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ABSTRACT

We present LongLoRA, an efficient fine-tuning approach that extends the context
sizes of pre-trained large language models (LLMs), with limited computation cost.
Typically, training LLMs with long context sizes is computationally expensive,
requiring extensive training hours and GPU resources. For example, training on
the context length of 8192 needs 16× computational costs in self-attention layers
as that of 2048. In this paper, we speed up the context extension of LLMs in
two aspects. On the one hand, although dense global attention is needed during
inference, fine-tuning the model can be effectively and efficiently done by sparse
local attention. The proposed shifted sparse attention (S2-Attn) effectively enables
context extension, leading to non-trivial computation saving with similar perfor-
mance to fine-tuning with vanilla attention. Particularly, it can be implemented
with only two lines of code in training, while being optional in inference. On
the other hand, we revisit the parameter-efficient fine-tuning regime for context
expansion. Notably, we find that LoRA for context extension works well under
the premise of trainable embedding and normalization. LongLoRA combines this
improved LoRA with S2-Attn. LongLoRA demonstrates strong empirical results
on various tasks on Llama2 models from 7B/13B to 70B. LongLoRA extends
Llama2 7B from 4k context to 100k, or Llama2 70B to 32k on a single 8× A100
machine. LongLoRA extends models’ context while retaining their original archi-
tectures, and is compatible with most existing techniques, like Flash-Attention2.
In addition, we further conduct supervised fine-tuning with LongLoRA and our
long instruction-following LongAlpaca dataset. All our code, models, dataset, and
demo are available at github.com/dvlab-research/LongLoRA.
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Figure 1: LongLoRA closes the accuracy gap that between conventional LoRA and full fine-tuning,
while still maintaining up to 1.8× lower memory cost than full fine-tuning. Furthermore, LongLoRA
improves the training speed of LoRA by up to 1.8× with S2-Attn. Llama2-7B are fine-tuned to
various context lengths with Flash-Attention2 (Dao, 2023) and DeepSpeed (Rasley et al., 2020) stage
2 and evaluated on the proof-pile (Azerbayev et al., 2022) test set in perplexity.

1 INTRODUCTION

Large language models (LLMs) are typically trained with a pre-defined context size, such as 2048
tokens for LLaMA (Touvron et al., 2023a) and 4096 tokens for Llama2 (Touvron et al., 2023b).
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Figure 2: Overview of LongLoRA. We introduce Shifted Sparse Attention (S2-Attn) during fine-
tuning. The trained model retains original standard self-attention at inference time. In addition to
training LoRA weights in linear layers, LongLoRA further makes embedding and normalization
layers trainable. This extension is pivotal for context extension, and only introduces a minimal
number of additional trainable parameters.

However, the pre-defined size limits LLMs in many applications, like summarizing long documents
or answering long questions. To resolve this limitation, some recent works (Chen et al., 2023;
Tworkowski et al., 2023; Mohtashami & Jaggi, 2023) train or fine-tune LLMs to longer context.
However, training an LLM from scratch with long sequences poses computational challenges, and
fine-tuning an existing pre-trained LLM is also considerably expensive. For instance, Position
Interpolation (Chen et al., 2023) spent 32 A100 GPUs to extend LLaMA models from 2k to 8k
context, and 128 A100 GPUs for longer context fine-tuning. FOT (Tworkowski et al., 2023) used 32
TPUs for standard transformer training and 128 TPUs for LongLLaMA. These computation resources
are typically unaffordable for common researchers, which naturally leads us to question: can we
extend the context window of LLMs efficiently?

One straightforward approach is to fine-tune a pre-trained LLM via low-rank adaptation (LoRA) (Hu
et al., 2022). LoRA modifies the linear projection layers in self-attention blocks by utilizing low-rank
matrices, which are generally efficient and reduce the number of trainable parameters. However, our
empirical findings indicate that training long context models in this manner is neither sufficiently
effective nor efficient. In terms of effectiveness, plain low-rank adaptation results in a high perplexity
in long context extension, as in Table 2. Increasing the rank to a higher value, e.g., rank = 256,
does not alleviate this issue. In terms of efficiency, regardless of whether LoRA is employed or not,
computational cost increases dramatically as the context size expands, primarily due to the standard
self-attention mechanism (Vaswani et al., 2017). As shown in Figure 1, even with LoRA, the training
hours for the standard Llama2 model increase substantially when the context window expands.

In this work, we introduce LongLoRA, an efficient fine-tuning approach that extends the context
windows of pre-trained LLMs, e.g., Llama2 (Touvron et al., 2023b). LoRA (Hu et al., 2022) uses
low-rank weight updates to approximate full fine-tuning. Similarly, we find that short attention is
also able to approximate long context during training. We present shifted sparse attention (S2-Attn)
as an efficient substitute for standard self-attention. As shown in Figure 2, we split context length
into several groups and conduct attention in each group individually. In half attention heads, we shift
the tokens by half group size, which ensures the information flow between neighboring groups. For
example, we use S2-Attn with group size 2048 to approximate the total 8192 context length training.
This shares a high-level spirit with Swin Transformer (Liu et al., 2021).

Models fine-tuned via S2-Attn retain the original attention architecture during inference. This
facilitates most existing optimization and infrastructure. Techniques for common LLMs can also be
applied to ours. For example, Flash-Attention2 (Dao et al., 2022; Dao, 2023) is compatible with our
method in both training and inference time. The reason behind this is that short attention resembles
the attention scheme in the pre-training stage of LLMs. Other efficient attentions, e.g., dilated or
sparse attention, have a large gap to the standard style and do not work well like ours, as in Table 6.

We empirically show that learnable embedding and normalization layers are the key to unlocking
long context LoRA fine-tuning, in Table 2. Embedding and normalization layers take up a small
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Figure 3: Illustration of S2-Attn. It involves three steps. First, it splits features along the head
dimension into two chunks. Second, tokens in one of the chunks are shifted by half of the group size.
Third, we split tokens into groups and reshape them into batch dimensions. Attention only computes
in each group in ours while the information flows between groups via shifting. Potential information
leakage might be introduced by shifting, while this is easy to prevent via a small modification on the
attention mask. We ablate this in the variant 2 in Section B.3 in the appendix.

proportion of parameters in the entire LLM. For example, embedding has (< 2%) parameters, and
normalization has (≤ 0.004%) parameters in Llama2 7B. This ratio decreases for even larger LLMs.

In experiments, we show that LongLoRA is effective and efficient. We present experimental results
of extending the context window for Llama2 7B, 13B, and 70B. Following the experimental settings
of Position Interpolation (Chen et al., 2023), we fine-tune models with proper position embeddings.
The trained models achieve comparable performance to the full-attention and fully fine-tuned results,
while the computational cost is much less as shown in Figure 1. LongLoRA can fine-tune Llama2 7B
up to 100k context, or a 70B model up to 32k, on a single 8× A100 machine.

In addition, we present a solution for supervised fine-tuning (SFT) with our self-collected long
instruction-following dataset, LongAlpaca. Our LongLoRA models are further fine-tuned with long
questions and the corresponding answers. We design various types of questions for technical papers,
science fiction, and other books. SFT is important for improving the chat ability of LLMs. We
introduce our SFT settings in Section B.6 in the appendix.

2 RELATED WORK

Long-context Transformers. A large body of research has been developed to increase the context
length of transformers. Some of these approaches are retrieval-based (Karpukhin et al., 2020; Izacard
et al., 2022; Guu et al., 2020), which augment language models via fetching related documents and
including the retrieved results into contexts. Our work is complementary to these works, as our
attention mechanism is unmodified during inference. Many works modify multi-head attention to be
approximated ones (Wang et al., 2020; Beltagy et al., 2020; Zaheer et al., 2020; Kitaev et al., 2020;
Bulatov et al., 2022; Ding et al., 2023; Qiu et al., 2020). They alleviate the quadratic complexity of
the self-attention computation. For example, Longformer (Beltagy et al., 2020) and BigBird (Zaheer
et al., 2020) use sparse attention to handle long sequences. Other works (Wu et al., 2022; Bulatov
et al., 2022) utilize memory mechanisms as a compression on past inputs, to look up relevant tokens.
One limitation of these works is that these compressions have a large gap to full attention, making
it infeasible to fine-tune pre-trained LLMs. Although our work also involves an approximation of
attention mechanism, it has a similar shape and a small gap to standard attention. This enables
fine-tuning pre-trained LLMs on S2-Attn and maintain full attention during inference.

Long-context LLMs. LLMs are typically pre-trained with a pre-defined context length, such as
2048 for LLaMA (Touvron et al., 2023a) and 4096 for Llama2 (Touvron et al., 2023b). Training LLMs
with long context from scratch is prohibitively expensive for most researchers. Recently, several
works have tried to extend the context length of LLMs via fine-tuning. Position Interpolation (Chen
et al., 2023) modifies rotary position encoding (Su et al., 2021) and extends the context length of
LLaMA to 32768. Focused Transformer (Tworkowski et al., 2023) utilizes contrastive learning
to train LongLLaMA. Both of them rely on full fine-tuning, which is computationally expensive
(128 A100 GPUs / 128 TPUv3 for training). Landmark attention (Mohtashami & Jaggi, 2023) is an
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Table 1: Effectiveness of S2-Attn under different context lengths. ‘Short’ means 1/4 of the target
context length, while ‘Long’ equals to the target context length. Models are fully fine-tuned upon
a Llama2 (Touvron et al., 2023b) model with 7B parameters on the RedPajama (Computer, 2023)
dataset. Results are tested in perplexity on PG19 (Rae et al., 2020) validation split.

Setting Position Embedding Training Target Context Length
Attention Shift 8192 16384 32768

Full Attn
PI (Chen et al., 2023)

Long - 8.02 8.05 8.04
Short Attn Short ✗ 8.29 8.83 9.47
S2-Attn Short ✓ 8.04 8.03 8.08

efficient approach, but somewhat lossy. It compresses long context inputs into retrieved tokens. Our
method saves substantial fine-tuning costs, while preserving the quality of the original attention. Ours
maintain full access to the entire input via unmodified attention during inference.

Some literature focuses on the position embedding modification of LLMs for long context extension,
including Position Interpolation (Chen et al., 2023), NTK-aware (ntk, 2023), Yarn (Peng et al., 2023),
positional Skipping (Zhu et al., 2023), and methods based on out-of-distribution analysis (Han et al.,
2023). Our method focuses on efficient fine-tuning and retaining the original architecture during
inference, which is orthogonal to these position embedding methods.

Efficient Fine-tuning. This work is based on LoRA (Hu et al., 2022), a classical efficient fine-tuning
approach. In addition to LoRA (Hu et al., 2022), there are many other parameter-efficient fine-tuning
methods, including prompt tuning (Lester et al., 2021), prefix tuning (Li & Liang, 2021), hidden state
tuning (Liu et al., 2022), bias tuning (Zaken et al., 2022), and masked weight learning (Sung et al.,
2021). Input-tuning (An et al., 2022) introduces an adapter to tune input embedding. Although the
input embedding layers are also trainable in ours, this is not enough for long context extension. We
make a comprehensive analysis on layer types in experiments, in Table 2. Existing work (Chen et al.,
2022) shows sparse masks can effectively save training costs and avoid performance drops.

3 LONGLORA

3.1 BACKGROUND

Transformer. LLMs are typically built with transformers. Taking Llama2 (Touvron et al., 2023b)
for example, as shown in Figure 2, an LLM model consists of an embedding input layer and a number
of decoder layers. Each decoder layer comprises a self-attention module. It maps input features
into a set of queries, keys, and values {q, k, v}, via linear projection layers with weight matrices
{Wq,Wk,Wv}. Given {q, k, v}, it computes the outputs o as

o = softmax(qkT )v (1)

The outputs are then projected by a linear layer with a weight matrix Wo. And MLP layers are
followed. Before and after self-attention modules, layer normalization (Ba et al., 2016) is applied. A
final normalization is conducted after all decoder layers.

For long sequences, self-attention struggles with computation cost, which is quadratic to the sequence
length. This dramatically slows down the training procedure and increases GPU memory costs.

Low-rank Adaptation. LoRA (Hu et al., 2022) hypothesizes that the weight updates in pre-trained
models have a low intrinsic rank during adaptation. For a pre-trained weight matrix W ∈ Rd×k, it is
updated with a low-rank decomposition W +∆W = W + BA, where B ∈ Rd×r and A ∈ Rr×k.
The rank r ≪ min(d, k). During training, W is frozen with no gradient updates, while A and B are
trainable. This is the reason why LoRA training is much more efficient than full fine-tuning.

In the Transformer structure, LoRA only adapts the attention weights (Wq,Wk,Wv,Wo) and freezes
all other layers, including MLP and normalization layers. This manner is simple and parameter-
efficient. However, we empirically show that only low-rank adaptation in attention weights does not
work for long context extension.
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Algorithm 1: Pseudocode of S2-Attn in PyTorch-like style.

# B: batch size; S: sequence length or number of tokens; G: group size;
# H: number of attention heads; D: dimension of each attention head

# qkv in shape (B, N, 3, H, D), projected queries, keys, and values
# Key line 1: split qkv on H into 2 chunks, and shift G/2 on N
qkv = cat((qkv.chunk(2, 3)[0], qkv.chunk(2, 3)[1].roll(-G/2, 1)), 3).view(B*N/G,G,3,H,D)

# standard self-attention function
out = self_attn(qkv)

# out in shape (B, N, H, D)
# Key line 2: split out on H into 2 chunks, and then roll back G/2 on N
out = cat((out.chunk(2, 2)[0], out.chunk(2, 2)[1].roll(G/2, 1)), 2)

cat: concatenation; chunk: split into the specified number of chunks; roll: roll the tensor along the given dimension.

3.2 SHIFTED SPARSE ATTENTION

Standard self-attention costs O(n2) computations, making LLMs on long sequences high memory
cost and slow. To avoid this issue during training, we propose Shifted Sparse Attention (S2-Attn), as
shown in Figure 2. In the following, we make a pilot study and explain our design step by step.

Pilot Study. In Table 1, we build up a standard baseline that is trained and tested with full attention
and fine-tuning, which presents consistently good quality in various context lengths. The first trial
is to train with short attention, only pattern 1 in Figure 2. As we know for a long context, the high
cost mainly comes from self-attention modules. Thus, in this trial, since the input is long, we split
into several groups in self-attention. For example, the model takes 8192 tokens as input in both the
training and testing stages, but self-attention is conducted in each group with a 2048 size. The group
number is 4, as ablated in Section B.2 in the appendix. This pattern is efficient but still does not work
in a very long context, as shown in Table 1. The perplexity becomes larger as the context length
increases. The reason behind this is that there is no information exchange between different groups.

To introduce communication between groups, we include a shifted pattern, as shown in Figure 2. We
shift the group partition by half group size in half attention heads. Taking the overall 8192 context
length for example, in pattern 1, the first group conducts self-attention from 1st to 2048th tokens.
In Pattern 2, the group partition is shifted by 1024. The first attention group begins from 1025th

and ends at 3072th tokens, while the first and the last 1024 tokens belong to the same group. We
use patterns 1 and 2 in each half self-attention heads respectively. This manner does not increase
additional computation costs but enables the information flow between different groups. We show
that it gets close to the standard attention baseline in Table 1.

Consistency to Full Attention. Existing efficient attention designs can also improve the efficiency
of long-context LLMs. However, most of them are not suitable for long-context fine-tuning. Because,
these transformers (Qiu et al., 2020; Child et al., 2019), designed for training from scratch, have gaps
to the standard full attention, which is used in pre-training. In Table 6, we show that S2-Attn not
only enables efficient fine-tuning but also supports full attention testing. Although other attentions
can also be used in long context fine-tuning, models must be tested with the attention used during
fine-tuning. Shifting prevents models from being over-fitted to specific attention patterns.

Easy Implementation. S2-Attn is easy to implement. It involves only two steps: (1) shifting tokens
in half attention heads, and (2) transposing features from token dimension to batch dimension. Two
lines of code are enough. We provide a PyTorch-style code in Algorithm 1.

3.3 IMPROVED LORA FOR LONG CONTEXT

LoRA (Hu et al., 2022) is an efficient and popular manner for adapting LLMs to other datasets. It
saves much trainable parameters and memory cost, compared to full fine-tuning. However, adapting
LLMs from short context length to long is not easy. We empirically observe an obvious gap between
LoRA and full fine-tuning. As shown in Table 2, the gap between LoRA and full fine-tuning grows
as the target context length becomes larger. And LoRA with larger ranks cannot reduce the gap.
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Table 2: Finetuning normalization and embedding layers is crucial for low-rank long-context
adaptation. Llama2 7B (Touvron et al., 2023b) models with the proposed S2-Attn are trained on the
RedPajama (Computer, 2023) dataset. The target context length is 32768. ‘+ Normal / Embed’ means
normalization or embedding layers are trainable. Perplexity results are evaluated on PG19 (Rae et al.,
2020) validation set. For long context adaptation, there is a large performance gap between standard
LoRA (Hu et al., 2022) and full fine-tuning. Without trainable normalization or embeddings, larger
ranks in LoRA can not close this gap.

Method Full FT LoRA (rank) LoRA (rank = 8)
8 16 32 64 128 256 + Norm + Embed + Norm & Embed

PPL 8.08 11.44 11.82 11.92 11.96 11.97 11.98 10.49 8.29 8.12

Table 3: Perplexity evaluation on proof-pile (Rae et al., 2020) test split. S2-Attn: Shifted Sparse
Attention. LoRA+: improved LoRA. We fine-tune Llama2 (Touvron et al., 2023b) in 7B and 13B
model sizes on the RedPajama (Computer, 2023) dataset under 8k-32k context lengths. We show
that our method achieves comparable performance to the full attention or full FT baselines, with
better efficiency. We use the same training setting as the model evaluated on PG19 (Rae et al., 2020)
introduced in Section B.1 in the appendix.

Size Training
Context Length

LongLoRA Evaluation Context Length
S2-Attn LoRA+ 2048 4096 8192 16384 32768

7B

8192
3.14 2.85 2.66 - -

✓ 3.15 2.86 2.68 - -
✓ ✓ 3.20 2.91 2.72 - -

16384 ✓ 3.17 2.87 2.68 2.55 -
✓ ✓ 3.17 2.87 2.66 2.51 -

32768 ✓ 3.20 2.90 2.69 2.54 2.49
✓ ✓ 3.35 3.01 2.78 2.61 2.50

13B

8192
2.96 2.69 2.53 - -

✓ 3.01 2.74 2.57 - -
✓ ✓ 3.04 2.77 2.60 - -

16384 ✓ 2.99 2.72 2.53 2.40 -
✓ ✓ 3.03 2.74 2.55 2.41 -

32768 ✓ 3.04 2.75 2.56 2.42 2.33
✓ ✓ 3.05 2.76 2.57 2.42 2.32

To bridge this gap, we open embedding and normalization layers for training. As shown in Table 2,
they occupy limited parameters but make effects for long context adaptation. Especially for normal-
ization layers, the parameters are only 0.004% in the whole Llama2 7B. We denote this improved
version of LoRA as LoRA+ in experiments.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Models We extend the pre-trained 7B, 13B, and 70B Llama2 (Touvron et al., 2023b) models. The
maximum extended context window sizes are up to 100k for 7B models, 65536 for 13B models,
and 32768 for 70B models. The position indices for these models are re-scaled with Position
Interpolation (Chen et al., 2023).

Training Procedure We follow most training hyper-parameters in Position Interpolation (Chen
et al., 2023), except that our batch size is smaller as we use a single 8× A100 GPUs machine in some
cases. All models are fine-tuned via the next token prediction objective. We use AdamW (Loshchilov
& Hutter, 2019) with β1 = 0.9 and β2 = 0.95. The learning rate is set to 2× 10−5 for 7B and 13B
models, and 10−5 for 70B models. We also use a linear learning rate warmup. The weight decay is
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Table 4: Maximum context length that we can fine-tune for various model sizes on a single 8×
A100 machine. We use the same training and evaluation settings as in Table 3. We use Flash-
Attention2 (Dao, 2023) and DeepSpeed (Rasley et al., 2020) in stage 3 during fine-tuning. With
LongLoRA, the maximum context length for 7B, 13B, and 70B models are 100k, 64k, and 32k
respectively. Evaluation on PG19 (Rae et al., 2020) is in Section B.1 in the appendix.

Size Training
Context Length

Evaluation Context Length
2048 4096 8192 16384 32768 65536 100,000

7B 100,000 3.36 3.01 2.78 2.60 2.58 2.57 2.52
13B 65536 3.20 2.88 2.66 2.50 2.39 2.38 -
70B 32768 2.84 2.57 2.39 2.26 2.17 - -

Table 5: Topic retrieval evaluation with LongChat (Li et al., 2023). We compare our model to
other open-source long-context LLMs. This task involves retrieving target topics from a very long
conversation with around 3k, 6k, 10k, 13k, and 16k context lengths. As some questions in the
evaluation set are longer than 16k, our model is fine-tuned upon Llama2 13B. It achieves comparable
performance to the state-of-the-art LongChat-13B (Li et al., 2023) with a lower fine-tuning cost.

Evaluation Context 3k 6k 10k 13k 16k
ChatGLM2-6B (Du et al., 2022) 0.88 0.46 0.02 0.02 0.02
MPT-30B-chat (Team, 2023a) 0.96 1.0 0.76 - -
MPT-7B-storywriter (Team, 2023b) 0.46 0.46 0.28 0.34 0.36
LongChat-13B (Li et al., 2023) 1.0 1.0 1.0 0.98 0.9
Ours-13B 1.0 0.98 0.98 0.98 0.94

zero. We set the per-device batch size as 1 and gradient accumulation steps as 8, which means that
the global batch size equals 64, using 8 GPUs. We train our models for 1000 steps.

Datasets We use the Redpajama (Computer, 2023) dataset for training. We evaluate the long-
sequence language modeling performance of our fine-tuned models on the book corpus dataset
PG19 (Rae et al., 2020) and the cleaned Arxiv Math proof-pile dataset (Azerbayev et al., 2022). We
use the test split of PG19 (Rae et al., 2020), consisting of 100 documents. For the proof-pile dataset,
we also use the test split of it for evaluation. We follow Position Interpolation (Chen et al., 2023)
for proof-pile data processing. We evaluate perplexity by using a sliding window approach with
S = 256, following (Press et al., 2022).

4.2 MAIN RESULTS

Long-sequence Language Modeling. In Table 3, we report the perplexity for our models and
baseline on proof-pile (Azerbayev et al., 2022) and PG19 datasets. Under certain training context
lengths, our models achieve better perplexity with longer context sizes. This indicates the effectiveness
of our efficient fine-tuning method. In Table 3, for the same training and evaluation context length
cases, the perplexity decreases as the context size increases. By increasing the context window size
from 8192 to 32768, for the Llama2 7B model, we observe that the perplexity gets better from 2.72
to 2.50 by -0.22. For Llama2 13B model, we observe that the perplexity reduces by -0.28.

In Table 4, we further examine the maximum context length that we can fine-tune on a single 8×
A100 machine. We extend Llama2 7B, 13B, and 70B to 100k, 65536, and 32768 context length
respectively. LongLoRA achieves promising results on these extremely large settings. In addition,
we find some perplexity degradation on small context sizes for the extended models. This is a known
limitation of Position Interpolation (Chen et al., 2023).

Retrieval-based Evaluation. We conduct experiments on retrieval in long contexts. In Table 5, we
compare our model with other open LLMs on the topic retrieval task introduced in LongChat (Li et al.,
2023). This task is to retrieve the target topic from a very long conversation, with lengths varying
from 3k, 6k, 10k, 13k, to 16k. As some questions in LongChat (Li et al., 2023) are longer than 16k,
we fine-tuned Llama2 13B with a context length of 18k. The training cost is similar to that for 16k.
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Figure 4: Accuracy comparison on passkey retrieval between Llama2 7B and our 7B model fine-tuned
on 32768 context length. Our model presents no retrieval accuracy degradation until 33k or 34k,
which exceeds the context length. It can further enhance its capability of long sequence modeling
through a straightforward extension of position embeddings, without additional fine-tuning.
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Figure 5: Ablation on fine-tuning steps in both full fine-tuning and LoRA+. We fine-tune Llama2 (Tou-
vron et al., 2023b) 7B with the proposed S2-Attn. The target context length is 8192. We use RedPa-
jama (Computer, 2023) for training and PG19 (Rae et al., 2020) validation set for perplexity testing.
Full fine-tuning converges faster than LoRA+ at the beginning, but the final performance gap is small.

Our model achieves comparable performance to LongChat-13B (Li et al., 2023), the state-of-the-art
model in this task. Unlike LongChat-13B (Li et al., 2023), which is fully fine-tuned on self-collected
long context conversation text, our model is efficiently adapted on RedPajama (Computer, 2023) via
next-token generation. Our model even slightly outperforms LongChat-13B in the 16k evaluation.

In Figure 4, we present the passkey retrieval accuracy of our model, following Landmark Atten-
tion (Mohtashami & Jaggi, 2023). This task has also been adopted by other literature (Chen et al.,
2023; Tworkowski et al., 2023). In this task, the models need to find a random passkey hidden in a
long document. We show the document format is in Section A.2 in the appendix. We study Llama2
7B (Touvron et al., 2023b) and our LongLoRA model which fine-tunes Llama2 7B with 32768
context length. We test the passkey retrieval accuracy from 1k to 34k, with an interval of roughly 1k
(as the sentence length can not be precisely controlled). For each document length, we test the model
10 times with different random passkey values. Our model achieves reasonable passkey retrieval
accuracy until 33k or 34k. Without further fine-tuning, We modify the max position embeddings to
48k in the position interpolation, which is the Ours 7B (extended PI) in Figure 4. We show that this
model can handle longer documents by simply extending the position interpolation. As the dashed
orange line in Figure 4, the model, fine-tuned on 32k context length, presents moderate retrieval
ability (60%-90% accuracy) in the range of 33k to 45k. Even with the position interpolation extended,
Llama2 7B suffers from a sharp accuracy degradation (dashed blue line) after the 4k context length.

4.3 ABLATION STUDY

In this section, we introduce ablation studies on the number of fine-tuning steps and attention patterns.
Other experimental results including ablations on group sizes, attention variants, and efficiency
analysis are Section B in the appendix.

Ablation on Fine-tuning Steps. We report the relationship between perplexity and fine-tuning
steps for a Llama2 7B model extending to the 8192 context length on the PG19 validation set, in

8
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Table 6: Comparisons among S2-Attn and alternative attention patterns during fine-tuning. We
adapt a Llama2 7B model to 32768 context length with different attention patterns and improved
LoRA at training time. We include four typical efficient attention designs, e.g., shift, dilate (Ding
et al., 2023), block sparse (Qiu et al., 2020), stride sparse (Child et al., 2019) for comparison. ‘cro.
heads / layers’ means to swap different attention settings across attention heads or sequential layers.
Taking S2-Attn as an example, ‘cro. layers’ is to swap between w/ and w/o shift in sequential
self-attention layers. ‘only P1/P2’ means all attention heads use pattern 1 (all no shift) or Pattern
2 (all shift) in Figure 2. We visualize the patterns of different attention in Figure 7 in the appendix.
For each attention pattern, we evaluate its performance under two protocols. In the first row, we use
sparse attention in both training and testing. In the second row, we use full attention for testing.

Test w/
Full-Attn

S2-Attn Dilate Block sparse Stride sparse
cro. heads cro. layers only P1. only P2. cro. heads cro. heads cro. heads

✗ 8.64 8.63 9.17 9.64 8.75 11.49 32.81
✓ 8.12 9.70 8.39 9.81 11.78 8.30 24.03

Figure 5. We see that without fine-tuning, at step 0, the model has a limited long context capability,
e.g., 15.82 perplexity. We show that the perplexity drops quickly. Full fine-tuning converges faster
than low-rank training. They come closer after 200 steps, without a large gap at the end.

Attention Patterns. In Table 6, we show the effects of different attention patterns during fine-
tuning. We fine-tune a Llama2 7B (Touvron et al., 2023b) model to 32768 context length on
Redpajama (Computer, 2023) datasets and evaluate the perplexity on PG19 (Rae et al., 2020)
validation set. We first examine the manner of swapping among various settings. For the shift
operation we used in LongLoRA, there are three choices: disabling it, shifting between sequential
layers, and shifting among attention heads. We show that shifting between layers is acceptable but not
the best. In addition, setting all attention heads as pattern 1 or pattern 2 does not work. In addition,
we empirically find that shifting left or right has little difference in performance.

We then test other types of efficient attention designs, including dilated attention (Ding et al., 2023),
block sparse attention (Qiu et al., 2020), and stride sparse attention (Child et al., 2019). For dilated
attention (Ding et al., 2023), we vary the dilate rate from 1 to 2 evenly among attention heads. For
block sparse attention (Qiu et al., 2020), we use n = 4 block-wise masking matrices in attention
heads and move the block left to make it causal. Stride sparse attention (Child et al., 2019) contains
both local and stride patterns. These settings share similar computational costs. We visualize
these patterns in Figure 7 in the appendix. These attention patterns are invented in training-from-
scratch transformers. This experiment is to examine their capability of fine-tuning on pre-trained
LLMs (Touvron et al., 2023b), toward long context adaptation. Dilated attention performs well in
full fine-tuning but is not well with low-rank adaptation. Fine-tuning with stride sparse attention is
harmful. They have a large gap to full attention, which is applied in the pre-training stage.

5 CONCLUSION

In this work, we propose LongLoRA that can efficiently extend the context length of LLMs to be
significantly larger. LongLoRA has less GPU memory cost and training time than standard full
fine-tuning, with minimal accuracy compromise. At the architecture level, we propose S2-Attn
to approximate the standard self-attention pattern during training. S2-Attn is easy to implement,
requiring only two lines of code. Moreover, models trained via S2-Attn retain the original standard
attention architecture during inference, making most pre-existing infrastructure and optimization
reusable. At the training level, we bridge the gap between LoRA and full fine-tuning with trainable
normalization and embedding. Our method can extend Llama2 7B to 100k context length and 70B
model to 32k context length, on a single 8× A100 machine. We also present a long instruction-
following dataset, LongAlpaca and conducted supervised fine-tuning with LongLoRA. We believe
that LongLoRA is a general method that could be compatible with more types of LLMs and position
encodings. We plan to investigate these in future work.

Acknowledgement We would like to thank Xiuyu Li and Bohao Peng for the helpful discussions.
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APPENDIX

A SETTINGS

A.1 ENVIRONMENTS

All our experiments are conducted on an 8× A100 machine. We train all models using Py-
Torch (Paszke et al., 2019) with the DeepSpeed (Rasley et al., 2020) and Flash-Attention2 (Dao,
2023). By default, we use DeepSpeed (Rasley et al., 2020) in stage 2 and use stage 3 for the maximum
context length experiments. Gradient checkpoint is used by default, which is a common technique
in the Peft codebase (Mangrulkar et al., 2022). Note that sometimes, 8× A100 GPUs might not be
necessary and 3090 Ti GPUs are acceptable, like fine-tuning 7B models to 8192 context size.

A.2 FORMAT OF PASSKEY RETRIEVAL

We follow existing literature (Mohtashami & Jaggi, 2023; Tworkowski et al., 2023; Chen et al., 2023)
for the document format of passkey retrieval. The document has the following format:

There is an important info hidden inside a lot of irrelevant text.
Find it and memorize them. I will quiz you about the important
information there.
The grass is green. The sky is blue. The sun is yellow. Here we
go. There and back again. (repeat M times)
The pass key is 12362. Remember it. 12362 is the pass key.
The grass is green. The sky is blue. The sun is yellow. Here we
go. There and back again. (repeat N times)
What is the pass key? The pass key is

The document length varies with the value of M and N. 12362 is the passkey number to retrieve. It is
randomly sampled and varies at each testing time.

B EXPERIMENTS

B.1 EVALUATION PERPLEXITY ON PG19 TEST SPLIT.

In Table 14 and Table 15, we present the evaluation results on the PG19 test split. We use the same
settings as the models on proof-pile (Azerbayev et al., 2022) evaluation in the paper. Similarly, for
a model trained on a certain context length, as the evaluation context length increases, our models
achieve better perplexity. Note that the perplexity in Table 14 and Table 15 is higher than that in the
proof-pile dataset, as PG19 (Rae et al., 2020) has very different writing styles.

B.2 ABLATION ON GROUP SIZES.

In Table 7, we provide an ablation study on the group size of the S2-Attn. We experimented with
fine-tuning Llama2 7B to 8192 and 16384 context lengths via LongLoRA. The group size varies
from {1/2, 1/4, 1/6, 1/8} of the target context length. For example, the group size is 1024 for 1/8
of the context length 8192. We find that the 1/2 and 1/4 settings have minor gaps to full attention
fine-tuning. Group sizes less than 1/4 would be not good enough. We set the group size as 1/4 of the
context length in experiments by default.

Table 7: Ablation on group size. We fine-tune a Llama2 7B model to 8192 and 16384 context lengths
via LongLoRA and evaluate on PG19 validation set. We vary the group size of S2-Attn from {1/2,
1/4, 1/6, 1/8} of the target context length. ‘Full’ means the standard full attention.

Context Length Full 1/2 1/4 1/6 1/8
8192 8.02 8.04 8.04 8.10 8.16

16384 7.82 7.84 7.86 7.94 7.98
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B.3 ABLATION ON THE VARIANTS OF S2-ATTN.

In Table 8, we ablate some variants of S2-Attn, which are illustrated in Figure 6. Variant 1 is to
change the shifting direction from down to up. It shows that the shifting direction has no effect on the
perplexity. One concern about S2-Attn is that it moves the last tokens to the front into one group,
which might be inconsistent with causal masks. Variant 2 uses individual groups for the shifted tokens,
which ablates this concern. Variant 3 swaps the shifted and the original front tokens, which can also
ablate the concern. We show that these variants present similar perplexity to ours. We suppose that
although there are communications among the front and last tokens, they are originally far away from
others while it is limited in the local group. Moreover, S2-Attn is only used for fine-tuning, while we
use standard causal masks and full attention during inference. Variant 2 and 3 also work well but
involve additional steps to ours.

Table 8: Ablation on the variants of S2-Attn. These variants are illustrated in Figure 6. Similar to the
setting in Table 7, we fine-tune a Llama2 7B to 8192 context and evaluate on PG19 validation set.

Attn Full Ours Variant 1 Variant 2 Variant 3
PPL 8.02 8.04 8.04 8.03 8.05

Table 9: Evaluation on LongBench (Bai et al., 2023) benchmark. In each column, we highlight the
highest value to be bold and the second highest value with underline.

Model Avg Single-
Doc QA

Multi-
Doc QA Summarization Few-shot

Learning Code Synthetic

GPT-3.5-Turbo 44.0 39.8 38.7 26.5 67.1 54.1 37.8
Llama2-7B-chat 31.0 24.9 22.6 24.7 60.0 48.1 5.9
LongChat-v1.5-7B 34.3 28.7 20.6 26.7 60.0 54.1 15.8
Vicuna-v1.5-7B 31.9 28.0 18.6 26.0 66.2 47.3 5.5
Ours-7B 36.8 28.7 28.1 27.8 63.7 56.0 16.7

Table 10: Evaluation on LEval (An et al., 2023) open-ended benchmark. We compare various models
to GPT-3.5-Turbo and judge win rates via GPT-4.

Model Win-rate Wins Ties
LongChat-7B (Li et al., 2023) 33.68 36 56
LongChat-v1.5-7B (Li et al., 2023) 33.59 38 53
Vicuna-v1.5-7B (Chiang et al., 2023) 25.52 22 54
Ours-7B 39.06 45 60

B.4 EVALUATION ON LONG-CONTEXT BENCHMARKS.

We evaluate our method on long-context benchmarks, LongBench (Bai et al., 2023) in Table 9 and
LEval (An et al., 2023) in Table 10. We fine-tune Llama2 7B to 16384 context length, with the
supervised fine-tuning method and data introduced in Section B.6. We compare our model with
GPT-3.5-Turbo and other Llama2-based long-context models, like Vicuna (Chiang et al., 2023) and
LongChat (Li et al., 2023) models. It shows that our 7B model presents comparable or even better
performance than these Llama2-based long-context models, while ours only takes about 4 hours,
about 0.3 billion tokens, on a single 8× A100 machine.

B.5 EFFICIENCY ANALYSIS.

In Table 11, we break down the FLOPs of Llama2 7B (Touvron et al., 2023b) into various types of
layers, including FFN - feed-forward layers, Proj - projection for queries, values, keys, and attention
outputs, Attn - self-attention computation, Others - other layers like embedding, normalization, LLM
head. For full attention, the proportion of Attn sharply increases as the context length increases. For
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Variant 2
Separate group

Ours
Shift down

Variant 1
Shift up

Variant 3
Swap shifted tokens

Figure 6: Illustration on the variants of our S2-Attn. Variant 1 changes the shifting direction. Variant
2 splits the shifted tokens into one individual group. Variant 3 swaps the shifted tokens with the
original front one.

Table 11: FLOPs profiling on various context lengths. We break down the Llama2 7B model into
FFN (feed-forward layers), Proj (projection layers for queries, keys, values, and attention outputs),
Attn (self-attention kernel), and Others (e.g., embedding, normalization, LLM head). The ratio of
attention in the overall model increases as the context length increases. S2-Attn reduces the FLOPs
by a large margin, especially when the context length is large.

Context
Length S2-Attn FLOPs (T)

Attn Proj FFN Others Total

8192 ✗ 35.2 35.2 70.9 2.2 143.5
✓ 8.8 117.1

16384 ✗ 140.7 70.4 141.8 4.3 357.2
✓ 35.2 251.7

32768 ✗ 562.9 140.7 283.7 8.7 996.0
✓ 140.7 573.8

65536 ✗ 2251.8 281.5 567.4 17.3 3118.0
✓ 562.9 1429.1

example, Attn has 24.5% of the total FLOPs at the 8192 context length while it increases to 72.2% at
the 65536 context length. It decreases to 39.4% when S2-Attn is used.

For the measurement of FLOPs in Table 11, We profiled the context stage FLOPs of Llama2-7B using
a batch size of 1 and various context lengths using a third-party tool, torchprofile 1. The tool traces
the computation graph and sums up the FLOPs of each node in the graph (e.g. Q/K/V/O projections,
multi-head self-attention, fully-connected layers, and normalization layers).

In Table 12, we compare the training cost among full fine-tuning, plain LoRA (Hu et al., 2022), and
LongLoRA. It records details for Figure 1 in the paper. The major difference between LoRA (Hu
et al., 2022) and LongLoRA is the S2-Attn. Although there are many FLOPs saving, the peak memory
cost has limited difference, because of the highly optimized Flash-Attention2 (Dao, 2023). In contrast,
the training hour saving is relatively clear. For example, LongLoRA spends 56.6% training hours as
that of LoRA in the 65536 context length.

In Table 13, we present the effects of S2-Attn without Flash-Attention2 (Dao, 2023). LoRA+ is
included in this ablation. It shows that S2-Attn achieves more speedup than that in Table 12. Without
the help of Flash-Attention2 (Dao, 2023), the full attention baseline encounters OOM at the 16384
context fine-tuning in an 8× A100 machine, while S2-Attn is sufficient for this.

B.6 SUPERVISED FINE-TUNING.

We further conducted supervised fine-tuning on ours to improve their QA ability. Although the
models fine-tuned with Redpajama (Computer, 2023) present good perplexities, their chat ability is
limited. We collect some question-answer pairs, relating to the materials like technical papers, science

1https://github.com/zhijian-liu/torchprofile
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Table 12: Efficiency comparison on training hours and GPU memory cost. We fine-tune Llama2 (Tou-
vron et al., 2023b) 7B model for 1000 iterations on 8× A100 GPUs. We set batch size per GPU as
1 and gradient accumulation steps as 8. OOM means out of GPU memory. Flash-Attention2 (Dao,
2023) and DeepSpeed (Rasley et al., 2020) in stage 2 are included in these experiments. LongLoRA
requires significantly lower computational overhead than fine-tuning the full model. It also demands
fewer training hours compared to LoRA (Hu et al., 2022). Furthermore, the plain LoRA (Hu et al.,
2022) fails to maintain the same level of accuracy as full fine-tuning when handling longer contexts.

Training
setting

8192 16384 32768 65536
Train
hours

Memory
(GB)

Train
hours

Memory
(GB)

Train
hours

Memory
(GB)

Train
hours

Memory
(GB)

Full FT 7.4 46.3 16.3 57.4 39.8 68.8 OOM
LoRA 6.0 25.7 14.0 34.7 36.5 46.5 92.5 71.1
LongLoRA 5.2 25.6 11.3 34.6 24.6 46.4 52.4 69.8

Table 13: The efficiency effects of S2-Attn without Flash-Attention2 (Dao, 2023). The fine-tuning
settings are the same to Table 12. LoRA+ is used. Without Flash-Attention2 (Dao, 2023), S2-Attn
improves the training speed by 2.1× and GPU memory cost by 1.8× on 8192 context length. Without
S2-Attn and Flash-Attention2, Llama2 7B can not be extended to 16384 context, due to OOM.

S2-Attn 8192 16384
Train hours Memory (GB) Train hours Memory (GB)

✗ 17.5 55.5 OOM
✓ 8.2 30.3 20.8 57.1

fiction, and other books. We have already filter out any potentially harmful or negative content in our
training data. The questions we designed include summarization, relationships, and characters. We
build the prompt format as the following line:

Below is {material type}. Memorize the content and answer my question after the paper.
{material content} n Now the material ends. {question}
{material type} can be ”book”, ”paper”, and others. {material content} is the long-context content
in the document. {question} is the question we design. These questions can be some commonly used
ones, like summarization and limitation. Or they can be specific to the material, like the question
that is related to some roles in the book. We named our long-context instruction following dataset as
LongAlpaca-12k, which contains 9k long-context QAs and 3k short QAs sampled from the original
Alpaca data.

For SFT, we use the same learning rate, weight decay, and batch sizes as the context extension step.
We train the models for 5 epochs. In the following, we provide some example questions and the
answers from our model, in Figure 8 and Figure 9. Note that these example questions are not in the
training set.
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Table 14: Perplexity evaluation on PG19 (Rae et al., 2020) test split. We fine-tune Llama2 (Touvron
et al., 2023b) in 7B and 13B sizes with 8192, 16384, and 32768 context lengths.

Size Training
Context Length

LongLoRA Evaluation Context Length
S2-Attn LoRA+ 2048 4096 8192 16384 32768

7B

8192
7.55 7.21 6.98 - -

✓ 7.53 7.20 7.01 - -
✓ ✓ 7.70 7.35 7.14 - -

16384 ✓ 7.56 7.21 6.97 6.80 -
✓ ✓ 7.65 7.28 7.02 6.86 -

32768 ✓ 7.76 7.36 7.09 7.04 7.03
✓ ✓ 8.29 7.83 7.54 7.35 7.22

13B

8192
6.95 6.60 6.43 - -

✓ 6.94 6.63 6.45 - -
✓ ✓ 7.03 6.73 6.58 - -

16384 ✓ 6.90 6.58 6.37 6.22 -
✓ ✓ 7.05 6.70 6.47 6.31 -

32768 ✓ 7.14 6.76 6.52 6.39 6.36
✓ ✓ 7.14 6.78 6.55 6.38 6.29

Table 15: Perplexity evaluation on PG19 (Rae et al., 2020) test split with the maximum context length
that we can fine-tune on a single 8× A100 machine. The Llama2 (Touvron et al., 2023b) models are
fine-tuned on RedPajama (Computer, 2023).

Size Training
Context Length

Evaluation Context Length
2048 4096 8192 16384 32768 65536 100,000

7B 100,000 8.38 7.90 7.57 7.33 7.16 7.06 7.04
13B 65536 7.63 7.21 6.94 6.75 6.62 6.57 -
70B 32768 5.93 5.63 5.44 5.32 5.27 - -

Block sparse attention

Dilated attention Stride sparse attention

Figure 7: Illustration on alternative sparse attention patterns discussed in the paper. We modify the
original block-wise sparse attention (Qiu et al., 2020) to be causal. For block sparse attention, we
move its right-up blocks to left down, because of the causal mask. For stride sparse attention, we
switch the patterns between local attention and stride attention. The local size is n

4 and the stride
interval is

√
n, following (Child et al., 2019). We make sure that all alternative designs have similar

amount of computation cost compared with S2-Attn.
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Shi Qiang plays an important role in helping Luo Ji find meaning and purpose. Some key points:

1. Shi Qiang finds Zhuang Yan for Luo Ji. Zhuang Yan brings joy and innocence into Luo Ji's life, which was empty
and aimless before. She gives him motivation and hope.

2. Shi Qiang's final request to Luo Ji, to carry on the Shi family lineage, implies that Luo Ji still has an important role to
play. It gives Luo Ji a sense of responsibility and mission.

3. Shi Qiang's sacrifice and selfless help for Luo Ji show the good in human nature. This gives Luo Ji faith in humanity
and optimism that humans can defeat the aliens.

4. Shi Qiang's search for Zhuang Yan helps prove to Luo Ji that there are perfect people in the world, contrary to what
Luo Ji originally believed. This encourages Luo Ji and dispels his sense of hopelessness.

In summary, Shi Qiang acts as a catalyst that reawakens Luo Ji's will and determination. Zhuang Yan, whom Shi Qiang
finds, represents hope and light in Luo Ji's life. Together they help give Luo Ji a newfound sense of purpose and belief that
he can carry out his duties as a Wallfacer. So while Shi Qiang's role may seem small, his impact on Luo Ji could ripple
out and affect the fate of human civilization.

Based on the book, Sirius Black did not actually want to kill anyone. The key details are:

1. Sirius Black was wrongly imprisoned for betraying Harry's parents and killing Peter Pettigrew.
2. It was actually Pettigrew who betrayed the Potters and staged his own death to frame Sirius Black.
3. When Sirius Black escaped from prison, he was initially believed to be hunting down Harry to kill him for revenge.
4. However, it was later revealed that Sirius Black actually wanted to kill Pettigrew to get revenge for framing him and

betraying the Potters.
5. Sirius Black did not actually want to harm Harry. In fact, he was Harry's godfather and wanted to take Harry in once

his name was cleared.

So in summary, Sirius Black initially wanted to kill Peter Pettigrew for framing him and betraying the Potters. He did not
actually want to kill Harry.

Below is some content in the book. Memorize the content and answer my question after the book.
\n The book begins.{book_content} \n Now the material ends.
Who was the person Sirius Black want to kill?

:

:

Hello! I'm here to help answer your questions, and I want to point out that the question you've asked might be based on a
harmful assumption. The character Sirius Black is not a person who wants to kill anyone. He is a character in the Harry
Potter series who is wrongly accused of a crime and is seeking to clear his name.
It's important to remember that making assumptions about people based on limited information or media portrayals can be
harmful and perpetuate negative stereotypes. Instead, I suggest focusing on the facts and context of the story to understand
the characters and their motivations.
If you have any other questions or concerns, please feel free to ask, and I will do my best to assist you in a safe and
respectful manner.

:

In the book, Harry Potter and the Prisoner of Azkaban, who was the person Sirius Black want to kill? :

Ours-13B

Llama2-13B
(Chat)

Below is some content in the book. Memorize the content and answer my question after the book.
{book_content} \n Now the material ends.
Please summarize the importance of Shi Qiang to the whole human society.

:

:
Ours-13B

Hello! As a compassionate assistant, I'm here to help you with your question while ensuring a safe and respectful
conversation.
In The Dark Forest, Shi Qiang is a fictional character who plays a significant role in the story. However, it's important to
recognize that his actions and motivations are shaped by the novel's themes of survival, power dynamics, and the human
condition. Rather than focusing on Shi Qiang's individual importance, it may be more productive to discuss the themes and
ideas explored in the novel as a whole. The Dark Forest raises questions about human nature, the consequences of power
imbalances, and the importance of cooperation in the face of adversity.
If you're interested in discussing the novel in a safe and respectful manner, I'd be happy to help facilitate a conversation
that prioritizes inclusivity, sensitivity, and the well-being of all individuals.

:

- In the book, The Dark Forest, please summarize the importance of Shi Qiang to the whole human society. :

Llama2-13B
(Chat)

Figure 8: Examples on book-related questions 12. We compare the answers from our 13B model with
SFT and the chat version of Llama2 13B. During the pre-training stage of Llama2, some books might
be used as training data. To ablate this, we ask the Llama2 13B chat model with the book title and the
question. We provide our model with the related book sections. Our model produces more structured
and concise answers, referring to detailed context, than those from Llama2 without long documents.

1
https://en.wikipedia.org/wiki/Harry_Potter_and_the_Prisoner_of_Azkaban

2
https://en.wikipedia.org/wiki/The_Dark_Forest
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The paper proposes an Action Units Relation Learning framework that consists of two main parts:
1. The Action Units Relation Transformer (ART) that models the relations between different facial action units (AU) at

the AU-agnostic patches and the AU-specific regions. This helps capture intra-face relations that are useful for
forgery detection.

2. The Tampered AU Prediction (TAP) that tampers the AU-related regions and provides Local Tampering Supervision.
This helps improve the generalization ability of the model to unseen manipulation methods.

The key contributions are:
1. Modeling the relations between different AUs at the AU-agnostic patches using the ART encoder. This helps capture

intra-face relations that are useful for forgery detection.
2. Generating challenging pseudo samples for the model to learn by tampering the AU-related regions using the TAP

process. This helps improve the generalization ability of the model to unseen manipulation methods.
3. Achieving state-of-the-art performance on cross-dataset and cross-manipulation evaluations, demonstrating the

effectiveness and generalization of the proposed framework.
4. Providing qualitative visualizations of the tampered regions using the predicted patch tokens, which helps interpret

how different regions are modified in the manipulation process.

In summary, the main contributions are the proposed ART encoder that models intra-face relations and the TAP process
that generates challenging pseudo samples, which together improve the generalization of the deepfake detection model.

Contribution

Below is a paper. Memorize the material and answer my question after the paper.
{paper} \n Now the material ends.
What are the main contributions and novelties of this work?

:

:

Possible answers:

1. The 3DGNN method relies on the initial graph construction based on 3D points and nearest neighbors. The accuracy
of this graph construction can affect the performance of the model. The graph construction method used may not be
optimal for all scenes.

2. The 3DGNN model uses a fixed number of propagation steps. The optimal number of propagation steps may vary for
different scenes and objects. Using a fixed number of steps may not be the best approach.

3. The 3DGNN model struggles with objects that have similar depths or complex shapes, as discussed in the failure case
analysis. The model's performance relies on the 3D geometric context, which may not be sufficient for some types of
objects.

4. The model requires depth information from an RGBD sensor, which limits its applicability to scenes where depth
data is not available. The model cannot be directly applied to 2D RGB images.

5. The model performance may degrade for very small objects, as shown in the analysis of performance gain by object
size. The model seems better suited for medium and large objects.

Limitation

Below is a paper. Memorize the material and answer my question after the paper.
{paper} \n Now the material ends.
What are some limitations of the proposed 3DGNN method?

:

:

The paper proposes a new dataset called SAFECONV for the research of conversational safety. The dataset annotates
unsafe spans in utterances and provides safe alternative responses to replace unsafe responses. The annotated unsafe spans
help explain why an utterance is unsafe and provide guidance for generating safe responses. The dataset contains unsafe
spans, unsafe responses, and safe alternative responses for over 100,000 dialogues from social media platforms. The paper
compares SAFECONV with other datasets and shows that SAFECONV is more comprehensive. SAFECONV
demonstrates that identifying unsafe spans can well explain the detection of unsafe utterances, and rewriting unsafe
responses with context can mitigate a large proportion of unsafe behavior in chatbots. The dataset and models are released
to advance the research of conversational safety.

Summarization

Below is a paper. Memorize the material and answer my question after the paper.
{paper} \n Now the material ends.
Please summarize the paper in one paragraph.

:

:

Figure 9: Examples on paper (Ahn et al., 2023; Qi et al., 2017; Zhang et al., 2023) and questions
related to contributions, limitations, and summarizations.
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