IV. APPENDIX
V. RELATED WORK

Few-shot Imitation Learning. Few-shot imitation learning
is one of the main desiderata in robot learning, and more
in general, in machine learning. Behaviour Cloning, where
a neural network is trained over a dataset of observation
action pairs coming from an expert demonstrator, often requires
hundreds of demonstrations to learn tasks, making the goal
of obtaining fast-learning robots laborious. Over the years,
many methods have been proposed to tackle this problem. [[11]
proposed to train a network to explicitly take in a demonstration
as input, and output actions that would follow the behaviour
demonstrated. [23] proposed to learn a siamese network on
pairs of demonstrations of the same behaviour to learn task-
specific embeddings, able to then do one or few-shot learning
at test time. [6]] proposes to train several imperfect dynamics
model to train a policy to perform efficient adaptation to real-
world data. All these methods, however, still rely on gathering
a substantial amount of interaction data. We propose to use
the emergent pattern completion abilities of large Transformers
pretrained solely on text, where no robotics data is used to
pretrain or finetune it.

Finetuning Large Pretrained Models An effective
paradigm that emerged from the recent research is to first
pretrain large models on enormous, task-agnostic datasets, and
then perform finetuning with substantially smaller datasets
representing the task at hand. Such models are referred to as
Foundation Models [[18]]. While being extremely successful in
the fields of computer vision or natural language processing,
the lack of vast robotics datasets hindered the creation of
robotics specific Foundation Models. While [12, [7] demon-
strated promising results by finetuning large Vision-Language
Models on robotics data, learning new tasks is still inefficient
and laborious. We demonstrate that is possible to effectively
repurpose text-pretrained Transformers as general imitation
learning machines without the need for any robotics data, and
obtain results on par or superior to the current state-of-the-art.

Use of Large Language Models in robotics as planners.
The exponential progress in capabilities of text-pretrained
Transformers, or Large Language Models (LLMs), to interpret
and reason over text generated a plethora of robotics works
leveraging such models. [16] 25, 31} 21} [10] use LLMs as
high-level planners, obtaining a list of steps to solve tasks
in language form. [22| 134] leverage LLMs to map a high-
level description of a task in natural language into rewards
that can be used by a trajectory optimiser. While effective,
these methods rely on LLMs to generate high-level plans or
guidance for external optimisers, and therefore need additional
techniques to ground these outputs into actions. In our work,
we do not use LLMs for natural language, but instead exploit
their pattern learning capabilities to directly process sequences
of observations and generate executable low-level trajectories.
We therefore shed light on a counter-intuitive phenomenon:
one of the most effective uses of LLMs in robot learning is
achieved without the use of natural language neither in the

inputs nor in the outputs.

Language Models that output robotic actions. [[12] fine-
tunes a Vision-Language Model with robotics data in the form
of language annotated demonstrations. They obtain therefore
a model that can receive as input a language instruction and
output, similarly to our method, actions that can directly be
executed by the robot. The main differences, however are that
1) we do not need finetuning, employing off-the-shelf models
2) while their model receives language instructions, our method
can perform in-context learning on low-level demonstrations,
therefore acting as a general imitation learning machine. [24]]
also demonstrated LLMs ability to output trajectories of
executable actions instead of high-level textual plans. However,
it can only generate and execute plans based on language
instructions, therefore still relying on language as an input and
being unable to learn from expert demonstrations. [26] was
one of the first works to show the general pattern learning
abilities of LLMs. They demonstrated the capability of LLMs
to autoregressively complete a partial trajectory received as
an input, therefore learning patterns beyond human language.
However, their robotics exploration was not comprehensive,
ignoring complex visual inputs. To the best of our knowledge,
we are the first work to propose a complete framework that
can learn from demonstrations in the forms of sequences of
visual observations and actions.

In-Context Learning Scaling the training of large Trans-
formers, especially on language data, led to the emergence
of in-context learning [19]. While the phenomenon is not
entirely clear, recent works have investigated its emergence
in smaller, simpler to study and control settings [28]. [32]]
investigated the parallels between in-context learning, a purely
feed-forward adaptation mechanism with no weights updates,
and gradient descent, hypothesising that Transformers learn to
implicitly apply a gradient update via attention heads. These
observations inspired this work, and the use of Transformers
and their in-context learning ability as general imitation learning
machines. Notably, Transformers are not the only way to obtain
in-context learning. [33]] trained a graph neural network to learn
objects alignments from few demonstrations. While they learn
manipulation strategies via in-context learning like our method,
they focus on finding relative poses between objects, while
we can output end-effector actions, therefore resulting in more
general behaviours, including non-prehensile manipulation.

A. Experimental Setup

We run our experiments using a Sawyer robot, interacting
with objects on a table in front of it. The end-effector is
a Robotiq 2F-85, on which we mount an Intel Realsense
D435 RGBD camera. In every interaction episode the robots
records one visual observation at the beginning of the task, then
computes a trajectory of actions, and finally executes those.
The camera is mounted on the wrist of the end-effector. The
end-effector is moved 90cm above the table at the beginning
of each episode to record an image observation.

During demo collection, the robot first captures an observa-
tion, and then the human expert maneuvers the end-effector

through kinesthetic teaching, while its S E/(3)poses are recorded.
Each demo therefore collects an RGBD observation and a
sequence of end-effector poses. When collecting demos, the
position of the objects for each task are randomised in order
to cover part of the starting state distribution of the task. More
details can be found in the Supplementary Material.

At test time, the objects are positioned on the table in
novel configurations, designed to test both interpolation and
extrapolation abilities of the tested method to the poses
observed during training. The robot captures an observation as
above, and then computes a series of end-effector poses.

We use GPT-4 Turbo [17] as Large Language Model,
but later compare its performance to other models. In the
Supplementary Material we provide more details about the
way we give inputs to it and the way we process its outputs.

B. Tasks

We thoroughly evaluate our method by choosing a family
of everyday manipulation tasks and measuring its ability to
efficiently replicate the expert behaviour, generalising after just
few demonstrations. The criterion we adopted to choose the
tasks is to 1) replicate tasks that appeared in the recent literature
2) measuring KAT’s ability to tackle a series of challenges
that appear in everyday tasks. In particular, we chose tasks that
collectively measure generalisation to novel shapes, multi-
modality, precision, dexterity, multi-stage execution, and
6D trajectories. The tasks are the following:

o Align T: Inspired by [4], the robot needs to move a T-
shaped object to align it to the axes of the table. The task
requires non-prehensile abilities and the ability to model
multi-modal distributions: demos are provided following
different strategies (pushing the vertical or the horizontal
part to align the T), and the robot needs to commit to a
single one at test time.

« Wiping a Plate: The robot needs to follow the edge of
a plate with a sponge in a circular motion. This task
requires multi-modal reasoning: half the demos are given
in clockwise direction, half are given counter-clockwise.
The robot needs to commit to one at test time. We test
for both interpolation and extrapolation abilities by also
using unseen plates at test time of unseen dimensions.

o Sweep: The robot needs to sweep an object on a dust-
pan. The relative positions of dustpan and object are
randomised, therefore the robot needs to compute an
effective trajectory to bring the object on the dustpan.
We test for generalisation by also using a novel dustpan
and objects to sweep at test time.

o Espresso: The robot needs to insert an espresso capsule
in a toy espresso machine, and then close its lid. This
task requires noteworthy precision, and is composed of
multiple stages.

e Scooping: The robot needs to scoop some chocolate
powder from a cup with a spoon. The task was proposed
in [35] as a challenging, dexterous task. We test for
generalisation by using also unseen cups at test time.

o Pick and Pour: The robots needs to pick up a French
Press and pour coffee into a cup. The pouring part of the
task was proposed in [35] as a challenging, dexterous task.
By also picking up the French Press, the task requires
multiple stages. We test for generalisation by using also
unseen cups at test time.

o Hang: The robot needs to hang a clothes hanger to an
horizontal support. The task requires to reach a precise
position and height, otherwise the hook will not hang to
the support.

o Put Bottle Upright: The robot needs to pick up an
horizontally placed bottle and place it upright on the
table. This is also inspired from a task in [4], where a
mug has to be flipped. The task requires a non-trivial,
6D trajectory to be completed, so that the bottle is stably
placed. We test for generalisation by also using unseen
bottles at test time.

o Pick and Place: The robot needs to pick up an apple
and place it in a red bowl, with a blue bowl acting as a
visual distractor. We test for generalisation at test time
by both using an orange, and then a purple bowl as
distractor instead of the blue bowl. This task requires
reasoning abilities to correctly understand the goal given
the demonstrations, and the ability to ignore distractors.

Additional details, like success criteria, are listed in the
Supplementary Material.

C. Baselines

As the goal of our work is to demonstrate the efficiency of
Large Language Models (large text-pretrained Transformers)
to effectively act as imitation learning machines by learning
to emulate expert behaviour after few demonstrations, we
compared our approach with Diffusion Policies [4]], a state-
of-the-art general imitation learning algorithm from the recent
literature, that was already demonstrated to surpass a series of
recent techniques in terms of learning efficiency and generality.

In particular, we first compare the vision-based Diffusion
Policy method proposed in [4], and then modify it by first
providing our proposed keypoints as input and actions rep-
resentation as outputs (KeyAct-DP), therefore going from a
(512,512, 4) input space to K 3D visual keypoints and from the
original position and orientation representation of [4] to a triplet
of 3D points uniquely representing an end-effector pose. We
use the original authors’ code, and optimise hyperparameters
to maximise performance on our tasks.

These baselines allow us not only to compare KAT to the
state-of-the-art in the field, but also to measure the contribution
coming from the keypoints and actions representation we
propose.

D. Tasks Success Criteria

Here we describe the adopted criteria to define an episode
as successful for each task.

o Align T: Given an imaginary frame of reference with axis
x and y aligned with the longer and shorter sides of the

Imitation Learning Performance
as a Function of the # of demos

1.0 == KAT
KeyAct-DP

(]

£

=

i —
'2 0.8 " —e— Diff. Policies
o 0.6

]

c 04

©

€02

—

o

T 0.0

()

a

5 10 15 20 25 30 35 40
Number of Demos

Fig. 5: Performance of each method as a function of the number
of demos. While KAT outperforms the baselines in the few-
shot regime (< 20 demos), in-context learning struggles to
improve as the number of demos increase even more. Plot
shows mean and standard deviation across tasks.

table respectively, the long part of the T is withing 20
degrees to the y side.

« Wiping a Plate: The sponge grasped by the robot touched
at least 80% of the edge of the plate.

o Sweep: The object to be swept is entirely on the dustpan
at the end of the episode.

o Espresso: The espresso capsule is inserted in the slot and
the lid is closed.

o Scooping: The robot scoops at least 5 grams of chocolate
powder from the cup.

o Pick and Pour: The French press is inclined of at least
50 degrees from its normal vertical position while being
held by the robot, with the spout pointing inside the mug.
For practical reasons the French press was not filled with
liquid, but we mimic a movement that would pour its
contents into the mug.

o Hang: The cloth hanger its stably placed on its support.
« Put Bottle Upright: At the end of the episode, the bottle
is in a stable vertical position when no longer grasped.

o Pick and Place: The apple (or orange) is entirely inside
the red container.

E. Additional Experiments

How does the performance change as the number of
demonstrations increases? In our previous experiments we
provided 10 demonstrations for each task. To investigate the
performance as a function of the number of demonstrations
received, a key property in few-shot imitation learning, we
chose a subset of the 9 tasks (Align T, Wipe Plate, Espresso,
Bottle Upright) and provided 5, 10, 20 and 40 demonstrations
for each task. We then compared the performance of KAT and
the baselines. The results are plotted in Fig. [5] Diffusion Policy
is unable to reliably learn a policy even with 20 demonstrations,
as the input space is substantially higher-dimensional, but starts
working when receiving 40 demonstrations, albeit with lower
performance than the other methods. KeyAct-DP also obtains

Clean | Distractors | Diff. BG | Both
KAT (Ours) | 0.65 0.6 0.62 0.58

TABLE II: Effect of distractors and different background (BG)
on the performance of our method.

remarkable results, but its performance evolves more slowly
than KAT. However, when receiving 40 demonstrations, we
can see its performance surpassing KAT on certain tasks. This
suggests an important insight: pretrained Transformers can
excel at in-context learning sequence-to-sequence patterns few-
shot, making them particularly useful for low-data regimes,
but currently do not scale well as further in-context data is
provided. We hypothesise that with this amount of data leads
in-context learning stops working optimally, and becomes
a bottleneck. Instead, we believe that, with this amount of
data, such Transformers may be finetuned to further improve
performance, albeit the process is more laborious that in-context
learning. Nevertheless, finetuning LLMs on Keypoint Action
Tokens data is an interesting direction for future work.

Can our method handle visual distractors? To study
robustness to distractors, we evaluate KAT on the Align T,
Wipe Plate, Espresso, Bottle Upright tasks, providing 10
demonstrations per task, but at test time we add distractor
objects, change the background, or both. For each of these
scenarios, we run 10 test time episodes, reporting the results
in Table LIl These results showcase the robustness of KAT to
visual distractors. This ability is obtained as a combination of
two factors: from a vision perspective, the descriptors extracted
from the observations via DINO-ViTs are robust to pertur-
bations and have high dissimilarity across different objects.
From a sequence-to-sequence pattern learning perspective, the
pretrained Transformer is able to infer the keypoints tokens
most relevant to the task by comparing the inputs-outputs
relations in the demonstrations, therefore ignoring possible
keypoint tokens that are less robust to unrelated visual changes.

F. Vision: Investigations on Keypoint Tokens

What is the optimal number of keypoints to extract? In
this work we proposed a pipeline, based on the DINO family
of Vision Foundation Models, to transform a visual observation
o; into a sequence of 3D keypoints ki.r. The number of
extracted keypoints K is an influential hyperparameters: a
small K allows to strongly reduce input dimensionality, but
generates a strong information bottleneck and may fail to
capture more nuanced geometric and semantic information
from visual observations. On the other hand, a large K allows
to capture many visual details, but is then more susceptible to
noise and visual distractors. We measured the performance
of KAT on a subset of the 9 tasks (Align T, Wipe Plate,
Espresso, Pick and Place) as a function of K, providing 10
demonstrations per task. We repeat the experimental procedure
described in Sec.[lII-A)4 times, and extract K € {5, 10, 20,40}
keypoints from the observations, varying it at each experiment.
We measure the performance on 10 test time episodes, and
report mean and standard deviation in the plot of Fig. [8| The

Vs
¥

Align T

Wipe Plate Espresso

P g -
vV <

Scoop

Pick & Pour Bottle Upright Pick & Place

Fig. 6: The tasks we evaluated our method and the baselines on.

Performance as a Function
of the # of Keypoints

0.8

0.6 / I

0.4

0.2

Performance at Test Time

0.0
5 10 15 20 25 30 35 40

Number of Keypoints

Fig. 7: Performance of our method as a function of the number
of keypoints extracted. Plot shows mean and standard deviation
across tasks.

results show that the optimal K lies between 10 and 20, with
minimal variations in that range. We therefore chose 10 in our
main experiments to reduce the computational complexity and
input dimensionality.

What is the best vision model to extract descriptors
from? To motivate our choice of using DINO-ViTs as vision
backbones of our work, we compared them to two other
popular models in the robotics and computer vision literature:
CLIP [29] and R3M [27]. We apply the same algorithm
described in Fig. [3] with the difference that the dense descriptor
tensors are extracted from CLIP or R3M (in the Supplementary
Material we provide more information on this process). These
experiments allowed us to test the robustness and representation
abilities of these hidden representations. We run the same
experimental setup described above in the previous subsection,
setting ' = 10 and training and testing on Align T, Wipe Plate,
Espresso, Pick and Place. Our results demonstrate that DINO
is the optimal choice, coherently with the results from the
recent literature [2]]. While R3M is pretrained on data more
related to robotics (first person videos of humans performing
manipulation tasks [[13]]), interestingly it does not perform better
than DINO, pretrained on a large task-agnostic dataset of web
images [3l]. This apparently counter-intuitive result was also
reported in [8].

G. Action: Investigations on Action Tokens

What is the optimal number of actions to record and
predict? In our work, actions are recorded as end-effector poses

Performance of different vision backbones

0.8

0.6

[

0.2

Performance at Test Time

0.0
DINO CLIP

Vision Models

R3M

Fig. 8: Performance of our method when changing the vision
backbone model from which we extract keypoint tokens. Plot
shows mean and standard deviation across tasks.

Performance as a Function

o of the # of Action Tokens

0.8

-

0.4

0.2

Performance at Test Time

0.0
10 20 30 40 50

Number of Action Tokens

Fig. 9: Performance of our method as a function of the number
of action tokens extracted from each demonstration trajectory,
that strongly correlates with the number of action tokens
generated at test time. Plot shows mean and standard deviation
across tasks.

during demonstrations, then tokenised into action tokens, each
being a triplet of 3D positions in the world frame. Vice versa, at
test time the Transformer predicts a series of action tokens that
are then transformed into end-effector poses and executed. An
LLM Transformer is able to autonomously decide to stop the
autoregressive generation of tokens, by generating an internal
STOP token. The number of action tokens it predicts is often
very close to the number of action tokens each demonstration
was decomposed in.

Therefore, we investigate what is the optimal number of

Performance of different
end-effector pose representations
0.8

0.6
0.4

0.2

Performance at Test Time

0.0
3D Points Triplet (Ours)

Pose Representation

Position + Axis-Angle

Fig. 10: Performance of our method with different representa-
tions of the end-effector poses. Plot shows mean and standard
deviation across tasks.

Performance with different

Lo Language Models as Pattern Machines

0.8
0.6
0.4

0.2

Performance at Test Time

0.0
GPT-2 GPT-3 Turbo 16K

Large Language Model

GPT-4 Turbo

Fig. 11: Performance of KAT by varying the underlying LLM
acting as imitation learning machine. Plot shows mean and
standard deviation across tasks.

action tokens IV, to provide for each demonstration, to guide
the test time generation. A small N, reduces the length of the
sequence and makes autoregressive generation easier and less
prone to errors: however, it can also excessively subsample
the trajectory of the end-effector, losing subtle but important
movements. On the other hand, while a large N, allows to
precisely capture movements, it also makes both the input
sequences excessively long and difficult to process, and also
the generation phase prone to errors, as common to sequence-
to-sequence networks tasked to predict very long outputs.

We replicate the experimental setup of Sec. [V-F. We record
10 demos on the Align T, Wipe Plate, Sweep, Bottle Upright
tasks at a very high frequency, and then subsample those to
change the number of action tokens N, each demonstration
is decomposed into, with N, € 5,10, 20, 50. We then test the
performance of KAT by providing to the Transformer these
different quantities of tokenised actions extracted from the
demonstrations, running 10 test time episodes per task.

Our results, in Fig. E, show that the optimal number of
tokens lies around 20: however, the drop at 50 is not large,
suggesting the Transformer is still able to process this sequence
length.

What is the optimal representation of poses to use as
action tokens? In Sec. [[I-B| we introduced the way we tokenise
end-effector poses, transforming them through an invertible
mapping into a triplet of 3D points €””. Is this the most effective
representation to represent, process and generate sequences
of actions? To motivate our design choice, we compared our
tokenisation pipeline to the representation of poses as 3D
position and axis-angle representation for orientation. This
representation is therefore composed of 6 numbers instead of
9, but the orientation part lies in a different, non-Euclidean
manifold. As described in Sec. [[I-B] all representations share
an additional number J, representing the gripper open/closed
state.

We replicate the above experimental setup, but compare
the effect of representing and generating actions as action
tokens e”” or as position and axis-angle representation. Results
in Figure [I0] demonstrate that our choice outperforms the
more classical position/axis-angle method of representing
SE(3) poses. As discussed in Sec. we hypothesise that
representing poses as a set of Euclidean entities in the same
frame as the keypoint tokens facilitates the reasoning process
for Language Models, that instead struggle to generalise and in-
terpolate/extrapolate correct axis-angle representations beyond
the instances of the tasks observed during the demonstrations.

H. Free Robotics Lunch: Better Imitation Learning Machines
by Scaling Language Models

Our work is inspired and designed around the finding
that large Transformers pretrained on sequence-to-sequence
tasks obtain the emergent capability to infer in few-shot
patterns belonging to different data modalities. This effect
has been observed especially in Large Language Models, large
Transformers pretrained on vast amount of text. Scaling laws
and empirical results have been obtained that allow the predict
the capacity of these models as a function of the size of both
their parameters and dataset.

As a result, the latest LLMs, like GPT-4 Turbo, can
effectively act as few-shot imitation learning machines for
robotics, reaching or surpassing the performance of state-of-
the-art imitation techniques despite not needing any robotics
data. As the field of LLMs has seen exponential growth in
recent years [19} (14} [17, [13]], we hypothesise that future LLMs
will be even better (as suggested by numbers reported for the
still unavailable at the time of writing Gemini Ultra [13]]), more
efficient imitation learning machines. This without the need
for any particular innovation in robotics itself, be it in terms of
data or algorithms. To concretely support this hypothesis, we
evaluate and visualise the performance of different generations
of LLMs.

We test KAT on the Align T, Wipe Plate, Sweep, Bottle
Upright tasks, selecting K = 10 and N, = 20, but change
the model of the LLM computing the output sequence given
the demonstration sequences and the input sequence. We test
three generations of GPT models: GPT-2 [1], GPT-3 Turbo
16k [19], GPT-4 Turbo [17]. Results in Fig. H demonstrate
that the evolution of these text-pretrained Transformers, albeit

independent in any way from robotics, leads to an improvement
in performance, as more recent models are more efficient at few-
shot sequence-to-sequence pattern recognition and generation.
This suggest that future models will be even more efficient,
resulting in more effective general imitation learning machines.
This is a remarkable phenomenon, considered that it does
not require neither gathering more robotics-tailored data, nor
actively researching fundamentally novel imitation learning
algorithms.

A noteworthy aspect is the ability to effectively process
longer sequences as inputs: GPT-2 was limited at 1024 word
tokens, while later models saw a 10x-30x increase in a
few years. Scaling the context input size of text-pretrained
Transformers can help make in-context learning of trajectories
more effective, tackling the bottleneck we observed in Fig. [3]

VI. CONCLUSION

We introduced Keypoint Action Tokens, a framework that
enables in-context imitation learning of human demonstrations
by repurposing large Transformers pretrained on text as
general sequence-to-sequence learners. By tokenising both
visual inputs and action outputs into a format suitable for
text-based Transformers, we demonstrate that we can achieve
state-of-the-art results in few-shot imitation learning on a series
of challenging everyday tasks. We also analysed what design
decisions result in the optimal performance of our method.
Our work demonstrates that the progressive evolution of large
Transformers pretrained on language, where data is abundant,
can unexpectedly benefit the field of robot learning, where data
is scarce.

VII. LIMITATIONS

While achieving superior results in few-shot imitation
learning with < 10 — 20 demos, KAT does not currently scale
as well as Diffusion Policies. We hypothesise that this is due
to KAT relying entirely on in-context imitation learning, that
can start acting suboptimally when the input sequences (the
tokenised inputs and outputs of the demos, and the tokenised
new observation) become excessively long. We believe that
once > 50 demos are available, it may be beneficial to finetune
the pretrained Transformers instead of relying entirely on feed-
forward in-context learning.

To tokenise the visual observations, we rely on extracting a
predetermined amount of keypoints /K. While we showed that
this approach is effective, and even improves the performance
of end-to-end vision based Diffusion Policy, the method cannot
adapt the number of extracted keypoints to different situations,
where e.g. more objects are present. Future work into adaptable
and dynamic keypoint extraction may improve the performance
of keypoint-based methods, like KAT.

Given a prompt of length £, the computational complexity
of generating output tokens, based on the classic Transformer
architecture [30], is O(L?). Therefore, current Transformers
will scale poorly to larger datasets of demonstrations in
scenarios where online control is fundamental. However, there
are several research avenues currently researching an efficient

alternative to classic Transformers [5] or proposing alternatives
which are equally effective but linear in complexity [20].

A. Collecting Demos and Train-Test Distributions

When collecting demos, we randomise the pose of the
objects on the table. In particular, we move the objects on a
50cm x 30cm area, and randomise their orientation around the
imaginary vertical axis in a 45 degrees range from a "standard
orientation". To test for extrapolation at test time, we move
objects in a larger area of 70cm x 40cm and rotate them in a
60 degrees range.

For tasks that can be tested for objects generalisation (Wiping
a Plate, Sweep, Scooping, Pick and Pour, Bottle Upright, Pick
and Place we provide demonstrations using 2 different sets of
objects, and then test on both these sets and a third unseen set.

When testing for robustness to distractors, we change our
background, which is normally a black cloth, to expose the
wooden table underneath, and position an additional set of 2-3
random objects of different classes then the ones involved in
the task, randomly positioned as the other objects.

B. Prompting the Language Model

We mainly use GPT-4 Turbo for our experiments, except
when explicitly comparing it to GPT-3 and GPT-2. For GPT-4
and GPT-3 we use the official OpenAl API. For GPT-2, we
use the Transformers library by HuggingFace to compute its
outputs locally.

While largely receiving tokenised numbers as input, the way
GPT-4 is structured requires a "system" message describing
what its task is. We therefore briefly describe that GPT-4 is
tasked to solve a time series pattern recognition task, receiving
examples of sequence-to-sequence data, and needing to find
an output sequence given an input sequence that emulates the
underlying patterns of the inputs. Notice we do not mention
robotics or tasks anywhere: the model is only asked to act as
a sequence-to-sequence general pattern recognition machine.

In particular, the instruction is

"You are a pattern generator machine. I will give you a
series of patterns with INPUTS and OUTPUTS as examples.
Then, you will receive a new INPUTS, and you have to generate
OUTPUTS following the pattern that appears in the data. The
points are (x,y) coordinates. Only reply with the OUTPUTS
numbers."

When comparing Language Models, we use the same
prompt for each, composed of the above, plus the tokenised
demonstrations as sequences of keypoints and action tokens,
and finally the test time sequence of new keypoint tokens.

C. Extracting descriptors from DINO, CLIP and R3M

Here we describe in more detail how we extract the dense
descriptor maps, given an input observation, to then extract
keypoints. For DINO, we use DINO-ViTs8, with a stride of 4.
We extract the key descriptors from the 9th layer. For CLIP,
we use the CLIP RN50 version, and extract the output of the
fifth-to-last layer of the ResNet50 backbone, a 3 dimensional
tensor. Likewise for R3M, we extract the output of the fifth-to-
last layer of the ResNet50 backbone, a 3 dimensional tensor.

We explored each of these hyperparameters to maximise the
performance of each of these methods.

D. Implementation of Diffusion Policy

As mentioned in the main paper, we rely on the official
implementation by the authors of Diffusion Policy to train it
as a baseline.

We adapt the input and output spaces to our tasks, using
vision for the end-to-end baseline and the state-based for the
KeyAct baseline that takes keypoints as input. We modify
mostly the training parameters, such as batch size and epochs,
to maximise performance by evaluating both real world results
and train/validation losses.

	Introduction
	Method
	Keypoint Tokens
	Action Tokens
	In-Context Imitation Learning via Pretrained Transformers

	Experiments
	Results on Few-Shot Imitation Learning

	Appendix
	Related Work
	Experimental Setup
	Tasks
	Baselines
	Tasks Success Criteria
	Additional Experiments
	Vision: Investigations on Keypoint Tokens
	Action: Investigations on Action Tokens
	Free Robotics Lunch: Better Imitation Learning Machines by Scaling Language Models

	Conclusion
	Limitations
	Collecting Demos and Train-Test Distributions
	Prompting the Language Model
	Extracting descriptors from DINO, CLIP and R3M
	Implementation of Diffusion Policy

