional network as in https://github.com/slundberg/shap/blob/master/
notebooks/image_examples/image_classification/PyTorch%20Deep%20Explainer%
20MNIST%20example.ipynb for ten epochs. We then applied DeepSHAP, Neighbourhood
DeepSHAP, Smoothed DeepSHAP, Anti-Neighbourhood DeepSHAP (difference between
DeepSHAP and Neighbourhood DeepSHAP). Refer to Figure 7 for the results.

In a second step, we mimicked the experimental set-up of [1] with results presented in Figure 8. We
see that even though small amount of smoothing does not change the visual representation of the
explanation in a detectable manner (Figure 7b), the Lipschitz estimates introduced by [1] decrease
considerably.
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(a) Local Lipschitz estimates computed
on 100 test points on the MNIST data
set. We note that the Lipschitz esti-
mates have a distribution with smaller
outliers the smaller this threshold is, i.e.
the more smoothing is used.

SHAP Smtd-0.85 Smtd-0.8 Smtd-0.75

Smtd-0.75SHAP

(b) Explanations of a CNN model prediction’s on an example
MNIST digit with Gaussian noise added to it. Here δ is the ra-
tio ‖f(x) − f(x′)‖2/‖x − x′‖2 for the perturbed x which was
chosen such that it maximises the Lipschitz estimate of the expla-
nation model on the test instance. The original digit image x′ has
been once explained with DeepSHAP and once with Smoothed
DeepSHAP. We see that δ decreases with the amount of smoothing.

Figure 8: Results on Lipschitz continuity of SHAP and Smoothed SHAP on the MNIST data set.
Smtd-0.8 denotes the Smoothed SHAP estimate where the bandwidth was chosen as large as possible
such that the largest normalised weight is smaller than 0.8.

K.4 Adult Data

On the adult data we trained a LightGBM Classifier trained with sklearn with default parameters
to predict an annual income of more than $50,000. When analysing the data set we consider an
individual with the following features

• capital gain = 0

• age = 43

• relationship = Not-in-family

• education number = 12

• marital-status = Never-married

• annual-income above $50,000 = True

• and a black box prediction of 0.094

The training set had 32561 instances whilst the test set had 16281 instances. Observations with
missing values were deleted (N=3,620). The model fit was measured with the accuracy α. α = 14.3%
on the train set and α = 14.7% on the test set for the parsimonious model. α = 11.0% on the train
set and α = 12.7% on the test set for the entire model.

Following experimental results have been included in the following

• Descriptive plots for explaining attributions away from the centre of mass in Figure 9

• Bias and variance when using Smoothed SHAP in Figure 12a (please see Figure 27 for a
plot of the bias of Smoothed SHAP over multiple tabular data sets.)

• A bar plot for comparing standard Shapley with Smoothed SHAP in Figure 12b

• Box plots to compare the variance across methods in Figure 10

• Plots for varying kernel widths for the parsimonious model in Figure 11

• Neighbourhood SHAP for varying kernel widths: Entire model in Figure 13

• Smoothed SHAP results across background data set in Figure 14
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(a) Coloured by kernel-density estimates using
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to 2.

Figure 9: Scatter plot of the Education Number by Age across reference points. Individual of interest
lies in the red circle.
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(a) Standard Shapley values
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(b) Neighbourhood SHAP

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
attribution

relationship

capitalgain

education-num

marital-status

age

fe
at

ur
e

(c) Smoothed SHAP

Figure 10: Comparison of box plots on the parsimonious model: standard Shapley values, Neighbour-
hood SHAP, Smoothed SHAP. Kernel width equal to 5.

Figure 14: Comparison of the marginal Shapley values (top) and Smoothed SHAP with kernel
width 5 (bottom) for computing the effects of Relationship in the Adult Income data set using the
parsimonious model. Feature attributions are sorted by similarity according to a preliminary PCA
analysis across a subset of 2000 samples from the Adult Income data set, using 2000 reference points.
Plot was created using the KernelSHAP package [6].
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(c) Marital Status

Figure 11: Scaled attributions at a given test instance for varying kernel widths computed with 2000
reference points in the adult data sets. Bounds for LIME have been computed over 2000 runs, while
the Shapley bounds have been estimated with their theoretical formula as outlined in Supplement J.
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(a) Bias and standard deviation for Smoothed SHAP values of our
individual of interest by kernel widths, using 2000 reference points.
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(b) Comparison of standard Shapley
values and Smoothed SHAP with a
kernel width equal to 2, using 2000
reference points.

Figure 12

K.5 Bike Data

On the bike data we trained a LightGBM Regressor trained with sklearn with default parameters to
predict the hourly number of bike rentals. The hour we analyse in the bike data is

• workingday = True
• hour = 10
• temperature = 0.82
• humidity = 0.56
• season = 3
• hourly number of bike rentals = 218
• and prediction of 110.7

The training set had 8645 instances whilst the test set had 8734 instances. The model fit was measured
with the coefficient of determination. R2 = 0.934 on the train set and R2 = 0.632 on the test set for
the parsimonious model. R2 = 0.959 on the train set and R2 = 0.641 on the test set for the entire
model. Similarly to before we have included following results for the bike data set:

• Descriptive plots for explaining attributions away from the center of mass in Figure 15
• Bias and variance when using Smoothed SHAP in Figure 18a
• A bar plot for comparing standard Shapley with SmoothedSHAP in Figure 18b
• Box plots to compare the variance across methods in Figure 16
• Plots for varying kernel widths for the parsimonious model in Figure 17
• Neighbourhood SHAP for varying kernel widths: Entire model in Figure 20
• Smoothed SHAP results across background data set in Figure 19
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Figure 13: Mean attributions of Neighbourhood for varying kernel widths, with our model trained
on all 14 features. Only features from the parsimonious model are represented in this plot. Values
are computed for our individual of interest, using 2000 reference points. Marginal Shapley values
correspond to dashed lines; Neighbourhood SHAP values correspond to solid lines.
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Figure 15: Scatter plot of hour by Temperature across reference points. Individual of interest lies
in the red circle.

Figure 19: Comparison of the marginal Shapley values (top) and Smoothed SHAP with kernel width
2 (bottom) for computing the effects of hour in the bike data set using the parsimonious model.
Feature attributions are sorted by similarity according to a preliminary PCA analysis across a subset
of 2000 samples from the Adult Income data set, using 2000 reference points. Plot was created using
the KernelSHAP package [6].
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(a) Standard Shapley values
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(c) Smoothed SHAP

Figure 16: Comparison of box plots on the parsimonious model: standard Shapley values, Neighbour-
hood SHAP, Smoothed SHAP. Kernel width equal to 2.
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(b) Hour
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(c) Humidity

Figure 17: Scaled attributions at a given test instance for varying kernel widths computed with 2000
reference points in the adult data sets. Bounds for LIME have been computed over 2000 runs, while
the Shapley bounds have been estimated with their theoretical formula as outlined in Supplement J.
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Figure 20: Mean attributions of Neighbourhood SHAP for varying kernel widths, with our model
trained on all 10 features. Only features from the parsimonious model are represented in this plot.
Values are computed for the individual of interest, using 2000 reference points. Marginal Shapley
values correspond to dashed lines; Neighbourhood SHAP values correspond to solid lines. For hour,
the standard error is not represented as it is too wide: approximately 128 for the standard Shapley
value, while it decreases from approximately 582 std to 131 for the Neighbourhood Shapley values.

K.6 Boston Housing Data

On the Boston housing data we trained a LightGBM Regressor with sklearn with default parameters
to predict the median value of owner-occupied homes in $1000’s. The dwelling analysed has
following properties

• Percentage of lower status of the population (LSTAT) = 18.8
• Average number of rooms per dwelling (RM) = 6.05
• Per capita crime rate by town (CRIM) = 5.29
• Weighted distances to five Boston employment centres (DIS) = 2.17
• Pupil-teacher ratio by town (PTRATIO) = 20.2
• Median value in $1000’s = 23.2
• and prediction of 16.4

The training set had 404 instances whilst the test set had 102 instances. The model fit was measured
with the coefficient of determination. R2 = 0.963 on the train set and R2 = 0.661 on the test set for

17



0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

B
ia

s

Hour
Temperature
Working Day
Humidity
Season

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0

100

200

300

400

500

600

S
ta

nd
ar

d 
D

ev
ia

tio
n

Hour
Temperature
Working Day
Humidity
Season

(a) Bias and standard deviation for Smoothed SHAP values of our
individual of interest by kernel widths, using 2000 reference points.
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kernel width equal to 2, using 2000
reference points.

Figure 18

the parsimonious model. R2 = 0.977 on the train set and R2 = 0.699 on the test set for the entire
model.

• Descriptive plots for explaining attributions away from the center of mass in Figure 21
• Bias and variance when using Smoothed SHAP in Figure 24a
• A bar plot for comparing standard Shapley with SmoothedSHAP in Figure 24b
• Box plots to compare the variance across methods in Figure 22
• Plots for varying kernel widths for the parsimonious model in Figure 23
• Neighbourhood SHAP for varying kernel widths: Entire model in Figure 25
• Smoothed SHAP results across background data set in Figure 26
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Figure 21: Scatter plot of the Percentage of lower status population (LSTAT) by Weighted distances
to five Boston employment centres (DIS) across reference points. Individual of interest lies in the red
circle.
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Figure 22: Comparison of box plots on the parsimonious model: standard Shapley values, Neighbour-
hood SHAP, Smoothed SHAP. Kernel width equal to 2.
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Figure 23: Scaled attributions at a given test instance for varying kernel widths computed with 102
reference points in the adult data sets. Bounds for LIME have been computed over 2000 runs, while
the Shapley bounds have been estimated with their theoretical formula as outlined in Supplement J.
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(a) Bias and standard deviation for Smoothed SHAP values of our
individual of interest by kernel widths, using 102 reference points.
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(b) Comparison of standard Shapley
values and Smoothed SHAP with a
kernel width equal to 2, using 102
reference points.
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Figure 25: Mean attributions of Neighbourhood SHAP for varying kernel widths, with our model
trained on all 10 features. Only features from the parsimonious model are represented in this plot.
Values are computed for our individual of interest, using 102 reference points. Marginal Shapley
values correspond to dashed lines; Neighbourhood SHAP values correspond to solid lines.
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Figure 26: Comparison of the marginal Shapley values (top) and Smoothed SHAP with kernel width
2 (bottom) for computing the effects of CRIM in the bike data set using the parsimonious model.
Feature attributions are sorted by similarity according to a preliminary PCA analysis across a subset
of 102 samples from the Adult Income data set, using 2000 reference points. Plot was created using
the KernelSHAP package [6].
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Figure 27: Bias of Smoothed SHAP for different kernel widths. While most data sets reach their
minimum MSE at a positive kernel width (bike: 0.03, adult: 0.08, Boston: 0.03, digits: 0.1, iris: 0),
this minimum is insignificant.

K.7 ROAR metric

Adult (α) Bike (R2) Boston (R2)
Local mean Global mean Local mean Global mean Local mean Global mean

SHAP 0.276 0.098 0.232 0.189 0.349 0.154
Neighbourhood SHAP 0.364 0.271 0.259 0.312 0.389 0.320
Smoothed SHAP 0.233 0.280 0.391 0.306 0.177 0.399

Table 5: Absolute change in evaluation metrics (R2 or accuracy) on the test data when imputing with
local and global mean. Abbreviations: α=accuracy

20



References
[1] Alvarez-Melis, D. and Jaakkola, T. S. (2018). On the robustness of interpretability methods.

arXiv preprint arXiv:1806.08049.

[2] Botari, T., Hvilshøj, F., Izbicki, R., and de Carvalho, A. C. (2020). Melime: Meaningful local
explanation for machine learning models. arXiv preprint arXiv:2009.05818.

[3] Covert, I. and Lee, S.-I. (2020). Improving kernelshap: Practical shapley value estimation via
linear regression. arXiv preprint arXiv:2012.01536.

[4] Garreau, D. and von Luxburg, U. (2020). Looking deeper into lime. arXiv preprint
arXiv:2008.11092.

[5] Geweke, J. (1989). Bayesian inference in econometric models using monte carlo integration.
Econometrica: Journal of the Econometric Society, pages 1317–1339.

[6] Lundberg, S. and Lee, S.-I. (2017). A unified approach to interpreting model predictions. arXiv
preprint arXiv:1705.07874.

[7] Merrick, L. and Taly, A. (2020). The explanation game: Explaining machine learning models
using shapley values. In International Cross-Domain Conference for Machine Learning and
Knowledge Extraction, pages 17–38. Springer.

[8] Owen, A. B. (2014). Sobol’indices and shapley value. SIAM/ASA Journal on Uncertainty
Quantification, 2(1):245–251.

[9] Plumb, G., Molitor, D., and Talwalkar, A. (2018). Model agnostic supervised local explanations.
arXiv preprint arXiv:1807.02910.

[10] Rasouli, P. and Yu, I. C. (2019). Meaningful data sampling for a faithful local explanation
method. In International Conference on Intelligent Data Engineering and Automated Learning,
pages 28–38. Springer.

[11] Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). " why should i trust you?" explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pages 1135–1144.

[12] Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature Machine Intelligence, 1(5):206–215.

[13] Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least squares regression.
The annals of statistics, pages 1346–1370.

[14] Saito, S., Chua, E., Capel, N., and Hu, R. (2020). Improving lime robustness with smarter
locality sampling. arXiv preprint arXiv:2006.12302.

[15] Slack, D., Hilgard, S., Jia, E., Singh, S., and Lakkaraju, H. (2020). Fooling lime and shap:
Adversarial attacks on post hoc explanation methods. In Proceedings of the AAAI/ACM Conference
on AI, Ethics, and Society, pages 180–186.

21


	Local Linear Approximations vs Additive Feature Attribution Methods
	Axioms of Shapley Values
	Computational Burden
	Anti-Neighbourhood SHAP
	Explaining LIME
	Nadaraya-Watson Estimator
	Lipschitz Continuity of Smoothed SHAP
	Smoothed SHAP as Kernel Regressor
	Modelling Measurement Error with Smoothed SHAP
	Variance Analysis
	Experimental Details and Additional Experimental Results
	Experimental Details
	Simulated Experiments
	Image Classification
	Adult Data
	Bike Data
	Boston Housing Data
	ROAR metric


