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Computational resources: Exploratory experiments were conducted using a desktop machine with
two Nvidia RTX A6000 GPUs. The extended experimental results in the appendix were obtained on
a shared HPC system, where a total of 3500 GPU hours were used across the lifetime of the project
(Nvidia A100 GPUs).

A PROOFS

Here we give proofs of the theorems stated in the main body of the paper. To prove our first theorem,
Theorem 4.2, we require the following differential-geometric lemma.
Lemma A.1. Let M be any compact, embedded, d-dimensional submanifold of Rn, possibly with
boundary and corners. Equip M with the Riemannian structure inherited from this embedding and
let P be the normalised volume measure of M induced by its Riemannian structure. Then there exists
κ > 0 and C > 0 such that

P[B(x, r)] ≥ C rd

for all r ≤ κ and x ∈ M , where B(x, r) denotes the closed Euclidean ball around x of radius r.

Proof. Since the Riemannian structure on M is inherited from its embedding into Rn, the embedding
is bi-Lipschitz and hence there exists a constant c such that

∥x− y∥2 ≤ c−1g(x, y)

for all x, y ∈ M , where g(x, y) denotes the geodesic distance induced on M by the Riemannian
structure. It follows that for all r > 0, one has Bg(x, cr) ⊂ B(x, r), where Bg(x, r) is the closed
geodesic ball of radius r about x. Hence

P[B(x, r)] ≥ P(Bg(x, cr)) (11)

and it remains only to lower-bound Bg(x, cr) for r sufficiently small. This we achieve by considering
the geometry of M .

Given x ∈ M , let expx : TxM → M be the Riemannian exponential map and let (x, 0) ∈ TxM
denote the zero tangent vector. Recall that the injectivity radius of M is the largest number R for
which the restriction of expx to the R-ball about zero in TxM is a diffeomorphism onto its image for
all x ∈ M . The injectivity radius exists and is strictly positive by compactness of M . Let κ > 0 be
any number that is strictly smaller than c−1R.

Let us now fix x ∈ M . Since expx is a radial isometry, it maps B((x, 0), r) onto Bg(x, r) for any
r ≤ κ. Let dξ denote the standard Euclidean volume element in B((x, 0), r) and ω the volume form
on M . Since expx |B((x,0),r) is a diffeomorphism, there exists a nonvanishing, smooth function f on
B((x, 0), r) for which exp∗x ω = fx dξ. Letting c′x denote the minimum of fx, we then have

P[Bg(x, r)] =

∫
Bg(x,r)

ω =

∫
B((x,0),r)

exp∗x ω ≥ c′x

∫
B((x,0),r)

dξ = c′x c
′′rd. (12)

Here c′′ is the usual scaling factor one sees in the volume of a Euclidean d-ball. Using compactness
of M , we define c′ := infx∈M c′x > 0 and C := c′ c′′ cd. It then follows from the estimates (11) and
(12) that

P[B(x, r)] ≥ C rd

for all x ∈ M and 0 < r ≤ κ as claimed.

Proof of Theorem 4.2. The proof we give is derived from (Reznikov & Saff, 2016, Theorem 2.1),
however we wish to be more precise with our constants than is the case in Reznikov & Saff (2016).
We thus give a full proof here.

First, using the fact that supp(P) satisfies the hypotheses of Lemma A.1, fix C > 0 and κ > 0 for
which P[B(x, r)] ≥ C rd for all (x, r) ∈ M × [0, κ], and define Φ(r) := C rd. This function Φ will
play a key role in the proof.

Now fix ϵ > 0, let XN := (x1, . . . , xN ) be a set of i.i.d. points sampled from P, and let ρ(XN ) :=
supx mini ∥x − xi∥ denote the covering radius of XN . Suppose that ρ(XN ) > 2t for some real
number t, and let Et be any maximal set of points in supp(P) whose distinct pairwise distances are
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all bounded below by t. Then we can find x ∈ Et such that B(x, t)∩XN = ∅. Indeed, by hypothesis
on ρ(XN ), there exists y ∈ supp(P) such that XN ∩ B(y, 2t) = ∅. There also exists x ∈ Et such
that ∥x− y∥ < t, since otherwise we could add y to Et and contradict the maximality of Et. One
then has B(x, t) ⊂ B(y, 2t), so that B(x, t) does not intersect XN .

It has thus been shown that

P[ρ(XN ) > 2t] ≤ P[∃x ∈ Et : B(x, t) ∩XN = ∅]. (13)

Since P(B(x, t)) ≥ Φ(t) for all x, (1− Φ(t)) is an upper bound on the probability that a randomly
selected x′ will not lie within t of a given x. Letting #(Et) denote the cardinality of Et, the
independence of the xi therefore permits an upper bound

P[ρ(XN ) > 2t] ≤ #(Et) (1− Φ(t))N . (14)

The cardinality of Et can be further bounded via

1 ≥
∑
x∈Et

P[B(x, t)] ≥ #(Et)Φ(t), (15)

so that one has
P[ρ(XN ) > 2t] ≤ Φ(t)−1(1− Φ(t))N . (16)

Using the invertibility of Φ, one now sets Φ(t) = α log(N)N−1, with α = (1 − logN (ϵ)). The
McLaurin series for log(1− y) with y = α log(N)N−1 reveals that

(1− α log(N)N−1)N ≤ N−α, (17)

so that the bound becomes

P[ρ(XN ) > 2Φ−1(α log(N)N−1)] ≤ 1

α

N

log(N)
N−α ≤ N1−α. (18)

Substituting α = (1− logN (ϵ)) yields

P
[
ρ(XN ) > 2Φ−1

(
log(Nϵ−1)

N

)]
≤ ϵ, (19)

from which the general claim follows.

The result is specialised to the unit hypercube [0, 1]d simply by observing that in this case, one can
take

Φ(r) :=
πd/2

2dΓ(d/2 + 1)
rd, (20)

which is the volume of the intersection of the ball of radius r, centered at a corner, with the cube.

For the unit hypersphere Sd ⊂ Rd+1, fix x ∈ Sd and consider the Euclidean ball B(x, r) ⊂ Rd+1

centered at x. It is clear that the intersection Br := Sd ∩ B(x, r) is a geodesic for the inherited
Riemannian metric on Sd. In particular, for r < 2, Br is a hyperspherical cap. Elementary
trigonometry shows that the angle subtended by the line connecting x to 0 and the line connecting
any point on the boundary of Br to 0 is given by 2 sin−1(r/2). It then follows from (Li, 2011, p. 67)
and the elementary trigonometric identity sin(2θ) = 2 sin(θ) cos(θ) that one has

P[B(x, r)] = C−1 π
d+1
2

Γ
(
d+1
2

)Ir2−r4/4

(
d

2
,
1

2

)
,

where

Ix(a, b) =
Γ(a+ b)

Γ(a)Γ(b)

∫ x

0

ta−1(1− t)b−1 dt

is the regularised incomplete beta function and C = 2π
d
2Γ(d/2)−1 is the volume of the unit d-sphere.

For any 0 < t < 1 one has (1− t)1−
1
2 ≥ 1, thus one has the estimate

Ir2−r4/4

(
d

2
,
1

2

)
≥

Γ
(
d+1
2

)
Γ
(
d
2

)
Γ
(
1
2

) (r2 − r4/4)
d
2 .
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Now, fixing 0 < γ < 1 and assuming r2/4 < γ, we therefore have

P(B(x, r)) ≥ 1

2
(1− γ)

d
2 rd.

We can then use Φ(r) = 1
2 (1 − γ)

d
2 rd in defining δ(N, ϵ) = 2Φ−1(log(Nϵ−1)N−1) as

in Equation (19) provided only that the assumption δ2/4 < γ is satisfied. Setting δ =

21+
1
d (1 − γ)−

1
2 (log(Nϵ−1)N−1)

1
d , this requirement reduces to having N sufficiently large that

2
2
d (log(Nϵ−1)N−1)

2
d < γ − γ2.

For the final result, when pushing forward a good distribution by a Lipschitz function, the stated
result follows from the Lipschitz identity.

Proof of Theorem 4.3. Fix N ∈ N and 0 < ϵ < 1. By δ-goodness of the data distribution, with
probability at least 1 − ϵ over i.i.d. samples (x1, . . . , xN ), the balls {B(xi, δ(N, ϵ))}Ni=1 cover
supp(P). For notational convenience, denote B(xi, δ(N, ϵ)) by simply Bi. Conditioning on the event
that the Bi cover supp(P), one has

∥f∥Lip,P ≤ sup
x∈

⋃N
i=1 Bi

∥Jf(x)∥2 = max
i

sup
x∈Bi

∥Jf(x)∥2

≤ max
i

sup
x∈Bi

∥Jf(xi)− Jf(xi) + Jf(x)∥2

≤ max
i

(
∥Jf(xi)∥2 + sup

x∈Bi

∥Jf(x)− Jf(xi)∥2
)

≤ max
i

(
∥Jf(xi)∥2 + VBi(Jf)

)
The result follows.

Proof of Theorem 5.1. Recall that by hypothesis on c, one has c(z1, z2) ≥ α∥z1− z2∥22 for all z1, z2
in the domain of c. Thus, since c(f(xi), f

∗(xi)) < ℓ2α for all i, we therefore have

∥f(xi)− f∗(xi)∥2 ≤ ℓ (21)

for all i. That is, for each i, f(xi) is contained in the ℓ-ball centred on the target value f∗(xi).

Since the smallest distance between any two f(xi) and f(xj) is realised when these points lie on the
straight line between f∗(xi) and f∗(xj), one has the lower bound

∥f(xi)− f(xj)∥2 ≥ ∥f∗(xi)− f∗(xj)∥2 − 2ℓ (22)

for all i, j. Invoking the Lipschitz identity, and using the fact that xi = xj for i ̸= j with probability
zero, then gives

∥f∥Lip,P ≥ max
i ̸=j

∥f∗(xi)− f∗(xj)∥2 − 2ℓ

∥xi − xj∥2
. (23)

Conditioning now on the event that supp(P) ⊂
⋃N

i=1 B(xi, δ(ϵ,N)), which occurs with probability
at least 1− ϵ by δ-goodness of P, and invoking Theorem 4.3 together with the subadditivity of the
component-wise maximum function, gives the result.

Proof of Theorem 6.1. Fix N ∈ N and 0 < ϵ < 1. Since P is δ-good, with probability at least 1− ϵ
over i.i.d. samples (x1, . . . , xN ), for each x ∈ supp(P) there exists j such that ∥x− xj∥2 ≤ δ(N, ϵ).
Conditioning on this event and fixing x ∈ supp(P) with corresponding nearby xj , the triangle
inequality applies to yield

∥f(x)− f∗(x)∥2 ≤ ∥f(x)− f(xj)∥2 + ∥f(xj)− f∗(xj)∥2 + ∥f∗(xj)− f∗(x)∥2, (24)

which gives
∥f(x)− f∗(x)∥2 ≤ δ(N, ϵ)

(
∥f∥Lip,P + ∥f∗∥Lip

)
(25)

after applying the Lipschitz identities and invoking the hypothesis that f and f∗ agree on training
data. The proof of Theorem 4.3 now applies to show that, conditioned on this same event, one has

∥f(x)− f∗(x)∥2 ≤ δ(N, ϵ)
(
∥f∗∥Lip +max

i

(
∥Jf(xi)∥2 + VBi

(Jf)
))
. (26)

Taking the P-expectation of both sides yields the result.
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A.1 A NOTE ON JACOBIAN COMPUTATIONS

In our experiments, the Jacobian norm and sharpnesss are estimated using the power method and the
Hessian/Jacobian-vector product functions in PyTorch. Recalling that we use Rd×N to denote the set
of data matrices, consisting of a batch of data column vectors concatenated together, there are two
different kinds of functions f : Rd0×N → Rd1×N whose Jacobians we would like to compute. The
first of these are functions defined columnwise by some other map g : Rd0 → Rd1 : that is

f(X)j = g(Xj), (27)

where lower indices index columns so that Xj ∈ Rd0 for all j. In this case, flattening (columns first)
shows that Jf(X) is just a block-diagonal matrix, whose jth block is Jf(Xj). Hence ∥Jf(X)∥2 =
maxj ∥Jf(Xj)∥2. For a network in evaluation mode, every layer Jacobian is of this form.

On the other hand, for a network in train mode (as is the case when evaluating the Hessian of the
loss), batch normalisation (BN) layers do not have this form. BN layers in train mode are nonlinear
transformations defined by

bn(X) :=
X − EX

(ϵ+ σ2X)
1
2

, (28)

where E and σ2 denote mean and variance computed across the column index (again we omit the
parameters as they are not essential to the discussion). The skeptical reader would rightly question
whether the Jacobian of BN in train mode (to which Equation (4) applies) is sufficiently close to the
Jacobian of BN in evaluation mode (to which Theorem 6.1 applies) for Ansatz 3.1 to be valid for BN
networks. Our next and final theorem says that for sufficiently large datasets, this is not a problem.

Theorem A.2. Let bnT and bnV denote a batch normalisation layer in train and evaluation mode
respectively. Given a data matrix X ∈ Rd×N , assume the coordinates of X are O(1). Then
JbnT = JbnV +O(N−1).

Proof of Theorem A.2. Given a data matrix X , let its row-wise mean and variance, thought of as
constant vectors, be denoted by E and σ2. The evaluation mode BN map bnV : Rd×N → Rd×N is
simply an affine transformation, with Jacobian coordinates given by

∂(bnV )
i
j

∂xk
l

=
δikδ

i
l

(ϵ+ σ2)
1
2

. (29)

By (MacDonald et al., 2022, Lemma 8.3), the train mode BN map bnT : Rd×N → Rd×N can be
thought of as the composite v ◦m, where m, v : Rd×N → Rd×N are defined by

m(X) := X − 1

N
X1N×N (30)

and
v(Y ) := (ϵ+N−1∥Y ∥2row)−

1
2Y (31)

respectively. Here 1N×N denotes the N×N matrix of 1s, and ∥Y ∥row denotes the vector of row-wise
norms of Y .

As in (MacDonald et al., 2022, Lemma 8.3), one has

∂vij
∂ykl

(Y ) =
δik

(ϵ+N−1∥Y i∥2) 1
2

(
δjl −

yily
i
j

(ϵ+N−1∥Y i∥2)

)
,

∂mi
j

∂xk
l

(Y ) = δik(δ
i
l −N−1) (32)

for any data matrix Y . Thus, invoking the chain rule and simplifying, we therefore get

∂(bnT )
i
j

∂xk
l

(X) =
δikδ

i
l

(ϵ+ σ2)
1
2

− 1

N

δik(x
i
l − Ei)(xi

l − Ei)

(ϵ+ σ2)
3
2

+O(N−1) (33)

Since the components x are O(1) by hypothesis, the result follows.
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B ADDITIONAL EXPERIMENTAL RESULTS AND DETAILS

B.1 PROGRESSIVE SHARPENING

We trained ResNet18 and VGG11 (superficially modifying https://github.com/
kuangliu/pytorch-cifar/blob/master/models/resnet.py and https:
//github.com/chengyangfu/pytorch-vgg-cifar10/blob/master/vgg.py
respectively, with VGG11 in addition having its dropout layers removed, but BN layers retained)
with full batch gradient descent on CIFAR10 with learning rates 0.08, 0.04 and 0.02, using label
smoothings of 0.0, 0.5 and 0.75. The models with no label smoothing were trained to 99 percent
accuracy, and the number of iterations required to do this were then used as the number of iterations
to train the models using nonzero label smoothing. Sharpness and Jacobian norm were computed
every 5, 10, or 20 iterations depending on the number of iterations required for convergence of
the non-label-smoothed model. Five trials were conducted in each case, with mean and standard
deviation plotted. Line style indicates degree of label smoothing.

The dataset was standardised so that each vector component is centered, with unit standard deviation.
Full batch gradient descent was approximated by averaging the gradients over 10 “ghost batches” of
size 5000 each, as in Cohen et al. (2021). This is justified with BN networks by Theorem A.2. The
Jacobian norm we plot is for the Jacobian of the softmaxed model, as required by our derivation of
Equation (9). The sharpness and Jacobian norms were estimated using a randomly chosen subset
of 2500 data points. In all cases, the smoother labels are associated with less severe increase in
Jacobian and sharpness during training, as predicted by Equation (9). Refer to fullbatch.py in
the supplementary material for the code we used to run these experiments.
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Figure 6: VGG11, learning rate 0.08
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Figure 7: VGG11, learning rate 0.04
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Figure 8: VGG11, learning rate 0.02
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Figure 9: ResNet18, learning rate 0.08
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Figure 10: ResNet18, learning rate 0.04
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Figure 11: ResNet18, learning rate 0.02

B.2 BATCH SIZE AND LEARNING RATE

We trained a VGG11 and ResNet18 (superficially modifying https://github.com/
chengyangfu/pytorch-vgg-cifar10/blob/master/vgg.py and https:
//github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py
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respectively, additionally removing dropout and retaining BN in the VGG11) on CIFAR10 and
CIFAR100 at constant learning rates 0.1, 0.01, and 0.001, with batch sizes of 64, 128, 256, 512 and
1024. The data were normalised by their RGB-channelwise mean and standard deviation, computed
across all pixel coordinates and all elements of the training set. Five trials of each were conducted.
Training loss on the full data set was computed every 100 iterations, and training was terminated
when the average of the most recent 10 such losses was smaller than 0.01 for CIFAR10 and 0.02 for
CIFAR100. Weight decay regularisation of 0.0001 was used throughout. Refer to batch lr.py in
the supplementary material.

At the termination of training, training loss and test loss were computed, with estimates of the
Jacobian norm and sharpness computed using a randomly selected subset of size 2000 from the
training set. The same seed was used to generate the parameters for a given trail as was used to
generate the random subset of the training set.

We see that, on the whole, the claim that smaller batch sizes and larger learning rates lead to flatter
minima and better generalisation is supported by our experiments, with Jacobian norm in particular
being well-correlated to generalisation gap as anticipated by Theorem 6.1 and Ansatz 3.1. As noted
in the main body of the paper, the notable exception to this is ResNet models trained with the largest
learning rate, where Jacobian norm appears to underestimate the Lipschitz constant of the model
and hence the generalisation gap. We speculate that this is due to large learning rate training of skip
connected models leading to larger Jacobian Lipschitz constant, making the Jacobian norm a poorer
estimate of the Lipschitz constant of the model and hence of generalisation (Theorems 4.3 and 6.1).
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Figure 12: ResNet18 on CIFAR10, learning rate on x axis. Line style indicates batch size.
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Figure 13: ResNet18 on CIFAR100, learning rate on x axis. Line style indicates batch size.
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Figure 14: VGG11 on CIFAR10, learning rate on x axis. Line style indicates batch size.
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Figure 15: VGG11 on CIFAR100, learning rate on x axis. Line style indicates batch size.
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Figure 16: ResNet18 on CIFAR10, batch size on x axis. Line style indicates learning rate.
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Figure 17: ResNet18 on CIFAR100, batch size on x axis. Line style indicates learning rate.
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Figure 18: VGG11 on CIFAR10, batch size on x axis. Line style indicates learning rate.
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Figure 19: VGG11 on CIFAR100, batch size on x axis. Line style indicates learning rate.

B.3 EXTENDED PRACTICAL RESULTS

Here we provide the experimental details and additional experimental results for Section 6. In
addition to the generalisation gap, sharpness, and (input-output) Jacobian norm, these plots include
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the operator norm of the Gauss-Newton matrix, the loss on the training set, and the accuracy on
the validation set. Note that the figures in this section present the final metrics at the conclusion of
training as a function of the regularisation parameter, and hence progressive sharpening (as a function
of time) will not be observed directly. Rather, the purpose is to examine the impact of different
regularisation strategies on the Hessian and model Jacobian.

In all cases, the model Jacobian is correlated with the generalisation gap, whereas the Hessian is often
uncorrelated. Moreover, the norm of the Gauss-Newton matrix is (almost) always very similar to that
of Hessian, in line with previous empirical observation Papyan (2018; 2019); Cohen et al. (2021).
The results support the arguments that (i) the model Jacobian is strongly related to the generalisation
gap and (ii) while the Hessian is connected to the model Jacobian, and forcing the Hessian to be
sufficiently small likewise appears to force the Jacobian to be smaller (see the SAM plots), the
Hessian is also influenced by other factors and can be large even without the Jacobian being large
(see other plots). All of these phenomena are consistent with our ansatz.

The figures in this section present results for {CIFAR10, CIFAR100} × {VGG11, ResNet18} ×
{batch-norm, no batch-norm}. Line colour and style denote different initial learning rates. The models
were trained for 90 epochs with a minibatch size of 128 examples using Polyak momentum of 0.9.
The learning rate was decayed by a factor of 10 after 50 and 80 epochs. Models were trained using the
softmax cross-entropy loss with weight decay of 0.0005. (If weight decay were disabled, we would
often observe the Hessian to collapse to zero as the training loss went to zero, due to the vanishing
second gradient of the cost function in this region (Cohen et al., 2021, Appendix C). This would make
the correlation between sharpness and generalisation gap even worse.) Refer to train jax.py
and slurm/launch wd sweep.sh for the default configuration and experiment configuration,
respectively.

For each regularisation strategy, the degree of regularisation is parametrised as follows. Label
smoothing considers smoothed labels (1 − α)y + α(1/n) with α ∈ [0, 1]. Mixup takes a convex
combination of two examples (1− θ)(x, y) + θ(x′, y′). The coefficient θ is drawn from a symmetric
beta distribution θ ∼ Beta(β, β) with β ∈ [0,∞), which corresponds to a Bernoulli distribution
when β = 0 and a uniform distribution when β = 1. Data augmentation modifies the inputs x with
probability p ∈ [0, 1]; the image transforms which we adopt are the standard choices for CIFAR
(four-pixel padding, random crop, random horizontal flip). Sharpness Aware Minimisation (SAM)
restricts the distance ρ between the current parameter vector and that which is used to compute the
update, which simplifies to SGD when ρ = 0.

For all results presented in this section, the loss and generalisation gap were computed using “clean”
training examples; that is, without mixup or data augmentation in the respective experiments (despite
this requiring an additional evaluation of the model for each step). The Hessian, Gauss-Newton
and input-output Jacobian norms were similarly computed using a random batch of 1000 clean
training examples. The losses and matrix norms in this section similarly exclude weight decay. Label
smoothing was interpreted as a modification of the loss function rather than the training distribution,
and therefore was included in the calculation of the losses and matrix norms. Batch-norm layers were
used in “train mode” (statistical moments computed from batch) for the Hessian and Gauss-Newton
matrix, and in “eval mode” (statistical moments are constants) for the Jacobian matrix, although this
difference was observed to have negligible effect on the Jacobian norm.
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Figure 20: VGG11 without batch-norm on CIFAR10.

22



Under review as a conference paper at ICLR 2024

0.00

0.25

0.50

0.75

1.00

1.25

Ge
n.

 g
ap

 (l
os

s)
Label Smoothing

0.001
0.01
0.1
1.0

0.00

0.25

0.50

0.75

1.00

1.25

Mixup
0.001
0.01
0.1
1.0

0.00

0.25

0.50

0.75

1.00

1.25

Data Aug.
0.001
0.01
0.1
1.0

0.00

0.25

0.50

0.75

1.00

1.25

Sharpness Aware Min.
0.001
0.01
0.1
1.0

0

10

20

30

40

Ja
co

bi
an

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0.1

1

10

100

He
ss

ia
n

0.1

1

10

100

0.1

1

10

100

0.1

1

10

0.1

1

10

100

Ga
us

s-
Ne

wt
on

0.1

1

10

100

0.1

1

10

100

0.1

1

10

0.0

0.5

1.0

1.5

2.0

Tr
ai

n 
lo

ss
 (e

xc
l. 

re
g.

)

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8

20%

40%

60%

80%

Va
l. 

ac
c.

0.0 0.10.2 0.5 1.0 2.0

20%

40%

60%

80%

0.00 0.25 0.50 0.75 1.00
p

20%

40%

60%

80%

0.0 0.010.02 0.05 0.1 0.2

20%

40%

60%

80%

CIFAR10, VGG11 (BN: true)

Figure 21: VGG11 with batch-norm on CIFAR10.
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Figure 22: ResNet18 without batch-norm on CIFAR10.

24



Under review as a conference paper at ICLR 2024

0.00

0.25

0.50

0.75

1.00

1.25

Ge
n.

 g
ap

 (l
os

s)
Label Smoothing

0.001
0.01
0.1
1.0

0.25

0.50

0.75

1.00

1.25

Mixup
0.001
0.01
0.1
1.0

0.25

0.50

0.75

1.00

1.25

Data Aug.
0.001
0.01
0.1
1.0

0.00

0.25

0.50

0.75

1.00

1.25

Sharpness Aware Min.
0.001
0.01
0.1
1.0

0

20

40

60

Ja
co

bi
an

20

40

60

80

20

30

40

50

60

70

20

40

60

0.1

1

10

100

He
ss

ia
n

0.1

1

10

100

0.1

1

10

100

0.1

1

10

0.1

1

10

100

Ga
us

s-
Ne

wt
on

0.1

1

10

100

0.1

1

10

100

0.1

1

10

0.0

0.5

1.0

1.5

2.0

Tr
ai

n 
lo

ss
 (e

xc
l. 

re
g.

)

0.0

0.2

0.4

0.6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8

50%

60%

70%

80%

90%

Va
l. 

ac
c.

0.0 0.10.2 0.5 1.0 2.0

70%

75%

80%

85%

90%

0.00 0.25 0.50 0.75 1.00
p

70%

75%

80%

85%

90%

95%

0.0 0.010.02 0.05 0.1 0.2
65%

70%

75%

80%

85%

90%

CIFAR10, ResNet18 (BN: true)

Figure 23: ResNet18 with batch-norm on CIFAR10.
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Figure 24: VGG11 without batch-norm on CIFAR100.
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Figure 25: VGG11 with batch-norm on CIFAR100.
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Figure 26: ResNet18 without batch-norm on CIFAR100.
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Figure 27: ResNet18 with batch-norm on CIFAR100.
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C ON MEDIATING FACTORS IN THE ANSATZ

In this section we provide classification and regression experiments to show that the relationship
between loss curvature and input-output Jacobians is not always simple. Recall again Equation (4):

C DFX DFT
X CT = C

( L∑
l=1

(
JfL · · · Jfl+1 Dfl DfT

l JfT
l+1 · · · JfT

L

))
CT . (34)

Due to the presence of the parameter derivatives Dfl and the square root C of the Hessian of the cost
function, as well as the absence of the first layer Jacobian in Equation (4), it is not always true that
the magnitude of the Hessian and that of the model’s input-output Jacobian are correlated.

C.1 THE COST FUNCTION

We trained a VGG11, again using https://github.com/chengyangfu/
pytorch-vgg-cifar10/blob/master/vgg.py with drouput layers removed and
BN layers retained, on CIFAR10 using SGD with a batch size of 128, using differing degrees of
label smoothing. Data was standardised so that each RGB channel has zero mean and unit standard
deviation over all pixel coordinates and training samples. In Figure 28 we plot the sharpness and
Jacobian norm every five iterations in the first epoch, observing exactly the same relationship between
label smoothing, Jacobian norm and sharpness as predicted in Section 5. Refer to vgg sgd.py in
the supplementary material for the code to run these experiments.
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Figure 28: Effect of label smoothing on sharpness, Jacobian norm and output Frobenius norm during
the first epoch of SGD. Line style indicates label smoothing. Exactly as in the full batch GD case, the
smoother labels are associated with less severe increase of the Jacobian and less severe progressive
sharpening.

Zooming out, however, to the full training run over 90 epochs, Figure 29 shows that the Hessian
ultimately behaves markedly differently.
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Figure 29: Effect of label smoothing on sharpness, Jacobian norm and output Frobenius norm during
90 epochs of SGD. Line style indicates label smoothing. When the output norm gets too large, the
decay of the C terms in Equation (4) begins to overtake growth in Jacobian norm, ultimately causing
the sharpness with unsmoothed labels to collapse to zero, where as sharpness values for smoothed
labels plateau at nonzero values. Note also the the Jacobian norm presented is the Jacobian norm of
the softmaxed model: the growth in output norm therefore also drives the Jacobian norm to zero.
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The reason for this is that the norm of the network output grows to infinity in the unsmoothed case
(Figure 29), and this growth in output corresponds to a vanishing of the C term (Cohen et al., 2021,
Appendix C) corresponding to the cross-entropy cost in Equation (4). Note that this growth is also
to blame for the eventual collapse of the norm of the Jacobian of the softmaxed model, since the
derivative of softmax vanishes at infinity also. This vanishing of the Jacobian should not be interpreted
as saying that the Lipschitz constant of the model has collapsed (since if this were the case the model
would not be able to fit the data), but rather that the maximum Jacobian norm over training samples
has ceased to be a good approximation of the Lipschitz constant of the model, due to the Jacobian
itself having a large Lipschitz constant (Theorem 4.3).

C.2 THE PARAMETER DERIVATIVES

Recall Theorem 5.1. We have already shown that decreasing the distance between labels decreases
the severity of Jacobian growth, and, in line with Ansatz 3.1, also reduces the severity of progressive
sharpening. It seems that one could also manipulate this severity by increasing the distance between
input data points, for instance by scaling all data by a constant. We test this training simple, fully-
connected, three layer networks, of width 200, with gradient descent on the first 5000 data points of
CIFAR10. The data is standardised to have componentwise zero mean and unit standard deviation
(measured across the whole dataset). The networks are initialised using the uniform distribution
on the interval with endpoints ±1/

√
in features (default PyTorch initialisation) and trained with a

learning rate of 0.2 for 300 iterations using the cross-entropy cost. Both ReLU and tanh activations
are considered. Refer to small network.py in the supplementary material for the code we used
to run these experiments.

We scale the inputs by factors of 0.5, 1.0 and 1.5, bringing the data closer together at 0.5 and further
apart at 1.5. From Theorem 5.1, we anticipate the Jacobian growth to go from most to least severe
on these scalings respectively, with sharpness growth behaving similarly according to Ansatz 3.1.
Surprisingly, we find that while Jacobian growth is more severe for the smaller scalings, the sharpness
growth is less.

The reason for this is the effect of data scaling on the parameter derivatives Dfl in Equation (4). It is
easily computed (cf. MacDonald et al. (2022)) that the parameter derivative Dfl is simply determined
by the matrix fl−1(X) of features from the previous layer. In the experimental settings we examined,
these matrices are larger for the larger scaling values, which pushes the sharpness upwards despite
Jacobian norm being smaller. Figures 30 and 31 show this phenomenon on ReLU and tanh activated
networks respectively.
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Figure 30: Effect of input scaling on sharpness and Jacobian norm for a ReLU network (5 trials).
Line style denotes input scaling factor. Scaling data closer together does cause more severe increase
in Jacobian norm, but corresponds to less severe increase in sharpness. This is due to the data scaling
increasing the spectral norm of the feature maps.
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Figure 31: Effect of input scaling on sharpness and Jacobian norm for a tanh network (5 trials). Line
style denotes input scaling factor. Scaling data closer together does cause more severe increase in
Jacobian norm, but corresponds to less severe increase in sharpness. This is due to the data scaling
increasing the spectral norm of the feature maps.

C.3 THE ABSENCE OF THE FIRST LAYER JACOBIAN

We replicate the experiments of Section 8 in Ramasinghe et al. (2023), where it is demonstrated that
flatness of minimum is not correlated with model smoothness in a simple regression task, and point
to a possible explanation of this within our theory.

In detail, a four layer MLP with either Gaussian or ReLU activations is trained to regress 8 points
in R2. Each network is trained from a high frequency initialisation (obtained from default PyTorch
initialisation on the Gaussian network, and by pretraining on sin(6πx) for the ReLU network) to yield
a non-smooth fit of the target data, and a low frequency initialisation (a wide Gaussian distribution
for the Gaussian-activated network, and the default PyTorch initialisation for the ReLU network)
to achieve a smooth fit of the data (see Figure 32). Refer to coordinate network.py in the
supplementary material for the code we used to run this experiment.

(a) Gaussian, high freq. (b) Gaussian, low freq. (c) ReLU, high freq. (d) ReLU, low freq.

Figure 32: Interpolations of 8 points by networks started from high frequency and low frequency
initialisations. The smoother interpolations have lower Jacobian norm over the training data.

The models were trained with gradient descent using a learning rate of 1e − 4 and momentum of
0.9, for 10000 epochs for the Gaussian networks and 100000 epochs for the ReLU networks. The
pretraining for the high frequency ReLU initialisation was achieved using Adam with a learning rate
of 1e− 4 and default PyTorch settings.

Table 1: Norm values for regression networks, replicating result of Ramasinghe et al. (2023)

Gaussian activated network
Norm High freq. Low freq.

Jacobian norm 326.80± 182.51 84.07± 49.30
sharpness 13517.61± 3871.97 18353.54± 5751.98
First layer weight norm 9.09± 0.34 0.56± 0.02

Tables 1 and 2 record the means and standard deviations of loss Hessian and Jacobian norms of the
Gaussian and ReLU networks over 10 trials. As in Ramasinghe et al. (2023), we find that while
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Table 2: Norm values for regression networks, replicating result of Ramasinghe et al. (2023)

ReLU activated network
Norm High freq. Low freq.

Jacobian norm 121.59± 80.79 42.96± 7.82
sharpness 14211.05± 4767.26 9922.45± 3330.37
First layer weight norm 9.61± 0.28 9.56± 0.16

the smoothly interpolating ReLU models on average land in flatter minima than the non-smoothly
interpolating models, the opposite is true for the Gaussian networks.

Keeping in mind that the high variances in these numbers make it difficult to come to a conclusion
about the trend, we propose a possible explanation for why the Gaussian activated networks do not
appear to behave according to Ansatz 3.1. From Equation (4), the Hessian cannot be expected to
relate to the Jacobian of the first layer. Note now the discrepancy between the first layer weight norms
in the low frequency versus high frequency fits with the Gaussian networks, which does not occur
for the ReLU networks. We believe this to be the cause of the larger Hessian for the low-frequency
Gaussian models: with such a small weight matrix in the first layer, all higher layers must be relied
upon to fit the data, making their Jacobians higher than they would otherwise need to be. These larger
Jacobians would then push the Hessian magnitude higher by Equation (4).

D RELATIONSHIP TO THE PARAMETER-OUTPUT JACOBIAN

In Lee et al. (2023), the parameter-output Jacobian is advocated as the mediating link between loss
sharpness and generalisation. Extensive experiments are provided to support this claim. In particular,
it is shown that regularising by the Frobenius norm of the parameter-output Jacobian during training
is sufficient to alleviate the poor generalisation of (toy) networks trained using a small learning rate.
However, no theoretical reasons are given for why the parameter-output Jacobian should be related to
generalisation.

We expect that our Theorem 6.1 could provide the theoretical link missing in Lee et al. (2023). Indeed,
the term in brackets in our Equation (4) is precisely the Gram matrix of the parameter-output Jacobian.
Thus, our Ansatz 3.1 states that regularisation of the parameter-output Jacobian will also regularise
the input-output Jacobian. If this is true, then we should see similar improvements in network
performance when training with a small learning rate using an input-output Jacobian regulariser
to those seen in Lee et al. (2023) when training with the parameter-output Jacobian regulariser.
Moreover, one should see that these improvements are correlated to input-output Jacobian norm in all
cases. Figure 33 demonstrates that this is indeed the case, using the same settings on data and models
as were used for the regulariser experiments in Section 6.
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Figure 33: All models trained for 90 epochs. x-axis denotes regularisation coefficient, and “Jacobian
norm” refers to spectral norm. “ref 1e-1” and “ref 1e-3” are means over 5 trials of unregularised
networks (regularisation coefficient set to zero) trained at learning rates of 1e-1 and 1e-3 respectively,
shown for reference. The unregularised models trained with learning rate 1e-1 had their learning rate
decayed by a factor of 10 every 30 epochs, so that their final learning rates were 1e-3. Learning rate
scheduling was not used for any other trials.“Param.” is trained with the parameter-output regulariser
of Lee et al, while “Input” is trained by regularising the minibatch Jacobian Frobenius norm using
a similar approximation as Lee et al, namely ∥J∥F ≈ ∥uTJ∥2 for u sampled uniformly from the
NC − 1-sphere, where N is the batch size and C is the number of channels. 5 trials shown for the
regularised trials, as well as means and 1 standard deviation shaded. Note the consistent downwards
trend of both Jacobian norm and generalisation gap in all cases, as is consistent with our theory.
Small Jacobian norm with large generalisation gap suggest, according to our theory, that the Jacobian
of the model has ceased to be a good approximation of the Lipschitz constant of the model.
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