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MM-LDM: Multi-Modal Latent Diffusion Model for Sounding
Video Generation
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ABSTRACT
Sounding Video Generation (SVG) is an audio-video joint gener-
ation task challenged by high-dimensional signal spaces, distinct
data formats, and different patterns of content information. To ad-
dress these issues, we introduce a novel multi-modal latent diffusion
model (MM-LDM) 1 for the SVG task. We first unify the representa-
tion of audio and video data by converting them into a single or a
couple of images. Then, we introduce a hierarchical multi-modal
autoencoder that constructs a low-level perceptual latent space for
each modality and a shared high-level semantic feature space. The
former space is perceptually equivalent to the raw signal space of
each modality but drastically reduces signal dimensions. The lat-
ter space serves to bridge the information gap between modalities
and provides more insightful cross-modal guidance. Our proposed
method achieves new state-of-the-art results with significant qual-
ity and efficiency gains. Specifically, our method achieves a compre-
hensive improvement on all evaluation metrics and a faster training
and sampling speed on Landscape and AIST++ datasets. Moreover,
we explore its performance on open-domain sounding video gener-
ation, long sounding video generation, audio continuation, video
continuation, and conditional single-modal generation tasks for
a comprehensive evaluation, where our MM-LDM demonstrates
exciting adaptability and generalization ability.

CCS CONCEPTS
•Computingmethodologies→Hierarchical representations; Neu-
ral networks; Computer vision tasks.

KEYWORDS
Multi-modal Generation, Sounding Video Generation, Latent Diffu-
sion Model, Audio Generation, Video Generation

1 INTRODUCTION
Sound Video Generation (SVG) is an emerging task in the field
of multi-modal generation, which aims to integrate auditory and
visual signals for audio-video joint generation [18, 32, 33]. The
integrated sounding videos closely simulate real-life video formats,
providing immersive audiovisual narratives [2, 3, 36]. The potential
applications of SVG span multiple fields, including film production,

1Our codes have been partly released in https://anonymous.4open.science/r/MM-LDM/
and will be completely released soon.
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game development, virtual reality, etc, making it an area worth
exploring in depth.

Compared with single-modal generation, SVG is a more chal-
lenging task since it requires a deep understanding of the complex
interactions between auditory and visual content [24]. Specifically,
three primary challenges hinder the progress of SVG. First, both
video and audio are high-dimensional data, making it difficult to
achieve realistic generation of both modalities, especially when
computational resources are constrained. Second, video and audio
data have distinct dimensions and representations, necessitating
specified designs to obtain a unified architecture. In particular, au-
dios are 1D continuous auditory signals with a single amplitude
channel, which focus on temporal information, whereas videos are
3D visual signals with RGB color channels, which involve both
spatial and temporal information. Previous work [24] unifies video
and audio generation by coupling two modal-specific models using
random-shift based attention layers. However, the calculation of
the attention is based on a small cross-modal attention window, lim-
iting cross-modal communication and thus obtaining suboptimal
cross-modal consistency. Third, patterns of content information
conveyed by videos and audio are distinct, which significantly exac-
erbates the difficulty in obtaining cross-modal consistency. Videos
record dense visual dynamics that evolve over time, while audios
record sound waves made by both various visible and invisible
sources. Given that messages conveyed by these modalities can
vary dramatically, the generation of consistent audios and videos
requires model to understand high-level semantic information of
both modalities, e.g., identify which kind of sound can be made
given the video scene, thus posing a formidable challenge for cur-
rent generative models.

To address the above challenges, we propose a novel Multi-Modal
Latent Diffusion Model (MM-LDM) for SVG. Firstly, to reduce the
dimension of video and audio data, we introduce a multi-modal
auto-encoder that constructs two perceptual latent spaces, which
are modal-specific, low-dimensional, and perceptually equivalent
to the raw signal spaces. By modeling SVG within the perceptual
latent spaces, we significantly reduce the computation burden and
improve the generation efficiency.

Secondly, to facilitate the design of a unified framework that
processes both modalities, we unify the dimensions and represen-
tations of video and audio data by encoding audio signals into an
audio image and treating video signals as a sequence of images
(i.e., video frames). Such unified representation allows our multi-
model auto-encoder to utilize a pretrained image diffusion model
as the signal decoder and share its parameters for both modalities.
Moreover, we can explicitly model the temporal alignment of two
modalities within the perceptual latent space since the perceptual
latents are perceptually equivalent to raw signals, thus enabling bet-
ter temporal alignment, superior synthesis quality, and improved
coherence throughout the generated sample.
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Figure 1: Sounding videos generated by our MM-LDM on the Landscape dataset [15]. We can observe vivid scenes like (a)
mountain, (c) diving man, (e) lake, and so on. Matched audios are given like the sound of (b) wood burning, (d) sea wave, (f)
raining, and so on. All presented audios (in this paper) can be played in Adobe Acrobat by clicking corresponding wave figures.
More playable sounding video samples can be found in https://anonymouss765.github.io/MM-LDM.

Thirdly, to bridge the gap between content information conveyed
by two modalities, we strengthen the modeling of multi-modal
correlations in both decoding and generation processes. During the
decoding process, we derive a shared semantic space based on the
perceptual latents to provide cross-modal guidance. Specifically,
two projectors are used to map the perceptual latents into the
shared semantic space. Moreover, we introduce two multi-modal
semantic losses including a classification loss and a contrastive
loss to optimize the high-level semantic features during training.
During the generation process, we model both single-modal and
cross-modal correlations using full attention. In particular, a full
self-attention based Transformer [20] is used as the backbone of
the diffusion model. It takes rasterized and concatenated audio and
video perceptual latents as inputs, building both single-modal and
cross-modal correlations using multiple self-attention layers.

To the best of our knowledge, MM-LDM is the first latent dif-
fusion model for the SVG task, which requires audio-video joint
generation. We introduce multiple specialized designs tailored for
this multi-modal generation task as specified above. Furthermore,
our proposed method exhibits remarkable adaptability when ex-
tended to various other multi-modal generation tasks, including
open-domain sounding video generation, audio-to-video genera-
tion, video-to-audio generation, long sounding video generation,
audio continuation, video continuation, and so on. As shown in
Fig. 1, MM-LDM can synthesize high-resolution (2562) sounding
videos with vivid objects, realistic scenes, coherent motions, and
aligned audio-video content. We conduct extensive experiments on
the Landscape [15], AIST++ [16], and AudioSet [6] datasets, achiev-
ing new state-of-the-art generation performance with significant
visual and auditory gains. For example, on the AIST++ dataset with
2562 spatial resolution, our MM-LDM outperforms MM-Diffusion
by 114.6 FVD, 21.2 KVD, and 2.1 FAD. We also reduce substantial
computational complexity, achieving a 10x faster sampling speed
and allowing a larger sampling batch size. Our contributions can
be summarized as follows:

• We propose a novel multi-modal latent diffusion model that
establishes low-dimensional audio and video latent spaces
for SVG, which are perceptually equivalent to the original
signal spaces but significantly reduce the computational com-
plexity.

• We derive a shared high-level semantic feature space from
the low-level perceptual latent spaces to provide cross-modal
guidance and bridge the information gap between audio-
video content during the decoding process.

• We introduce multiple cross-modal losses to improve cross-
modal consistency and optimize the semantic feature space,
including an audio-video adversarial loss, an audio-video
contrastive loss, and a classification loss.

• We perform a comprehensive evaluation and extend our
method to multiple other generation tasks, which demon-
strates the effectiveness, efficiency, and adaptability of our
proposed method, where we achieve new state-of-the-art
results with significant quality and efficiency gains.

2 RELATEDWORK
Sounding Video Generation. In recent years, several works

have been proposed to explore the challenging task of SVG. Based
on generative adversarial networks, HMMD [14] introduces multi-
ple discriminators to guide the generator in producing sounding
videos with aligned audio-video content. Based on sequential gen-
erative models, UVG [18] introduces a multi-modal tokenizer to
encode different modal signals into discrete tokens, and employs a
Transformer-based generator for SVG. Although these works have
tackled the SVG task to some extent, their performances are far from
expectations. Drawing inspiration from the success of diffusion
models [10, 29], many works have explored multi-modal diffusion
models for audio-video generation [24, 33, 36], while most methods
focus on generating one modality based on another [19, 30, 33, 36].
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Recently, MM-Diffusion [24] stands out as the pioneer in simultane-
ously synthesizing both modalities. This approach introduced two-
couple denoising diffusion models to gradually generate aligned
audio-video signals from pure noises. To align generated audio
and video content, MM-Diffusion introduces a random-shift based
attention for cross-modal communication. However, this method
suffers from a huge computational burden since it addresses SVG
in the signal space, and uses a limited attention window size (typi-
cally no more than 8), resulting in sub-optimal cross-modal consis-
tency. Contrastively, we establish low-level latent spaces to reduce
computational complexity and a high-level latent space to provide
cross-modal guidance. Our method significantly outperforms MM-
Diffusion in terms of both generation efficiency and quality.

Latent Diffusion Model. Given that raw signal spaces for im-
age, audio, and video modalities are of high dimensions, extensive
efforts have been devoted to modeling their generation using latent
diffusion models [1, 7, 23, 34]. For the image modality, LDM [23]
is devised to construct a perceptual latent space for images. This
approach introduces a KL-VAE to encode images into image latents
and utilizes a latent diffusion model for text-to-image generation
within the latent space. For the audio modality, AudioLDM [17]
is introduced to facilitate text-to-audio generation in a 1D latent
space. In particular, it utilizes a large text-audio pretrained model
CLAP [31] for extracting text and audio latent features. For the
video modality, VideoLDM [1] is proposed to extend the LDM [23]
to high-resolution video generation. It introduces a temporal di-
mension into the LDM, and only optimizes these temporal layers
while maintaining fixed, pretrained spatial layers. Most previous
latent diffusion models were primarily designed to encode a single
modality, thus incorporating a single perceptual latent space. Unlike
prior works, our MM-LDM introduces a hierarchical multi-modal
autoencoder that establishes both low-level perceptual latent spaces
and a high-level semantic feature space. The former, similar to prior
latent diffusion models, is perceptually equivalent to raw modality
signals and is important for reducing computational complexity.
Differently, the latter, a distinctive space of our MM-LDM, is built
based on the perceptual latent space and is specifically devised to
enhance the consistency of generated audio-video content. Such
hierarchical spaces contribute to the enhanced ability to address
the challenging multi-modal generation task.

3 METHOD
In this section, we present our multi-modal latent diffusion model
(MM-LDM) in detail. This approach consists of two main compo-
nents: a hierarchical multi-modal autoencoder designed for com-
pressing video and audio signals, and a multi-modal latent diffusion
model for modeling SVG within latent spaces. An overview of MM-
LDM is shown in Fig. 2

3.1 Hierarchical Multi-Modal Autoencoder
As shown in Fig. 2 and Fig. 3, the autoencoder is composed of two
modal-specific encoders, two signal decoders with shared parame-
ters, two projectors mapping from each perceptual latent space to
the shared semantic feature space, and two heads for classification
and contrastive learning, respectively. Notably, our multi-modal au-
toencoder establishes two hierarchical feature spaces: a perceptual

latent space that aligns with raw signals, and a semantic feature
space derived from the perceptual space for bridging the informa-
tion gap between audio and video modalities.

Unifying Representation of Video and Audio Signals. We
employ the raw video signals 𝑣 and transformed audio images 𝑎 to
be our inputs. Video 𝑣 ∈ R𝐹×3×𝐻×𝑊 can be viewed as a sequence of
2D images (i.e. video frames), where 𝐹 , 3,𝐻 , and𝑊 are video length,
dimension, height, and width, respectively. Given that raw audio
signals are 1D-long continuous data, we transform raw audio signals
into 2D audio images to reduce computation complexity and unify
the representation of audio and video inputs. In particular, given
a raw audio clip, we first obtain its Mel Spectrogram with values
normalized, which is denoted as 𝑎𝑟𝑎𝑤 ∈ R𝐷×𝑇 , where 𝐷 represents
the number of audio channels and 𝑇 is the temporal dimension.
Notably, 𝑎𝑟𝑎𝑤 can be transformed to raw 1D audio signals using
pretrained HiFiGAN [12]. Then, we treat 𝑎𝑟𝑎𝑤 as a grayscale image
and convert it into an RGB image using the PIL Python toolkit.
Finally, we resize the image to the same spatial resolution as the
video input, obtaining an audio image 𝑎 ∈ R3×𝐻×𝑊 .

Modal-specific Perceptual Latent Spaces. Given a pair of au-
dio and video inputs, we employ a pretrained KL-VAE [23] to down-
sample the video frames and audio images by a factor of 𝑓 . Then,
as depicted in Fig. 3(a), we introduce an audio encoder to compress
the audio image into an audio perceptual latent 𝑧𝑎 ∈ R𝐶×𝐻𝑎×𝑊𝑎 ,
which further downsamples the audio image by a factor of 𝑓𝑎 , where
𝐶 is the number of channels, 𝐻𝑎 and𝑊𝑎 denotes 𝐻

𝑓 ×𝑓𝑎 and 𝑊
𝑓 ×𝑓𝑎 ,

respectively. Similarly, the video encoder compresses video frames
into 𝑧𝑣 ∈ R𝐶×𝐻𝑣×𝑊𝑣 . Notably, the video encoder requires addi-
tional temporal layers to capture temporal correlations between
video frames. Moreover, pixel distributions of audio images and
video frames differ greatly since audio images are typical images in
physics that depict wave features while video frames record real-
life object appearances. Based on the above insights, parameters of
the audio and video encoder are not shared and their perceptual
latent spaces are modal-specific. More details about the encoder
structures are presented in the supplementary material.

A Shared High-level Semantic Space. For audio-video cross-
modal consistency, auxiliary information is required in the decoding
process of audio and video latent features. In our experiments, we
observe a significant performance drop when we directly use one
perceptual latent as condition input to provide cross-modal infor-
mation when decoding another perceptual latent. This performance
drop reveals that it is hard for the signal decoder to extract useful
cross-modal information from perceptual latent features. This can
be mainly attributed to the fact that perceptual latents are dense rep-
resentations of low-level information, thus presenting challenges
for the decoder to comprehend.

To provide the decoder with useful cross-modal guidance, spe-
cialized modules are required to extract high-level information from
perceptual latents and narrow the gap between video and audio
features. To this end, as depicted in Fig. 3(a), we introduce an audio
projector and a video projector that establish a shared high-level
semantic space based on the low-level perceptual latents. In par-
ticular, the audio and video projectors extract semantic audio and
video features 𝑠𝑎 and 𝑠𝑣 from their perceptual latents. To ensure
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Figure 2: Overall illustration of our multi-modal latent diffusion model (MM-LDM) framework. Modules with gray border
comprise our hierarchical multi-modal autoencoder. The module with orange border is our transformer-based diffusion model
that performs SVG in the latent space. The green rectangle depicts the modification of inputs for unconditional audio-video
generation (i.e. SVG), audio-to-video generation, and video-to-audio generation, respectively.
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Figure 3: The detailed architecture of ourmulti-modal autoencoder. (a) Given a pair of audio and video inputs, twomodal-specific
encoders learn their perceptual latents. Two projectors map from two respective perceptual latent space to the shared semantic
space. L𝑐𝑙 represents the classification loss and L𝑐𝑜 denotes the contrastive loss. Class information can be obtained from the
classification head during inference. (b) We share the decoder parameters and incorporate multiple conditional information
for signal decoding. For the video modality, we provide a specific input of frame index to extract information of the target
video frame.

the extracted features are of high-level semantic information, we
employ a classification head 𝑓𝑐𝑙 that takes a pair of audio and video
features as inputs and predicts its class label, which is optimized
using a classification cross-entropy loss. A contrastive loss is em-
ployed with a specified contrastive head to bridge the gap between
video and audio features. The contrastive head 𝑓𝑐𝑜 maps 𝑠𝑎 and 𝑠𝑣 to
1D features respectively and calculates their contrastive loss with
matched pairs of audio-video features being positive samples and
all unmatched pairs of audio-video features as negative samples.
Following [21], we define the contrastive loss as follows:

L𝑐𝑜 = − 1
2

𝐵∑︁
𝑖=1

log
exp(𝜏 · 𝑠𝑖𝑚(𝑓𝑐𝑜 (𝑠𝑖𝑎), 𝑓𝑐𝑜 (𝑠𝑖𝑣)))∑𝐵
𝑗=1 exp(𝜏 · 𝑠𝑖𝑚(𝑓𝑐𝑜 (𝑠𝑖𝑎), 𝑓𝑐𝑜 (𝑠

𝑗
𝑣 ))))

− 1
2

𝐵∑︁
𝑖=1

log
exp(𝜏 · 𝑠𝑖𝑚(𝑓𝑐𝑜 (𝑠𝑖𝑣), 𝑓𝑐𝑜 (𝑠𝑖𝑎)))∑𝐵
𝑗=1 exp(𝜏 · 𝑠𝑖𝑚(𝑓𝑐𝑜 (𝑠𝑖𝑣), 𝑓𝑐𝑜 (𝑠

𝑗
𝑎))))

(1)

where 𝑠𝑖𝑚(∗) calculates the dot product of input features, 𝐵 and 𝜏
denote the batch size and a learnable parameter, respectively.

Signal Decoding. As illustrated in Fig. 3(b), during the recon-
struction of video signals, the signal decoder takes into considera-
tion multiple factors, including the video perceptual latent 𝑧𝑣 , frame
index 𝑖 , audio semantic feature 𝑠𝑎 , learnable modality embedding,

and learnable class embedding. The video perceptual latent feature
plays a critical role by imposing strict constraints from two perspec-
tives. First, for a dense spatial constraint, frame-specific multi-scale
features are extracted from the latent feature using residual blocks
and added to the outputs of the UNet encoder. These features encom-
pass detailed spatial information for the 𝑖-th video frame. Second,
to provide comprehensive global instruction, a content feature is
derived by pooling the latent feature across spatial channels. This
content feature is then added to the time embedding. The audio se-
mantic features are rasterized and concatenated with the learnable
modality embedding and the class embedding. This concatenated
feature is then fed into cross-attention layers to provide rich condi-
tional information. When dealing with audio reconstruction, the
signal decoder employs similar inputs, excluding the frame index.
More details can be found in the supplementary material.

Training Targets. Following [8], we utilize the 𝜖-prediction to
optimize our signal decoder, which involves the noise mean square
error loss L𝑀𝑆𝐸 . Following [23], we incorporate additional KL
losses L𝑎

𝐾𝐿
and L𝑣

𝐾𝐿
to punish the distributions of audio and video

latents towards an isotropic Gaussian distribution. Previous works
have proven the effectiveness of adversarial loss in training single-
modal autoencoders [4, 26]. Here, we introduce a novel adversarial
loss to improve the quality of reconstructed multi-modal signals in
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terms of both single-modal realism and multi-modal consistency.
We first obtain a pair of decoded video frames ⟨𝑣𝑖 , 𝑣 𝑗 ⟩ with 𝑖 < 𝑗

and corresponding audio image 𝑎. Then, for the optimization of the
discriminator, we select ⟨𝑎, 𝑣𝑖 , 𝑣 𝑗 ⟩ as the real sample and ⟨𝑎, 𝑣𝑖 , 𝑣 𝑗 ⟩,
⟨𝑎, 𝑣𝑖 , 𝑣 𝑗 ⟩, ⟨𝑎, 𝑣𝑖 , 𝑣 𝑗 ⟩, and ⟨𝑎, 𝑣 𝑗 , 𝑣𝑖 ⟩ to be the fake samples. ⟨𝑎, 𝑣𝑖 , 𝑣 𝑗 ⟩
is viewed as the real sample for our autoencoder. Our adversarial
loss can be formulated as L𝐷

𝐺𝐴𝑁
for the discriminator and L𝐴𝐸

𝐺𝐴𝑁
for our autoencoder:

L𝐷𝐺𝐴𝑁 =𝑙𝑜𝑔(1 − D(⟨𝑎, 𝑣𝑖 , 𝑣 𝑗 ⟩)) + 𝑙𝑜𝑔D(⟨𝑎, 𝑣𝑖 , 𝑣 𝑗 ⟩)
+ 𝑙𝑜𝑔D(⟨𝑎, 𝑣𝑖 , 𝑣 𝑗 ⟩) + 𝑙𝑜𝑔D(⟨𝑎, 𝑣𝑖 , 𝑣 𝑗 ⟩)
+ 𝑙𝑜𝑔D(⟨𝑎, 𝑣 𝑗 , 𝑣𝑖 ⟩)

L𝐴𝐸𝐺𝐴𝑁 =𝑙𝑜𝑔(1 − D(⟨𝑎, 𝑣𝑖 , 𝑣 𝑗 ⟩))

(2)

Our discriminator is constructed by several spatio-temporal mod-
ules that consist of residual blocks and cross-modal full attentions.
Our final training loss for the multi-modal autoencoder becomes:

L𝐴𝐸 =L𝑀𝑆𝐸 + 𝜆𝑐𝑙L𝑐𝑙 + 𝜆𝑐𝑜L𝑐𝑜
+ 𝜆𝑘𝑙 (L𝑎𝐾𝐿 + L𝑣𝐾𝐿) + 𝜆𝑔𝑎𝑛L𝐴𝐸𝐺𝐴𝑁

(3)

where 𝜆𝑐𝑙 , 𝜆𝑐𝑜 , 𝜆𝑘𝑙 and 𝜆𝑔𝑎𝑛 are predefined hyper-parameters. L𝑐𝑙
and L𝑐𝑜 are the classification and contrastive losses, respectively.

3.2 Multi-Modal Latent Diffusion Model
As illustrated in Fig. 2, our approach independently corrupts audio
and video latents during the forward diffusion process, whereas in
the reverse denoising diffusion process, we employ a unified model
that jointly predicts noise for both modalities. In particular, during
forward diffusion, we corrupt audio and video latents, which are
denoted as 𝑧0

𝑎 and 𝑧0
𝑣 (i.e. 𝑧𝑎 and 𝑧𝑣 ), by 𝑇 steps using a shared

transition kernel. For simplicity, we use 𝑧0 to represent both 𝑧0
𝑎

and 𝑧0
𝑣 in the subsequent section. Following prior works [8, 24], we

define the transition probabilities as follows:

𝑞(𝑧𝑡 |𝑧𝑡−1) = N(𝑧𝑡 ;
√︁

1 − 𝛽𝑡𝑧
𝑡−1, 𝛽𝑡 I) (4)

𝑞(𝑧𝑡 |𝑧0) = N(𝑧𝑡 ;
√
𝛼𝑡𝑧

0, (1 − 𝛼𝑡 )I) (5)

where {𝛽𝑡 ∈ (0, 1)}𝑇
𝑡=1 is a set of shared hyper-parameters, 𝛼𝑡 =

1 − 𝛽𝑡 , and 𝛼𝑡 =
∏𝑡
𝑖=1 𝛼𝑖 . Utilizing Eq. (5), we obtain corrupted

latents 𝑧𝑡 at time step 𝑡 as follows:

𝑧𝑡 =
√
𝛼𝑡𝑧

0 + (1 − 𝛼𝑡 )𝑛𝑡 (6)

where 𝑛𝑡 ∼ N(0, I) represents noise features 𝑛𝑡𝑎 and 𝑛𝑡𝑣 for 𝑧𝑡𝑎 and
𝑧𝑡𝑣 respectively. The reverse diffusion processes of audio and video
latents 𝑞(𝑧𝑡−1 |𝑧𝑡 , 𝑧0) have theoretically traceable distributions. To
capture correlations between audio and video modalities, we intro-
duce a unified denoising diffusion model 𝜃 . This model takes both
corrupted audio and video latents (𝑧𝑡𝑎, 𝑧𝑡𝑣) as input and jointly pre-
dicts their noise features. The reverse diffusion process of corrupted
audio and video latents is formulated as:

𝑞((𝑧𝑡−1
𝑎 , 𝑧𝑡−1

𝑣 ) | (𝑧𝑡𝑎, 𝑧𝑡𝑣)) = N((𝑧𝑡−1
𝑎 , 𝑧𝑡−1

𝑣 ) |𝜇𝜃 (𝑧𝑡𝑎, 𝑧𝑡𝑣), 𝛽𝑡 I) (7)

During training, we minimize the mean square error between the
predicted and original noise features of matched audio-video pairs,
known as 𝜖-prediction in the literature [11]:

L𝜃 =
1
2
∥�̃�𝑎
𝜃
(𝑧𝑡𝑎, 𝑧𝑡𝑣, 𝑡) − 𝑛𝑡𝑎 ∥2 +

1
2
∥�̃�𝑣
𝜃
(𝑧𝑡𝑎, 𝑧𝑡𝑣, 𝑡) − 𝑛𝑡𝑣 ∥2 (8)

Here, �̃�𝑎
𝜃
(𝑧𝑡𝑎, 𝑧𝑡𝑣, 𝑡) and �̃�𝑣𝜃 (𝑧

𝑡
𝑎, 𝑧

𝑡
𝑣, 𝑡) are the predicted audio and video

noise features, respectively. Given that our audio and video latent
features 𝑧𝑎 and 𝑧𝑣 possess relatively small spatial resolution, we
employ a Transformer-based diffusion model known as DiT [20] as
our backbone model. We rasterize audio and video latent features
and independently add positional embeddings [28] to each latent.
Then, two learnable token embeddings, [𝐸𝑂𝑆𝑎] and [𝐸𝑂𝑆𝑣], are
defined and inserted before the audio and video features, respec-
tively. Finally, audio and video latent features are concatenated and
fed to DiT for multi-modal generation.

3.3 Conditional Generation
Inspired by the success of the classifier-free guidance [9, 22, 25], we
employ a cross-modal sampling guidance that targets both audio-to-
video and video-to-audio generation tasks. Our approach involves
training the single MM-LDM to simultaneously learn three dis-
tributions: an unconditional distribution denoted as �̃�𝜃 (𝑧𝑡𝑎, 𝑧𝑡𝑣, 𝑡)
and two conditional distributions represented as �̃�𝜃 (𝑧𝑡𝑣, 𝑡 ; 𝑧𝑎) and
�̃�𝜃 (𝑧𝑡𝑎, 𝑡 ; 𝑧𝑣), corresponding to the SVG, audio-to-video and video-
to-audio generation tasks respectively. To accomplish this, we incor-
porate a pair of null audio and video latents, defined as (0𝑎, 0𝑣) with
0𝑎 = 0 and 0𝑣 = 0. Then, the unconditional distribution �̃�𝜃 (𝑧𝑡𝑎, 𝑧𝑡𝑣, 𝑡)
can be reformulated to be �̃�𝜃 (𝑧𝑡𝑎, 𝑧𝑡𝑣, 𝑡 ; 0𝑎, 0𝑣). The conditional dis-
tribution �̃�𝜃 (𝑧𝑡𝑣, 𝑡 ; 𝑧𝑎) can be reformed as �̃�𝜃 (𝑧𝑡𝑎, 𝑧𝑡𝑣, 𝑡 ; 𝑧𝑎, 0𝑣), where
𝑧𝑡𝑎 can be obtained directly given 𝑧𝑎 ant 𝑡 according to Eq. (6). Simi-
larly, �̃�𝜃 (𝑧𝑡𝑎, 𝑡 ; 𝑧𝑣) is reformulated as �̃�𝜃 (𝑧𝑡𝑎, 𝑧𝑡𝑣, 𝑡 ; 0𝑎, 𝑧𝑣). As depicted
in Fig. 2, the conditional inputs are added to the input latents after
zero convolution layers (which are ignored in the figure for con-
ciseness) to provide conditional information. We randomly select
5% training samples for each conditional generation task. Finally,
taking audio-to-video generation as an example, we perform sam-
pling utilizing the following linear combination of the conditional
and unconditional noise predictions, defined as follows:

𝑛𝑣
𝜃
(𝑧𝑡𝑣, 𝑡 ; 𝑧𝑎) = 𝜙 · �̃�𝑣

𝜃
(𝑧𝑡𝑎, 𝑧𝑡𝑣, 𝑡 ; 𝑧𝑎, 0𝑣)

−(1 − 𝜙) · �̃�𝑣
𝜃
(𝑧𝑡𝑎, 𝑧𝑡𝑣, 𝑡 ; 0𝑎, 0𝑣)

(9)

where 𝜙 serves as a hyper-parameter that controls the intensity of
the conditioning.

4 EXPERIMENT
4.1 Experimental Setups

Dataset. Following [24], we conduct experiments on three pop-
ular sounding video datasets, namely Landscape [15], AIST++ [16],
and AudioSet [6]. Details of each dataset are presented in the sup-
plementary material.

Evaluation Metrics. For video evaluation, we follow previous
settings [5, 24, 35] that employ the Fr𝑒chet Video Distance (FVD)
and Kernel Video Distance (KVD) metrics for video evaluation and
Fr𝑒chet Audio Distance (FAD) for audio evaluation. Our MM-LDM
synthesize all videos at a 2562 resolution. We resize the synthesized
videos when testing the metrics in the 642 resolution.

Implementation Details. When training our multi-modal au-
toencoder, we utilize pretrained KL-VAE [23] with the downsample
factor being 8. Both video frames and audio images are resized to
a 2562 resolution, and video clips have a fixed length of 16 frames
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Table 1: Quantitaive comparison on tasks of 1) v: video generation, 2) a: audio generation, 3) svg: sounding video generation , 4)
a2v: audio-to-video, and 5) v2a: video-to-audio generation. Results with ∗ are reproduced using released sources.

Method Resolution Sampler Landscape AIST++
FVD ↓ KVD ↓ FAD ↓ FVD ↓ KVD ↓ FAD ↓

Ground Truth 642 - 16.3 -0.015 7.7 6.8 -0.015 8.4
Ground Truth 2562 - 22.4 0.128 7.7 11.5 0.043 8.4

Single-Modal Video Generation

DIGAN [35] 642 - 305.4 19.6 - 119.5 35.8 -
TATS-base [5] 642 - 600.3 51.5 - 267.2 41.6 -
MM-Diffusion-v 642 dpm-solver 238.3 15.1 - 184.5 33.9 -
MM-Diffusion-v* 642 dpm-solver 237.9 13.9 - 163.1 28.9 -
MM-Diffusion-v+SR* 642 dpm-solver+DDIM 225.4 13.3 - 142.9 24.9 -
MM-LDM-v 642 DDIM 122.1 6.4 - 83.1 13.1 -

MM-Diffusion-v+SR* 2562 dpm-solver+DDIM 347.9 27.8 - 225.1 51.9 -
MM-LDM-v 2562 DDIM 156.1 13.0 - 120.9 26.5 -

Single-Modal Audio Generation

Diffwave [13] - - - - 14.0 - - 15.8
MM-Diffusion-a - dpm-solver - - 13.6 - - 13.3
MM-Diffusion-a* - dpm-solver - - 9.6 - - 12.6
MM-LDM-a - DDIM - - 10.7 - - 11.7

Multi-Modal Generation

MM-Diffusion-svg 642 DDPM 117.2 5.8 10.7 75.7 11.5 10.7
MM-Diffusion-svg 642 dpm-solver 229.1 13.3 9.4 176.6 31.9 12.9
MM-Diffusion-svg+SR* 642 dpm-solver+DDIM 211.2 12.6 9.9 137.4 24.2 12.3
MM-LDM-a2v 642 DDIM 89.2 4.2 - 71.0 10.8 -
MM-LDM-v2a - DDIM - - 9.2 - - 10.2
MM-LDM-svg 642 DDIM 77.4 3.2 9.1 55.9 8.2 10.2

MM-Diffusion-svg+SR* 2562 dpm-solver+DDIM 332.1 26.6 9.9 219.6 49.1 12.3
MM-LDM-a2v 2562 DDIM 123.1 10.4 - 128.5 33.2 -
MM-LDM-svg 2562 DDIM 105.0 8.3 9.1 105.0 27.9 10.2

Table 2: Efficiency comparison with MM-Diffusion [24] on a
V100 32G GPU, which models SVG within the signal space.
MBS denotes the Maximum Batch Size.

Method HW Training Inference
MBS Time/Step MBS Time/Sample

MM-Diffusion 642 4 1.70s 32 33.1s
MM-Diffusion 1282 1 2.36s 16 90.0s

MM-LDM (ours) 2562 9 0.46s 4 70.7s
MM-LDM* (ours) 2562 12 0.38s 33 8.7s

Table 3: Human Evaluation on the Landscape dataset.
Method AQ↑ VQ↑ A-V↑
MM-Diffusion 2.46 2.10 2.99
MM-LDM 2.98 3.68 3.29

(𝐹 = 16). The audio and video encoders use downsample factors of
𝑓𝑎 = 4 and 𝑓𝑣 = 2, yielding latents of spatial size 82 and 162, respec-
tively. The number of latent channels is 16 for both modalities. The
loss weights 𝜆𝑐𝑙 , 𝜆𝑐𝑜 , and 𝜆𝑔𝑎𝑛 are 1e-1, 1e-1, and 1e-1, respectively.
The loss weight 𝜆𝑘𝑙 is set as 1e-9 for Landscape and 1e-8 for AIST++.
Further details can be found in the supplementary material.

4.2 Quantitative Comparison
Quality. We quantitatively compare our method with prior

works for single-modal generation (i.e. video or audio generation)
and multi-modal audio-video joint generation (i.e. audio-to-video,
video-to-audio, and sounding video generation) tasks. The results

are reported in Table. 1. For the single-modal generation tasks like
audio generation and video generation, MM-Diffusion outperforms
previous single-modal generation methods significantly on both
datasets. However, on Landscape, our MM-LDM further outper-
formsMM-Diffusion by 103.3 FVD and 6.9 KVD at the 642 resolution
and 191.8 FVD and 14.8 KVD at 2562 resolution. On the AIST++
dataset, our MM-LDM outperforms MM-Diffusion by 59.8 FVD and
11.8 KVD at the 642 resolution, 104.2 FVD and 25.4 KVD at the 2562

resolution, and 0.9 FAD. These results reveal the potential of our
MM-LDM in modeling audio and video generation tasks.

For multi-model joint generation, we report the performance of
MM-LDM on audio-to-video, video-to-audio, and sounding video
generation tasks. It can be observed that MM-LDM synthesizes bet-
ter video results with conditional audio inputs than non-conditions,
and so is for audio generation. This phenomenon demonstrates that
our MM-LDM can capture insightful cross-modal information to
assist the generation of a single modality. For sounding video gen-
eration at the 642 resolution, we achieve a 39.8 FVD, 2.6 KVD and
1.6 FAD improvement on the Landscape dataset and a 19.8 FVD, 3.3
KVD and 0.5 FAD improvement on the AIST++ dataset compared
to MM-Diffusion. At the 2562 resolution, we achieve a 227.1 FVD,
18.3 KVD, and 0.8 FAD improvement on the Landscape dataset and
a 114.6 FVD, 21.2 KVD and 2.1 FAD improvement on the AIST++
dataset. It can be seen that our method enhances the generation
quality more significantly when the resolution increases, demon-
strating the necessity of perceptual latent spaces for high-resolution
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Figure 4: Qualitative comparison of sounding video samples: MM-Diffusion vs. MM-LDM (ours). All presented audios can be
played in Adobe Acrobat by clicking corresponding wave figures.
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Figure 5: Samples of (a) long sounding video generation, (b) video-to-audio generation, and (c) audio-to-video generation tasks.

sounding video generation. Notably, when using the DDPM sam-
pler, MM-Diffusion requires 1000 diffusion steps to synthesize a
sounding video sample, taking approximately 8 minutes for a single
sample. In contrast, our MM-LDM synthesizes higher-resolution
videos with only 50 sampling steps using the DDIM sampler.

Efficiency. We quantitatively compare the efficiency of our MM-
LDM and MM-Diffusion and present the results in Table. 2. MM-
LDM incorporates both the auto-encoder and the DiT generator,
while MM-LDM* only tests the DiT generation performance by pre-
processing and saving all latents. We fix the batch size being 2 when
testing the one-step time during training and the one sample time
during inference, and DDIM sampler is used with 50 steps for both
methods. Since MM-Diffusion operates in the signal space, it de-
mands huge computational complexity when the spatial resolution
of synthesized videos increases. In particular, it struggles to model
high-resolution (2562) video signals on a 32G V100, leading to the
out-of-memory error. We evaluate the efficiency of MM-Diffusion
with two spatial resolution settings: 642 and 1282. MM-LDM demon-
strates improved efficiency with higher video resolutions (2562 vs.

1282) during the training process. When employing the same batch
size (i.e., 2), our MM-LDM outperforms MM-Diffusion by 6x speed
for each training step, allowing a larger training batch size with a
higher video resolution. During inference, our diffusion generative
model DiT, which performs SVG within the latent space, achieves a
10x faster sampling speed and allows a larger sampling batch size.

4.3 Human Evaluation
For a thorough assessment, we conduct a manual evaluation of
videos sampled by both MM-Diffusion and our MM-LDM on the
landscape dataset. We randomly synthesize 500 sounding video
samples using each model, obtaining a total of 1000 samples. These
samples are then divided into five groups, with each group consist-
ing of 200 samples for user rating. Following MM-Diffusion [24],
each video is evaluated from three perspectives: audio quality (AQ),
video quality (VQ), and audio-video matching (A-V), correspond-
ing to sounding clarity, visual realism, and audio-video alignment,
respectively. Each rating has a maximum score of 5. Each group
of samples are shuffled and delivered to two users for voting. The
average scores are shown in Table 3. Our MM-LDM significantly
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Table 4: Quantitative comparison with scaled-up data and
model for open-domain generation.

Model Params FLOPS FVD ↓ KVD ↓ FAD ↓
MM-Diffusion [24] 134M 567G 649.8 34.6 2.9
MM-LDM-S 131M 34G 185.8 10.1 1.59
MM-LDM-B 384M 101G 181.5 9.5 1.55
MM-LDM-L 1543M 407G 164.1 8.5 1.52

surpasses MM-Diffusion by 0.52 AQ, 1.58 VQ, and 0.30 A-V, demon-
strating the effectiveness of our proposed method and the necessity
of constructing multi-modal latent space.

4.4 Qualitative Comparison
We qualitatively compare the generative performance of our MM-
LDM and MM-Diffusion in Fig. 4, using the provided checkpoints of
MM-Diffusionwhen sampling. Videos synthesized byMM-Diffusion
produce blurry appearances with deficient details, whereas our MM-
LDM yields clearer samples with better audio-video alignments.

To further explore the adaptivity of our proposed method, we
extend it to the long sounding video generation task in an auto-
regressive manner, which is specified in the supplementarymaterial.
We present the sample of long sounding video generation in Fig.
5(a), where our method can synthesize realistic and coherent long
sounding videos with up to 160 frames. We also test the generation
performance on conditional single-modal generation tasks like
video-to-audio generation and audio-to-video generation tasks. As
shown in Fig. 5(b) and Fig. 5(c), our method can generate consistent
and diverse audio or video samples based on the video or audio
condition. We also extend our method to other generation tasks like
audio continuation and video continuation and provide samples in
the supplementary material.

4.5 Generalization and Scaling Capability
To explore the generalization and scaling capability of our proposed
MM-LDM, we conduct experiments using a larger open-domain
dataset across various scales. Specifically, similar to MM-Diffusion,
we filter 100K high-quality videos from the open-domain dataset
AudioSet [6]. Then we optimize both MM-Diffusion and our MM-
LDM on this dataset, testing the performance of MM-LDM at three
different scales, i.e., small (S), base (B), and large (L). Each experi-
ment is conducted on 8 A800 GPUs with comparable training times.
As reported in Table 4, MM-LDM significantly outperformed MM-
Diffusion. Furthermore, as the number of parameters of MM-LDM
increases, the performance exhibits a significant boost, revealing
the potential of our proposed method in terms of scaling capabil-
ity. Samples of open-domain video generation are provided in the
supplementary material.

4.6 Ablation Studies
We conduct ablation studies on our multi-modal autoencoder and
report the results in Table. 5. Our base autoencoder independently
decodes signals for each modality based on the respective spa-
tial information from perceptual latents. To reduce computational
complexity, we share the diffusion-based signal decoder for both
modalities and initialize its parameters with [23]. Two learnable
embeddings are incorporated to prompt each modality. For a more

Table 5: Ablation study on the multi-modal autoencoder on
the Landscape dataset.

Model rFVD ↓ rKVD ↓ rFAD ↓
MM-LDM 53.9 2.4 8.9
−Adversarial training loss 75.7 3.9 8.9
−Finetune KL-VAE decoder 80.1 4.3 9.1
−Semantic cross-modal feature 87.7 5.1 9.1
−Learnable class embedding 94.4 5.7 9.2
−Latent average pooling 105.5 6.8 9.0
−Learnable modality prompt 110.7 6.9 9.3
−Weight Initialization 132.4 8.1 10.7

Table 6: Sensitivity analysis on loss weights.
# 𝜆𝑘𝑙 𝜆𝑐𝑜 𝜆𝑐𝑙 rFVD rKVD rFAD rFVD rKVD rFAD

Reso. 642 642 642 2562 2562 2562

1 1e-8 1.0 1.0 68.0 11.2 10.0 89.7 23.8 10.0
2 1e-8 0.3 0.3 62.6 10.8 10.0 90.3 24.5 9.9
3 1e-8 0.1 0.1 59.6 10.4 9.8 85.1 21.4 9.9
4 1e-7 0.1 0.1 63.5 10.7 10.0 88.8 24.2 10.0

comprehensive content representation, we apply average pooling
to each perceptual latent, adding the latent feature to the timestep
embedding and further enhancing the model performance. By in-
corporating the classification and contrastive losses, we leverage
prior knowledge of class labels and extract high-level cross-modal
information, which significantly boosts model performance. Since
the KL-VAEwas originally trained on natural images and is unfamil-
iar with physical images like audio images, we finetune its decoder
on each dataset for better performance. Finally, after training with
the adversarial loss, our autoencoder attains its best reconstruction
performance, achieving 53.9 rFVD, 2.4 rKVD, and 8.9 rFAD.

4.7 Sensitivity Analysis
Following prior work [27], we consistently utilized an adversarial
learning weight of 0.1 in all experiments. In addition, we experi-
mented with four configurations of loss weights, each obtained after
a 20-epoch run (approximately 16K steps) on the AIST++ dataset.
Across different settings, we assess metrics such as FVD, KVD, and
FAD for samples at resolutions of 64 and 256. As reported in Table
6, where Reso. denotes resolution, the performance of configura-
tion #3 outperforms that of other configurations at both 642 and
2562 resolutions. Thus, we select configuration #3 as the default
configuration in this paper.

5 CONCLUSION
This paper introduces MM-LDM, a novel latent diffusion model for
the SVG task. To reduce the computational complexity, we estab-
lish a low-level perceptual latent space for each modality, which is
perceptually equivalent to the raw signal space but encompasses a
much smaller feature size. Moreover, we employ a dual safeguard
mechanism to ensure cross-modal consistency between generated
audio and video content. First, we derive a high-level semantic space
to provide more insightful cross-modal information when decoding
audio and video latents. Second, sufficient cross-modal communi-
cation is allowed during the generation progress by incorporating
a full-attention mechanism into generative models. Our method
achieves new state-of-the-art results on multiple benchmarks with
improved efficiency and exciting adaptability.
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