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Figure 1: Samples of open-domain sounding video generation on the AudioSet dataset. All presented audios can be played in
Adobe Acrobat by clicking corresponding wave figures.
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A OPEN-DOMAIN VIDEO GENERATION
To evaluate the performance of our proposed method for open-
domain generation, we train it on the AudioSet dataset with 2
A800 GPUs. Samples are presented in Fig. 1. It can be seen that our
method can synthesize diverse video content with consistent audios,
demonstrating the effectiveness of our method on open-domain
sounding video generation.

B LIMITATIONS
Our research exhibits several limitations. First, when unifying the
data representation of audio and video inputs, we resize the audio
Mel Spectrogram image to the same spatial resolution with video
frames, which may lead to information loss to some extent. Second,
we utilize a shared KL-VAE and two modal-specific encoders to
compress audio and video signals, which significantly reduces the
computational complexity but can cause loss of signal information.

C SIGNAL DECODING
We design our signal decoder to utilize the generation power of
image diffusion model for synthesizing more details when decoding
both audio images and video frames, which is similar to [6]. When
reconstructing video signals, the signal decoder takes multiple fac-
tors into account, including the video perceptual latent 𝑧𝑣 , frame
index 𝑖 , audio semantic feature 𝑠𝑎 , learnable modality embedding,
and learnable class embedding. The video perceptual latent plays a
vital role in guiding the video reconstruction in two ways. Firstly,
it provides detailed spatial information for the 𝑖-th video frame
by utilizing residual blocks. This spatial information is integrated
into each residual block within the signal decoder following a zero
convolution to provide spatial signal guidance, which is the most
basic condition of our method. Secondly, we spatially average pool
the video perceptual latent and add it with the timestep embedding
to offer global content guidance. To incorporate cross-modal infor-
mation, we rasterize the audio semantic feature and feed it to the
cross attention layers. It is noteworthy that we share signal decoder
parameters for both audio and video modalities to reduce compu-
tational complexity. To this end, we introduce learnable prompt
embeddings specific to each modality for distinction. In addition,
given that our classification head can predict class labels precisely,
we further define a learnable embedding for each class to incor-
porate more prior knowledge. Both the modality embedding and
the class embedding are concatenated with the audio semantic
feature to feed cross-attention layers. When dealing with audio re-
construction, the signal decoder employs similar inputs, except for
the frame index. To reduce training time and enhance the quality
of reconstruction, we initialize our signal decoder with parameters
of a pretrained image diffusion model [4] and open all parameters
during training.

D DATASET DETAILS
We conduct experiments on two distinct and high-quality sounding
video datasets downloaded from MM-Diffusion [5], namely Land-
scape [1] and AIST++ [2]. The Landscape dataset comprises 1,000
non-overlapping video clips recording nature scenes. Each video
clip is 10 seconds, obtaining a total duration of about 2.7 hours
and encompassing 300K frames. These videos are categorized into

nine classes, each corresponding to a different nature scene. The
AIST++ dataset is a subset of the AIST dataset [8] and encompasses
1,020 video clips recording street dances. This dataset has a total
duration of around 5.2 hours, encompasses street dance videos with
60 copyright-cleared dancing songs and contains a total of 560K
frames. Each scene or dancing song is treated as a category in this
paper.

E LONG SOUNDING VIDEO GENERATION
For long sounding video generation, we introduce a condition en-
coder as shown in Fig. 2 and perform experiments on the AIST++
dataset. We first generate an initial sounding video unconditionally.
Then the condition encoder takes the generated sounding video
as input and outputs a follow-up sounding video. Long sounding
videos can obtained by iteratively performing the conditional gen-
eration step. We also consider the audio or video continuation
task by feeding the condition encoder with only video or audio
inputs at the first iteration. During the training of the condition
encoder, we randomly selected a generation task from 1) uncondi-
tional sounding video generation and conditional sounding video
generation tasks based on 2) sounding videos, 3) videos, and 4)
audios with uniform probability in each training iteration. Samples
of long sounding video generation, audio continuation, and video
continuation are partly presented in Fig. 3. More samples can be
obtained in https://anonymouss765.github.io/MM-LDM. It can be
seen that our method can synthesize consistent and realistic long
sounding videos, demonstrating the effectiveness of our proposed
method.

F MORE IMPLEMENTATION DETAILS
Structures of audio and video encoders. The audio encoder is

constructed in a similar way to the encoder part of U-Net, which
consists of residual blocks and spatial attention layers. Since video
signals are temporally redundant [7], we uniformly select keyframes
from the input video to feed our video encoder. The structure of the
video encoder differs from the audio encoder in two key aspects.
Firstly, it adds a temporal attention layer after each spatial attention
layer to capture temporal relationships. Secondly, an additional tem-
poral pooling layer is employed before the final layer to integrate
temporal information.

Structures of audio and video projectors. Our projectors in-
corporate multiple residual blocks, spatial attention layers, and
downsampling layers. Each residual block is succeeded by a spa-
tial attention layer and a downsampling layer, except for the last
block. By default, the audio and video projectors comprise three and
four residual blocks, downsampling the audio and video perceptual
latents by factors of 4 and 8, respectively.

Training settings. The multi-modal autoencoder is first trained
without the adversarial loss for 30 epochs on the Landscape dataset
and 10 epochs on the AIST++ dataset. Then, we introduce the
adversarial loss and continue training for an additional 30 epochs
on the Landscape dataset and 10 epochs on the AIST++ dataset.
Notably, we stop the gradient of perceptual latents 𝑧𝑎 and 𝑧𝑣 when
feed them to the projectors using 𝑑𝑒𝑡𝑎𝑐ℎ(). For the training of the
generator diffusion modal, i.e., DiT, we optimize it for 300 and 100

https://anonymouss765.github.io/MM-LDM
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Figure 2: We extend our MM-LDM to long video generation by incorporating a condition encoder, thus enabling to model the
sounding video generation, sounding video prediction, audio continuation, and video continuation simultaneously. 𝑧𝑝𝑟𝑒𝑎 and
𝑧
𝑝𝑟𝑒
𝑣 denotes the synthesized previous audio and video latents.

𝑣1 𝑣8 𝑣16 𝑣24 𝑣32 𝑣40 𝑣48 𝑣56 𝑣64 𝑣72 𝑣80

(a) Long Sounding Video Generation

(b) Audio Continuation

(b) Video Continuation

𝑣1 𝑣8 𝑣16 𝑣24 𝑣32 𝑣40 𝑣48 𝑣56 𝑣64

𝑣1 𝑣8 𝑣16 𝑣24 𝑣32 𝑣40 𝑣48 𝑣56 𝑣64 𝑣72 𝑣80

Figure 3: Samples of long video generation, audio continuation, and video continuation on the AIST++ dataset.

epochs on the Landscape and AIST++ datasets, respectively. Our
methods are implemented using PyTorch [3], and all experiments
are conducted on 8 NVIDIA A100 GPUs. The detailed settings of
model hyper parameters are presented in Table. 1.
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