
Supplementary Material

A Proof of Theorem 3.1 (Realizable Case – Positive Result)

Theorem (Restatement of Theorem 3.1). There exists a constant c1 > 0 so that the following holds.
Let H be a hypothesis class with VC dimension d and let ⌘ 2 (0, 1). Then there exists a learner Lrn
having ⌘-adversarial risk

"
Adv

n (Lrn|D, ⌘)  c1⌘d

for any distribution D realizable by H and for any sample size n � 1/⌘.

To prove Theorem 3.1, we will use the STABLE PARTITION AND VOTE (or SPV for short) meta
learner described in Figure 1 with the One-inclusion graph algorithm of Haussler, Littlestone, and
Warmuth [1994] as the input learner. First, we prove a more general result on the performance of
our SPV meta learner. We denote the algorithm obtained by executing SPV with a learner Lrn as the
input algorithm by SPV(Lrn).
Lemma A.1 (General performance of SPV). Let H be a concept class, D be a distribution over
examples, and Lrn be a learning rule. Let also ⌘ 2 (0, 1) be the stability parameter given to SPV

and let n � 1/⌘ be the sample size. Then SPV(Lrn) has ⌘-adversarial risk

"
Adv

n (SPV(Lrn)|D, ⌘)  6"d1/(7⌘)e(Lrn|D).

Recall that "d1/(7⌘)e(Lrn|D) is the expected population loss of Lrn when trained on a sample of size
d1/(7⌘)e from D (in the standard, non adversarial, setting).

Proof. Let S ⇠ D
n be the input sample, and (x, y) ⇠ D be the test example. Note that for all i 2 [t]

(where t = b7⌘nc is the number of subsamples of size at least 1
7⌘ in the partition made by SPV) it

holds that E
⇥
1[hi(x) 6= y]

⇤
 "d1/(7⌘)e(Lrn|D). By applying linearity of expectation we get

E
"
1

t

tX

i=1

1[hi(x) 6= y]

#
 "d1/(7⌘)e(Lrn|D).

By Markov’s inequality:

Pr

"
1

t

tX

i=1

1[hi(x) 6= y] � 1/6

#
 6"d1/(7⌘)e(Lrn|D).

Let S0
2 B⌘(S). Let h0 = SPV(Lrn)(S0), and for all i 2 [t] let h0

i be the hypothesis obtained by
training Lrn on S

0(i). Note that, since S and S
0 are ⌘-close by, and since n � 1/⌘ it holds that

1

t

tX

i=1

1
h
S
(i)

6= S
0(i)

i


⌘n

b7⌘nc
 1/6.

Hence it is implied that 1
t

Pt
i=1 1 [hi(x) 6= h

0

i(x)]  1/6. Thus, the event that 1
t

Pt
i=1 1[h

0

i(x) 6=

y] � 1/3 implies (or, is contained in) the event that 1
t

Pt
i=1 1[hi(x) 6= y] � 1/6, hence,

Pr

"
1

t

tX

i=1

1[h0

i(x) 6= y] � 1/3

#
 6"d1/(7⌘)e(Lrn|D).

Since h
0(x) is a majority vote of {h0

1(x), . . . , h
0

t(x)}, the above implies that

Pr[h0(x) 6= y]  6"d1/(7⌘)e(Lrn|D).

Since S0 is an arbitrary sample in B⌘(S), the above implies that SPV(Lrn) has the stated ⌘-adversarial
risk.

To prove Theorem 3.1, we will need an optimal learner as an input learner for SPV.
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Theorem A.2 (Haussler, Littlestone, and Warmuth [1994]). Let H be a concept class with VC-
dimension d, and let D be a distribution realizable by H. Let also n 2 N, and let Lrn be the
One-inclusion graph algorithm. Then "n(Lrn|D)  d

n+1 .

Theorem 3.1 can now be immediately inferred as a direct application of Lemma A.1 and Theorem A.2.
Corollary A.3 (Realizable case – positive result). Let H be a concept class with VC-dimension
d, let D be a distribution realizable by H, and let Lrn be the One-inclusion graph algorithm. Let
also ⌘ 2 (0, 1) be the stability parameter given to SPV and let n � 1/⌘ be the sample size. Then
SPV(Lrn) has ⌘-adversarial risk

"
Adv

n (SPV(Lrn)|D, ⌘)  42⌘d.

Proof. By Theorem A.2, plug in "d1/(7⌘)e(Lrn|D)  d
d1/(7⌘)e+1  7⌘d to Lemma A.1 and the result

follows.

B Proof of Theorem 3.3 (Realizable Case – Impossibility Result)

Randomized Learning Rules. The impossibility result in Theorem 3.3 extends to randomized
learning rules. But in order for the statement in Theorem 3.3 to be meaningful, we need to define
adversarial risk with respect to randomized learners. As common in the literature on learning theory
(see, e.g. the book of Shalev-Shwartz and Ben-David [2014]) we model randomized learners as
deterministic learning rules with continuous predictions p 2 [0, 1], and loss function `(p, y) = |p�y|.
Indeed, the loss of a deterministic learner predicting a value p 2 [0, 1] under the loss function |y � p|

is equal to the expected 0/1-loss of a randomized learner predicting 1 with probability p. In the
course of discussing the impossibility result, a learning algorithm Lrn : (X ⇥ {0, 1})⇤ ! [0, 1]X is a
deterministic mapping which takes an input sample S 2 (X ⇥ {0, 1})⇤ and maps it to a hypothesis
f 2 [0, 1]X . We re-define ⌘-adversarial risk with this view of randomized learners as randomized
⌘-adversarial risk.
Definition B.1 (Randomized ⌘-Adversarial Risk). Let ⌘ 2 (0, 1) be the adversaries’ budget, let Lrn
be a learning rule, and let D be a distribution over examples. The randomized ⌘-adversarial risk of
Lrn w.r.t D and sample size n is defined by

"
Adv

n (Lrn|D, ⌘) := ES⇠Dn,(x,y)⇠D

"
sup

S02B⌘(S)
|Lrn(S0)(x)� y|

#
.

The above definition of adversarial risk captures the case of an adversary that knows the expected
prediction of the learner (that is, its test-time randomness), but not the learner’s "internal" randomness
(computation-time randomness). Indeed, the supremum is taken only with respect to the expected
prediction, and not with respect to a specific execution of the algorithm determined by its internal
randomness. Note that deterministic learners are a special case ({0, 1}-valued outputs), in which
case this definition collapses to the previous Definition 2.2. To avoid further notation, note that we
overloaded the notation "

Adv

n from Definition 2.2 in the above more general definition.

We are now ready to prove the impossibility result.
Theorem (Restatement of Theorem 3.3). There exists a constant c2 > 0 so that the following holds.
Let H be a non-trivial hypothesis class with VC dimension d and let ⌘ 2 (0, 1). Then, there exists a
distribution D realizable by H, so that every learner Lrn has ⌘-adversarial risk

"
Adv

n (Lrn|D, ⌘) � min{c2⌘d, 1/100}

for any sample size n � 1/⌘.

Proof. Let H be a non-trivial concept class; in particular this means that its VC-dimension d satisfies
d � 1. Let ⌘ 2 (0, 1) be the adversaries’ budget and let Lrn be an arbitrary learner. We need to show
that there exists a distribution D realizable by H so that "Advn (Lrn|D, ⌘) � min{⌘d/32, 1/100}.

It suffices to consider the case when ⌘d/32  1/100 and prove that "Advn (Lrn|D, ⌘) � ⌘d/32. Indeed,
in the complementing case we have ⌘d/32 > 1/100 and we need to show that "Advn (Lrn|D, ⌘) �
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1/100. Notice that ⌘d/32 > 1/100 is equivalent to ⌘ >
32

100d , and thus it suffices to show that even
if the adversary’s budget ⌘ is reduced to ⌘ = 32

100d then "
Adv

n (Lrn|D, ⌘) � 1/100. The latter indeed
follows from the case when ⌘d/32  1/100, because 32

100d · d/32 = 1/100.

We thus assume that ⌘d/32  1/100 and set out to prove that "Advn (Lrn|D, ⌘) � ⌘d/32. We first
consider the case when the VC-dimension of H is d � 2 and later handle the case when d = 1.

The VC dimensions is d � 2. Let V = {v1, . . . , vd} ⇢ X be shattered by H. Define a distribu-
tion DX over V as follows. Set DX (vi) = ⌘/2 for all 2  i  d, and set DX (v1) = 1� ⌘(d� 1)/2.
Notice that DX is well defined since d � 2 and ⌘  2/(d�1) (the latter is implied by the assumption
that ⌘d/32  1/100). For any labeling function ` 2 Y

V , let D` denote the distribution over examples
defined by D`(vi, `(vi)) = DX (vi) for all i 2 [d]. Note that D` is realizable, since V is shattered. It
suffices to show that if the label vector ` ⇠ Y

V is drawn uniformly at random then

E`⇠YV ES⇠Dn
` ,(x,y)⇠D`

"
sup

S02B⌘(S)
|Lrn(S0)(x)� y|

#
� ⌘(d� 1)/16. (1)

Indeed, the above implies that there exists ` 2 Y
V such that

ES⇠Dn
` ,(x,y)⇠D`

"
sup

S02B⌘(S)
|Lrn(S0)(x)� y|

#
� ⌘(d� 1)/16

� ⌘d/32. (d � 2)

We establish Equation 1 in two steps:

1. For a sample S let Su be the unlabeled input sample underlying it. We say that an unlabeled
sample S

u and an instance x are hard if x 6= v1 and x appears at most ⌘n times in S
u. In

the first step we show that Pr`,S,(x,y)[Su
, x are hard] � ⌘(d� 1)/4.

2. Let E2 denote the event of all label vectors `, input samples S, and test examples (x, y)
such that supS02B⌘(S) |Lrn(S

0)(x) � y| � 1/2. In the second step we show that
Pr[E2|S

u
, x are hard] � 1/2.

Indeed, once we prove both steps we have:

El⇠YV ES⇠Dn
` ,(x,y)⇠D`

"
sup

S02B⌘(S)
|Lrn(S0)(x)� y|

#
�

1

2
· Pr[E2]

�
1

2
· Pr[Su

, x are hard] · Pr[E2|S
u
, x are hard]

�
1

2
·
⌘(d� 1)

4
·
1

2
= ⌘(d� 1)/16,

as desired.

Let us prove step 1. Notice that Su and x are distributed according to the marginal distribution
D

n+1
X

. Thus, x 6= v1 with probability ⌘(d � 1)/2, and given that x 6= v1 the expected number of
appearances of x in S

u is ⌘n/2. Therefore, by Markov’s inequality, the probability that Su and x are
hard given that x 6= v1 is at least ⌘n/2

⌘n = 1/2. Thus, the overall probability that Su
, x are hard is at

least ⌘(d� 1)/4.

We now prove step 2. Let Su
, x be hard. It suffices to show that

E`(x1),...,`(xn),y

h
sup

S02B⌘(S)
|Lrn(S0)(x)� y|

��� Su
, x

i
�

1

2
,

where `(xi) is the label of the i’th instance in S
u and y is the test label. Crucially, notice that

the test-label y is independent of Su, x, and all other labels `(xi) for xi 2 S
u such that xi 6= x.

Thus, even conditioned on S
u
, x and all labels of xi 6= x, the test-label y is distributed uniformly in

Y = {0, 1}.
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Define samples S0

0, S
0

1 to be the same as S0 with the exception that every appearance of x in S
0

0 is
labeled with 0 in S

0

0 and with 1 in S
0

1. Note that both S
0

0, S
0

1 2 B⌘(S), because S
u
, x are hard. We

claim that, with probability at least half over the drawing of the `(xi)’s and y we have

|Lrn(S0

0)(x)� `(y)| � 1/2 or |Lrn(S0

1)(x)� `(y)| � 1/2.

Having this in hand, and given that Ŝ is hard, we are done: both S
0

0, S
0

1 2 B⌘(S), and Item 2 follows.

It thus remains to show that indeed |Lrn(S0

0)(x) � y| � 1/2 or |Lrn(S0

1)(x) � `(y)| � 1/2 with
probability at least 1/2 over the drawing of the `(xi)’s and y. This is achieved by a simple case
analysis:

• if both Lrn(S0

0)(x), Lrn(S
0

1)(x)  1/2 then with probability 1/2 we have y = 1 and the
claim follows. The case Lrn(S0

0)(x), Lrn(S
0

1)(x) > 1/2 is treated similarly.

• If Lrn(S0

0)(x)  1/2, Lrn(S0

1)(x) � 1/2 then |Lrn(S0

0)(x) � y| � 1/2 or |Lrn(S0

1)(x) �
y| � 1/2 with probability 1 and the claim follows. The case Lrn(S0

0)(x) >

1/2, Lrn(S0

1)(x) < 1/2 is treated similarly.

This finishes the proof of Theorem 3.3 when the VC-dimension d is at least 2.

The VC-dimension is d = 1. In this case, we can not define the distribution DX as before because
d < 2. However, the fact that H is non-trivial allows to modify the definition as follows. Let x1, x2 2

X and h1, h2 2 H so that h1(x1) = h2(x1) and h1(x2) 6= h2(x2), guaranteed by the fact that H is
non-trivial. Set V = {x1, x2}, and define the distribution DX by DX (x1) = 1�⌘/2, DX (x2) = ⌘/2
as in the case d � 2. Also, define the random labeling function ` to agree with h1 on with probability
half and with h2 with probability half. The rest of the proof is the same.

C Proof of Theorem 3.6 (Realizable and Proper Case – Positive Result)

Theorem (Restatement of Theorem 3.6). There exists a constant c > 0 so that the following holds.
Let H be the class of halfspaces over Rd for some d � 1, and let ⌘ 2 (0, 1). Then, there exists a
proper learner Lrn having ⌘-adversarial risk

"
Adv

n (Lrn|D, ⌘)  c⌘d
3

for any distribution D realizable by H and for any sample size n � 1/⌘.

To derive Theorem 3.6, we reinforce the SPV algorithm with a technique introduced by Kane,
Livni, Moran, and Yehudayoff [2019] and further developed by Bousquet, Hanneke, Moran, and
Zhivotovskiy [2020]. This technique allows in certain cases to project a majority vote of hypotheses
from the class H back to H. Its applicability hinges on a combinatorial parameter called the projection
number:
Definition C.1 (Projection Number). Let H be a concept class. For any ` � 2 and for any multiset
H

0
⇢ H define the set XH0,` to be the set of all x 2 X , for which the number of hypotheses in H

0

that disagree with Maj(H0)(x) is less than |H
0
|/`. The Projection Number of the class H, denoted

kp = kp(H), is defined to be the smallest ` so that for any finite multiset H0
⇢ H, there exist h 2 H

such that h(x) = Maj(H0)(x) for all x 2 XH0,`. If no such ` exists then kp = 1.

First, let us analyze the general performance of PSPV.
Lemma C.2 (General performance of PSPV). Let H be a concept class with a finite projection
number kp < 1. Let D be a distribution over examples, and let Lrnp be a proper learning rule. Let
also ⌘ 2 (0, 1) be the stability parameter given to PSPV and let n � 1/⌘ be the sample size. Then
PSPV(Lrnp) is a proper learning rule having ⌘-adversarial risk

"
Adv

n (PSPV(Lrnp)|D, ⌘)  4kp"d1/(5kp⌘)e(Lrnp|D).

Proof. The proof follows the same lines as the proof of Lemma A.1. Let S ⇠ D
n be the input

sample, and (x, y) ⇠ D be the test example. Note that for all i 2 [t] (where t = b5kp⌘nc
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is the number of subsamples of size at least 1
5kp⌘

in the partition made by PSPV) it holds that
E
⇥
1[hi(x) 6= y]

⇤
 "d1/(5kp⌘)e(Lrnp|D). By applying linearity of expectation we get

E
"
1

t

tX

i=1

1[hi(x) 6= y]

#
 "d1/(5kp⌘)e(Lrnp|D).

By Markov’s inequality:

Pr

"
1

t

tX

i=1

1[hi(x) 6= y] �
1

4kp

#
 4kp"d1/(5kp⌘)e(Lrnp|D).

Let S0
2 B⌘(S). Let h0 = PSPV(Lrnp)(S0), and for all i 2 [t] let h0

i be the hypothesis obtained by
training Lrnp on S

0(i). Note that, since S and S
0 are ⌘-close by, and since n � 1/⌘ it holds that

1

t

tX

i=1

1
h
S
(i)

6= S
0(i)

i


⌘n

b5kp⌘nc


1

4kp
.

Hence it is implied that 1
t

Pt
i=1 1 [hi(x) 6= h

0

i(x)] 
1

4kp
. Thus, the event that 1

t

Pt
i=1 1[h

0

i(x) 6=

y] � 1
2kp

implies (or, is contained in) the event that
Pt

i=1 1[hi(x) 6= y] � 1
4kp

, hence:

Pr

"
1

t

tX

i=1

1[h0

i(x) 6= y] �
1

2kp

#
 4kp"d1/(5kp⌘)e(Lrnp|D).

Note that by definition of projection number it holds that the hypothesis h
0
2 H returned by the

algorithm exists. Hence, by definition of X{h0
1,...,h

0
t},2kp

the above implies that

Pr[h0(x) 6= y]  4kp"d1/(5kp⌘)e(Lrnp|D).

Since S
0 is an arbitrary sample in B⌘(S), the above implies that PSPV(Lrnp) has the stated ⌘-

adversarial risk.

To prove Theorem 3.6 we will use the following result regarding the projection number of halfspaces.
Theorem C.3 (Kane, Livni, Moran, and Yehudayoff [2019], Braverman, Kol, Moran, and Saxena
[2019], Bousquet, Hanneke, Moran, and Zhivotovskiy [2020]). Let H be the class of halfspaces over
Rm. Then kp(H) = d(H) = m+ 1.

We will use the SVM learner as an input learner for PSPV.
Theorem C.4 (Vapnik and Chervonenkis [1974]). Let m � 1 and let H be the class of halfspaces
over Rm. Let D be a distribution realizable by H. Let also n 2 N, and let Lrnp be the SVM algorithm.
Then "n(Lrnp|D)  m+1

n+1 .

Theorem 3.6 now follows as an immediate application of Theorem C.3, Theorem C.4 and Lemma C.2.
Corollary C.5 (Realizable and proper case – positive result). Let m � 1, let H be the class of
halfspaces over Rm, and let d = m+1 be the VC-dimension of H. Let D be a distribution realizable
by H, and let Lrnp be the SVM learner. Let also ⌘ 2 (0, 1) be the stability parameter given to PSPV

and let n � 1/⌘ be the sample size. Then PSPV(Lrnp) has ⌘-adversarial risk

"
Adv

n (PSPV(Lrnp)|D, ⌘)  20⌘d3.

Proof. By Theorem C.3, if H is the class of halfspaces over Rm then its projection number is
kp = d = m+1. Also, by Theorem C.4, we have that "d1/(5d⌘)e(Lrnp|D)  5⌘d2. Plug both results
to Lemma C.2, and the result follows.
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D Proof of Theorem 4.1 (Agnostic Case – Positive Result)

Theorem (Restatement of Theorem 4.1). There exist constants c1, c2 so that the following holds. Let
H be a hypothesis class with VC dimension d and let ⌘ 2 (0, 1). Then, there exists a learner Lrn
having ⌘-adversarial risk

"
Adv

n (Lrn|D, ⌘)  c2 · OPT+ c1 · d · ⌘

for any distribution D over examples and for any sample size n � 1/⌘.

To derive Theorem 4.1, we use an agnostic variation of the One-inclusion graph learner.
Theorem D.1 (Corollary of Lemma 16 in [Long, 1999]). There exists a constant C such that the
following holds. Let H be a concept class with VC-dimension d and let Lrn be the agnostic variation
of the One-inclusion graph algorithm implied by Lemma 16 in [Long, 1999]. Let also n be the sample
size. Then, for any distribution D over examples (not necessarily such that is realizable by H), it
holds that "n(Lrn|D)  C(OPT+ d/n).

Theorem 4.1 is implied by the following immediate corollary of Theorem 4.1 and Lemma A.1.
Corollary D.2 (Agnostic case – positive result). There exists a constant C such that the following
holds. Let H be a concept class with V C dimension d, let ⌘ 2 (0, 1) be the stability parameter given
to SPV, and let D be a (not necessarily realizable) distribution over examples. Let also n � 1/⌘ be
the sample size. Then SPV(Lrn) has ⌘-adversarial risk

"
Adv

n (SPV(Lrn)|D, ⌘)  6COPT+ 42C⌘d,

where Lrn is the agnostic variant of the One-inclusion graph algorithm mentioned in Theorem D.1.

Proof. By Theorem D.1, there exists a constant C such that "d1/(7⌘)e(Lrn|D)  COPT + 7C⌘d.
Plug this into Lemma A.1 and the result follows.

E Proof of Theorem 4.2 (Agnostic Case – Impossibility Result)

Theorem (Restatement of Theorem 4.2). Let ⌘0 2 (0, 1), n 2 N. For any hypothesis class H that
has at least two hypotheses and. for any deterministic learner, there is a distribution D over (two)
examples and ⌘ = ⌘

0 + eO(1/
p
n) such that Lrn has ⌘-adversarial risk

"
Adv

n (Lrn|D, ⌘) � 2OPT+ ⌦(⌘0)�O(1/n).

Let h1, h2 2 H be two distinct hypotheses and let x 2 X such that h1(x) 6= h2(x). In this proof
we consider distributions D supported only on {(x, 0), (x, 1)}. Notice that such a distribution is
determined by the probability p = Pr(x,y)⇠D[y = 1] and hence can be thought of as a coin with
bias p. Thus, the task of agnostic learning such distributions with respect to instance-targeted data
poisoning boils down to predicting a random p-coin toss given an input sample of n p-coin tosses out
of which at most ⌘ · n tosses are flipped by an adversary who knows the result of the coin toss that
needs to be predicted. We summarize this in the following game:
Definition E.1 (The coin game). The coin game is parameterized by (n, ⌘) where n 2 N, ⌘ 2 (0, 1),
and the game is played between an adversary Adv and a learner Lrn as follows.

1. Adv picks p 2 [0, 1].

2. c1, . . . , cn+1 ⇠ X
n+1
p , where Xp is a binary random variable satisfying Pr[Xp = 1] = p.

3. Adv changes c = (c1, . . . , cn) into c
0 = (c01, . . . , c

0

n) where dH(c, c
0)  ⌘ · n.

4. Lrn gets to see c
0 = (c01, . . . , c

0

n) and outputs a bit c 2 {0, 1}.

5. Lrn wins if c = cn+1, and Adv wins otherwise.

In this game, we define OPTp = min {p, 1� p} to be the optimal error of the learner if it had known
p, and we define ERR = Pr[c 6= cn+1] (over all the randomness involved) to be the error of the game
(i.e., when the learner does not win). We also refer to ERR� OPTp as the regret.4

4Note that OPTp is a random variable in general, if the adversary is randomized. But if the adversary uses a
deterministic strategy for the fixed p, then OPTp is a constant.
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Theorem E.2. For any ⌘
0
2 [0, 1/2] and any deterministic learner Lrn that participates in the coin

game of Definition E.1, there is an adversary Adv with a fixed choice of p (determining OPT = OPTp)
and ⌘ = ⌘

0 + eO(1/
p
n) such that when we run the game of Definition E.1 with parameters (n, ⌘), it

holds that ERR� OPT � 1/2 + ⌘
0
�O(1/n).

Remark 1 (On deterministic adversaries). In Theorem E.2 we show the existence of an adversary
with a fixed choice of p. This adversary is in fact randomized. Here we remark that, for every fixed
(even randomized) learner Lrn and a fixed choice of p, there is always a deterministic adversary that
achieves the maximum regret (for such Lrn, p). The reason is that if by using randomness rAdv the
adversary achieves expected regret R(rAdv) over the randomness of the learner, then its overall regret
will be ErAdv [R(rAdv)]. Therefore, if r(p)

Adv
is the randomness (for fixed p) that maximizes R(rAdv), the

adversary can simply fix its randomness to r
(p)
Adv

without decreasing its gain. This means that without
loss of generality, the adversary of Theorem E.2 is deterministic. In addition, since the adversary
sends the first message p, the overall optimal strategy Adv (who picks p potentially in a randomized
way) can also fix p to what maximizes R(r(p)

Adv
), which makes Adv fully deterministic.

Deriving Theorem 4.2. We first show how to derive Theorem 4.2 from Theorem E.2.

Proof of Theorem 4.2. First assume ⌘
0
 1/2, and at the end we explain how to deal with ⌘

0
> 1/2.

By Theorem E.2, there is an adversary (with a fixed choice of p) in the coin game of Definition E.1
such that ERR�OPT � 1/2+⌘

0
�O(1/n) when we use (n, ⌘) as game parameters. Since ERR  1,

we have OPT  1/2� ⌘
0 +O(1/n), and so

ERR� OPT � 1/2 + ⌘
0
�O(1/n) � OPT+ 2⌘0 �O(1/n).

This implies that ERR � 2OPT+ 2⌘0 � O(1/n). Note that OPT is indeed the minimal error that
the learner can achieve by outputting any of the constant coins 0, 1, which in turn refers to outputting
either of h0, h1 from the hypothesis class. In addition, ERR is equal to the adversarial risk for
parameters n, ⌘ and the distribution Dp for this particular attack. This means that

"
Adv

n (Lrn|D, ⌘) � 2OPT+ 2⌘0 �O(1/n),

which implies Theorem 4.2. Now, if ⌘0 > 1/2, we first artificially decrease adversary’s budget ⌘0 to
⌘
00 = 1/2, which leads to

"
Adv

n (Lrn|D, ⌘) � 2OPT+ 2⌘00 �O(1/n),

but we also know that ⌘00 = ⌦(⌘0), which again proves Theorem 4.2.

Before proving Theorem E.2 we recall two useful tools.
Lemma E.3 (Proposition 2.1.1 in Talagrand [1995]). Let µ = µ1 ⇥ . . . µn be a product measure and
f : µ 7! {0, 1} a boolean function where Pr[f(µ) = 1] = 1/2. Then, for all b 2 [n],

Pr
x⇠µ

[9x0
, dH(x, x

0)  b ^ f(x0) = 1] � 1� 2e�b2/n
.

In other words, with probability at least 1� 2e�b2/n over the sampling of x ⇠ µ, one can change up
to b of the coordinates of x and obtain x

0 (i.e., dH(x, x0)  b) such that f(x0) = 1.
Lemma E.4 (Modifying coins). Suppose 0  p, p

0
 1, and let q = |p � p

0
|. Then there is an

adversary who can change q ·n coins, in expectation, of a sample c ⇠ X
n
p into c

0 (i.e., E[dH(c0, c)] =
q · n) such that c0 ⇠ X

n
p0 (Namely, the tampered sequence looks exactly like it is sampled from X

n
p0 ,

while in reality it is being first sampled from X
n
p and then modified by the adversary in q · n points in

expectation). Moreover, the probability that the adversary changes more than qn+
p

(n lnn)/2 of
the coordinates is at most 1/n.

Proof. Without loss of generality, let p0 � p = q � 0. Then the adversary will change each of the
coins with independent probability q as follows. If a coin ci = 1, the adversary will not change
it, which will happen with probability p. If ci = 0, which will happen with probability 1 � p, the
adversary will change this to 1 with probability q/(1 � p) over its own randomness. Note that
q = p

0
� p  (1� p), and so q/(1� p) 2 [0, 1] can be interpreted as a probability. The probability

that c0i = 1 is now exactly p+ q = p
0, while the expected number of changed coins is q · n. Finally,

since the adversary’s changes of the coin outcomes are done independently for each coin, the bound
on the number of changes made by the adversary is implied by the Hoeffding-Chernoff bound.
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We now prove Theorem E.2 using the two tools above.

Proof of Theorem E.2. Fix the deterministic learning algorithm Lrn. This means that for every given
input vector c = (c1, . . . , cn), we have Lrn(c) 2 {0, 1}. Now define ↵(p) = Prc⇠Xn

p
[Lrn(c) = 1].

We do a case study as follows.

• If ↵(0) 6= 0, it means that ↵(0) = 1 (i.e., the deterministic learner outputs 1 over the all
zero vector). In this case, OPT = 0 and ERR = 1, which implies ERR� OPT � 1/2 + ⌘

0.

• If ↵(1) 6= 1, it implies ERR� OPT � 1/2 + ⌘
0 similarly.

• If none of the above cases happens, we can assume ↵(b) = b for both b 2 {0, 1}. Because
the learner is deterministic, Lrn(c) = 1 if c 2 S for a fixed set S ✓ {0, 1}n. Moreover, for
all c 2 {0, 1}n, it holds that Pr[Xn

p = c] = p
d(1�p)n�d, where d is the number of non-zero

coordinates of c. This implies that ↵(p) is a polynomial of degree at most n over p, which is
a continuous function. Therefore, there exists q 2 (0, 1) such that ↵(q) = 1/2. Without loss
of generality, assume that q  1/2. Then, the adversary picks p = max {0, q � ⌘

0
}, which

guarantees OPT = p  1/2� ⌘
0 (due to the assumptions ⌘0, q  1/2). Then, the adversary

uses Lemma E.4 to shift the coin’s distribution back to q. For this change, the adversary
makes at most ⌘0 · n+

p
(n lnn)/2 changes with probability 1� 1/n. We then apply the

algorithm of Lemma E.3 to make further
p
n ln(2n) changes to the coins to make sure that

the output of the learner is the wrong outcome (different from cn+1) with probability 1�1/n.
In total, the adversary can make at most ⌘0 ·n+

p
(n lnn)/2+

p
n ln(2n) 2 ⌘

0
·n+ eO(

p
n)

changes to the coin flips outcomes, while the learner’s output bit is wrong with probability
1� 1/n� 1/n = 1�O(1/n). Since OPT  1/2� ⌘

0 and ERR � 1�O(1/n), we get

ERR� OPT � 1/2 + ⌘
0
�O(1/n),

which finishes the proof.
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