
A Appendix

A.1 Analysis of Theorem 4.1

We modify the proof in [23] by dividing the cumulative regret into two parts, where the first part
controls the error coming from the stochastic rewards and the second part deals with the extra error
from adversarial corruptions in the following Appendix A.1.2. In the beginning we will present some
auxiliary lemmas for preparation.

A.1.1 Useful Lemmas

Definition A.1. We call it a clean process for Algorithm 1, if for each time t ∈ [T] and each active
arm v ∈ X at any time t, we have |f(v)− µ(v)| ≤ r(v).

Here we expand some notations from Algorithm 1: we denote nt(v) as the number of times the arm
v has been pulled until the round t, and ft(x), rt(x) as the corresponding average stochastic rewards
and confidence radius respectively at time t such that,

rt(x) =

√
4 ln (T) + 2 ln (2/δ)

nt(x)
+

C

nt(x)
.

Note in our Algorithm 1 we do not write this subscript t for these components since there is no
ambiguity in the description. And W.l.o.g we assume the optimal arm x∗ = argmaxx∈X µ(x) is
unique in X .
Lemma A.2. Given the adversarial corruptions are at most C, for Algorithm 1, the probability of a
clean process is at least 1− δ.

Proof. For each time t ∈ [T], consider an arm x ∈ X that is active by the end of time t. Recall that
when Algorithm 1 pulls the arm x, the reward is sampled IID from some unknown distribution Px with
expectation µ(x). And in the meanwhile, the stochastic reward may be corrupted by the adversary.
Define random variables Ux,s and values Cx,s for 1 ≤ s ≤ nt(x) as follows: for s ≤ nt(x), Ux,s is
the stochastic reward from the s-th time arm x is played and Cx,s is the corruption injected on Ux,s

before the agent observing it. By applying Bernstein’s Inequality, it naturally holds that

P (|ft(x)− µ(x)| ≥ rt(x)) = P

(
|ft(x)− µ(x)| ≥

√
4 lnT + 2 ln (2/δ)

nt(x)
+

C

nt(x)

)

=P

∣∣∣∣∣∣
nt(x)∑
s=1

Ux,s

nt(x)
+

nt(x)∑
s=1

Cx,s

nt(x)
− µ(x)

∣∣∣∣∣∣ ≥
√

4 lnT + 2 ln (2/δ)

nt(x)
+

C

nt(x)


≤P

∣∣∣∣∣∣
nt(x)∑
s=1

Ux,s

nt(x)
− µ(x)

∣∣∣∣∣∣+
nt(x)∑
s=1

|Cx,s|
nt(x)

≥

√
4 lnT + 2 ln (2/δ)

nt(x)
+

C

nt(x)


(i)
≤P

∣∣∣∣∣∣
nt(x)∑
s=1

Ux,s

nt(x)
− µ(x)

∣∣∣∣∣∣ ≥
√

4 lnT + 2 ln (2/δ)

nt(x)

 ≤ 2 · exp
(
−nt(x)

2
× 4 lnT + 2 ln (2/δ)

nt(x)

)
= δT−2,

where the inequality (i) comes from the fact that the total corruption budget is at most C. Since there
are at most t active arms by time t, by taking the union bound over all active arms it holds that,

P (∀ active arm x at round t, |ft(x)− µ(x)| ≤ rt(x)) ≥ 1− δT−1, ∀t ∈ [T].

Finally, we take the union bound over all round t ≤ T , and it holds that,

P (∀t ≤ T, ∀ active arm x at round t, |ft(x)− µ(x)| ≤ rt(x)) ≥ 1− δT−1,

which implies that the probability of a clean process is at least 1− δ.

Lemma A.3. If it is a clean process and the optimal arm x∗ ∈ B(v, rt(v)), then B(v, rt(v)) could
never be eliminated from Algorithm 1 for any t ∈ [T] and active arm v at round t.

13

Proof. Recall that from Algorithm 1, at round t the ball B(u, rt(u)) would be discarded if we have
for some active arm v s.t.

ft(v)− rt(v) > ft(u) + 2rt(u).

If x∗ ∈ B(u, rt(u)), then it holds that

ft(u) + 2rt(u)
(i)
≥ µ(u) + rt(u) ≥ µ(u) +D(u, x∗)

(ii)
≥ µ(x∗),

where inequality (i) is due to the clean process and inequality (ii) comes from the fact that µ(·) is a
Lipschitz function. On the other hand, we have that for any active arm v,

µ(v) ≥ ft(v)− rt(v), µ(x∗) ≥ µ(v).

Therefore, it naturally holds that

ft(v)− rt(v) ≤ ft(u) + 2rt(u).

Lemma A.4. If it is a clean process, then for any time t and any (previously) active arm v we have
∆(v) ≤ 3rt(v). Furthermore, we could deduce that D(u, v) ≥ min{∆(u),∆(v)}/3 for any pair of
(previously) active arms (u, v) by the time horizon T .

Proof. Let St be the set of all arms that are active or were once active at round t. Suppose an arm xt

is played at time t. If xt is just played for one time, i.e. xt is just activated at time t, then we naturally
have that,

∆(xt) ≤ 1 ≤ 3rt(xt),

since the diameter of X is at most 1. Otherwise, if xt was played before, i.e. xt is chosen based on
the selection rule instead of the activation rule, we will claim that

µ(x∗) ≤ ft(xt) + 2rt(xt) ≤ µ(xt) + 3rt(xt),

under a clean process. First we will show that ft(xt) + 2rt(xt) ≥ µ(x∗). Recall that the optimal
arm x∗ is never eliminated according to A.3 under a clean process and hence is covered by some
confidence ball, i.e. x∗ ∈ B(x′, rt(x

′)),∃x′ ∈ St. Then based on the selection rule, it holds that

ft(xt) + 2rt(xt) ≥ ft(x
′) + 2rt(x

′) ≥ µ(x′) + rt(x
′) ≥ µ(x∗) + rt(x

′)−D(x∗, x
′) ≥ µ(x∗).

On the other hand, it holds that,

ft(xt) + 2rt(xt) ≤ µ(xt) + 3rt(xt)

since it is a clean process. And these two results directly imply that

µ(x∗)− µ(xt) = ∆(xt) ≤ 3rt(xt). (3)

For the other active arms v ∈ St that was played before time t, let s < t be the last time arm v was
played, where we have ft(v) = fs(v) and rt(v) = rs(v), and then based on Eqn. (3) it holds that
∆(v) ≤ 3rs(v) = 3rt(v).

Furthermore, we will show that D(u, v) ≥ min{∆(u),∆(v)}/3 for any pair of active arms (u, v)
by the time horizon T . W.l.o.g we assume that v was activated before u, and u was first activated at
some time s′. Then if v was active at the time s′ it naturally holds that D(u, v) > rs′(v) ≥ ∆(v)/3
according to the activation rule. If v was removed at the time s′ then we also have D(u, v) > rs′(v)
since u was not among the discarded region, and hence D(u, v) ≥ ∆(v)/3 holds as well. And this
concludes our proof.

A.1.2 Proof of Theorem 4.1

We modify the original argument for Zooming algorithm [23] to decently resolve the pres-
ence of adversarial corruptions. In summary, we could bound the cumulative regret of order
Õ
(
T

dz+1
dz+2 + C

1
dz+1T

dz
dz+1

)
: the first term is the regret caused by the stochastic rewards, which

is identical to the regret we have without any corruptions; the second quantity bounds the additional
regret caused by the corruptions.

14

Denote ST as the active (or previously active) arm set across the time horizon T . Then based on
Lemma A.4, for any x ∈ ST it holds that,

∆(x) ≤ 3rT (x) = 3

√
4 ln (T) + 2 ln (2/δ)

nT (x)
+

3C

nT (x)
.

And this indicates that

∆(x)nT (x) ≤ 3

√(
4 ln (T) + 2 ln

(
2

δ

))
nT (x) + 3C. (4)

Then we denote

Bi,T =

{
v ∈ ST : 2i ≤ 1

∆(v)
< 2i+1

}
, where ST =

+∞⋃
i=0

Bi,T ,

and write ri = 2−i. Then for arbitrary u, v ∈ Bi,T , i ≥ 0, we have
ri
2

< ∆(u) ≤ ri,
ri
2

< ∆(v) ≤ ri,

which implies that D(x, y) > ri/6 under a clean process based on Lemma A.4. Based on the
definition of the zooming dimension dz , it follows that |Bi,T | ≤ O(rdz

i). Subsequently, for any
0 < ρ < 1 it holds that ∑

v∈ST ,
∆(v)>ρ

1 ≤
∑

i<− log2(ρ)

O(r−dz
i) = O

(
1

ρdz

)
. (5)

Now we define the set I as:

I :=

{
v ∈ ST : C ≤

√(
4 ln (T) + 2 ln

(
2

δ

))
nT (v)

}
.

When an arm v is in the set I , the cumulative regret in terms of it would be more related to the
stochastic errors other than the adversarial attacks. Subsequently, we could divide the cumulative
regret into two quantities:

RegretT =
∑
v∈ST

∆(v)nT (v) =
∑

v∈ST∩I

∆(v)nT (v) +
∑

v∈ST∩Ic

∆(v)nT (v)

=
∑

v∈ST∩I,
∆(v)≤ρ1

∆(v)nT (v) +
∑

v∈ST∩I,
∆(v)>ρ1

∆(v)nT (v) +
∑

v∈ST∩Ic,
∆(v)≤ρ2

∆(v)nT (v) +
∑

v∈ST∩Ic,
∆(v)>ρ2

∆(v)nT (v)

(i)
≤ ρ1T + 2

∑
v∈ST∩I,
∆(v)>ρ1

3

√(
4 ln (T) + 2 ln

(
2

δ

))
nT (v) + ρ2T + 2

∑
v∈ST∩Ic,
∆(v)>ρ2

3C

(ii)
≲ ρ1T +

√
ln

(
T

δ

)√√√√√√√
 ∑

v∈ST∩I,
∆(v)>ρ1

nT (v)


 ∑

v∈ST∩I,
∆(v)>ρ1

1

+ ρ2T + C
∑

v∈ST∩Ic,
∆(v)>ρ2

1

≲ ρ1T +

√
ln

(
T

δ

)√√√√√√√
 ∑

v∈ST∩I,
∆(v)>ρ1

nT (v)


 ∑

v∈ST∩I,
∆(v)>ρ1

1

+ ρ2T + C
∑

v∈ST∩Ic,
∆(v)>ρ2

1

(iii)
≲ ρ1T +

√
ln

(
T

δ

)√
T

(
1

ρ1

) dz
2

+ ρ2T + C

(
1

ρ2

)dz

. (6)

15

The inequality (i) comes from the definition of set I and Eqn. (4), and inequality (ii) is due to the
Cauchy-Schwarz inequality where ≲ denotes “less in order”. Furthermore, we get inequality (iii)
based on Eqn. (5). Note Eqn. (6) holds for arbitrary ρ1, ρ2 ∈ (0, 1), and hence by taking

ρ1 = T− 1
dz+2 ln (T)

1
dz+2 , ρ2 = T− 1

dz+1C
1

dz+1 ,

we have

RegretT = O
(
ln (T)

1
dz+2T

dz+1
dz+2 + C

1
dz+1T

dz
dz+1

)
= Õ

(
T

dz+1
dz+2 + C

1
dz+1T

dz
dz+1

)
.

And this concludes our proof.
Remark A.5. Note we could replace the second term of r(x) with min{1, C/n(x)}, i.e.

rt(x) =

√
4 ln (T) + 2 ln (2/δ)

nt(x)
+ min

{
1,

C

nt(x)

}
,

since we know each instance of attack is assumed to be upper bounded by 1. And all our analyses and
Lemmas introduced above could be easily verified. Specifically, the core Lemma A.2 still holds as

nt(x)∑
s=1

Cx,s

nt(x)
≤

nt(x)∑
s=1

1

nt(x)
= 1.

A.2 Analysis of Theorem 5.1

A.2.1 Useful Lemmas

We first present supportive Lemmas and some of them are adapted from the results in [14, 29].

Lemma A.6. For a sequence of IID Bernoulli trials with a fix success probability p, then with
probability 1− δ, we could at most observe [(1− p) ln (1/δ)/p] failures until the first success.

Proof. This is based on the property of negative binomial distribution: after we complete the first N
trials, the probability of no success is (1− p)N . To ensure this value is less than δ, we get

N = log1−p(δ) =
ln (1/δ)

ln (1/(1− p))
=

ln (1/δ)

ln (1 + p/(1− p))
.

By using the inequality ln (x+ 1) ≤ x, ∀x > −1, we could take N = [(1− p) ln (1/δ)/p].

Lemma A.7. (Adapted from Lemma 3.3 [29]) In Algorithm 2, for any layer whose tolerance level
exceeds the unknown C, i.e. any layer with index i ∈ [l∗] s.t. vi ≥ C, with probability at least 1− δ,
this layer suffers from at most corruptions of amount (ln (1/δ) + 2e− 1).

Proof. The proof of this Lemma is an adaptation from the proof of Lemma 3.3 in [29], and we present
the detailed proof here for completeness:

In the beginning, we introduce an important result (Lemma 1 in [5]): Let X1, . . . , XT be a real-valued
martingale difference sequence, i.e. ∀t ∈ [T],E(Xt|Xt−1, . . . , X1) = 0. And Xt ≤ R. Denote
V =

∑T
t=1 E(X2

t |Xt−1, . . . , X1). Then for any δ > 0, it holds that,

P

(
T∑

t=1

Xt > R ln

(
1

δ

)
+

e− 2

R
· V

)
≤ δ.

Assume a layer whose tolerance level C̃ is no less than C, and hence the probability of pulling this
layer would be 1/C̃ ≤ 1/C. For this layer, let C̃t

x be the corruption that is observed at round t when
arm x is pulled, x ∈ X . Then at any time t, if the adversary selects corruption ct(a) then we know
C̃t

x is equal to ct(a) with probability 1/C̃ and 0 otherwise. Denote the filtration F̃t containing all the
realizations of random variables before time t. And hence at time t the adversary could contaminate
the stochastic rewards of X according to F̃t. Let ãt be the arm that would be selected if this layer is
chosen at the time t. Since our Algorithm 2 is deterministic in terms of the active region conditioned

16

on selecting each layer, and the pulled arm is randomly selected from the active region. Therefore,
the selection of ãt is also independent with C̃t

x given F̃t. We construct the martingale as:

Xt =
∣∣∣C̃t

x

∣∣∣− E
(∣∣∣C̃t

x

∣∣∣ ∣∣ F̃t

)
.

Therefore, it holds that

E(X2
t |Xt−1, . . . , X1) =

1

C̃

(
|ct(a)| −

|ct(a)|
C̃

)2

+
C̃ − 1

C̃

(
|ct(a)|
C̃

)2

≤ 2
|ct(a)|
C

,

since we have that C ≤ C̃ and |ct(a)| ≤ 1. And conclusively it holds that

V =

T∑
t=1

E(X2
t |Xt−1, . . . , X1) ≤

T∑
t=1

2
|ct(a)|
C

≤ 2.

Furthermore, it naturally holds that Xt ≤ 1 due to the fact that |ct(a)| ≤ 1. Based on Lemma 1 in [5]
we introduced above, with probability at least 1− δ, it holds that

T∑
t=1

Xt ≤ ln

(
1

δ

)
+ 2(e− 2).

On the other hand, we can trivially deduce that the expected corruption injected in this layer is at
most 1 since we have total amount of corruptions C and the probability of choosing this layer at each
time is fixed as 1/C̃ ≤ 1/C. Conclusively, we have with probability at least 1− δ,

T∑
t=1

∣∣∣C̃t
x

∣∣∣ = T∑
t=1

Xt + E

(
T∑

t=1

∣∣∣C̃t
x

∣∣∣ ∣∣ F̃t

)
≤ ln

(
1

δ

)
+ 2(e− 2) + 1 = ln

(
1

δ

)
+ 2e− 1.

And this completes the proof.

Definition A.8. We call it a clean process for Algorithm 2, if for any time t ∈ [T], any layer l ∈ [l∗]
whose tolerance level vl ≥ C, any active region A ∈ Al and any x ∈ A at time t, we have

|fl,A − µ(x)| ≤ 1

2ml
+

√
4 ln (T) + 2 ln (4/δ)

nl,A
+

ln (T) + ln (4/δ)

nl,A

hold for some 0 < δ < 1.

To facilitate our analysis in the rest of this section, we expand notations here for Algorithm 2. Similar
as in Appendix A.1, we would add the subscript time t to some notations used in Algorithm 2.

• ml,t: epoch index of layer l at time t;
• nl,t: number of selecting the layer l at time t since the last refresh (line 10 of Algorithm 2) on the

layer l;
• Al,t: active arm set of layer l at time t;
• nl,A,t: number of selecting the layer l and active region A ∈ Al,t by time t since the last refresh on

the layer l;
• fl,A,t: average stochastic rewards of selecting the layer l and active region A ∈ Al,t by time t since

the last refresh on the layer l.

We also denote l0 as the minimum index of layer whose tolerance level just surpasses C, i.e.
l0 = argmin{l ∈ [l∗] : vl ≥ C}. Therefore, we get a clean process defined in Definition A.8 iff. the
following set Φ holds:

Φ =

{
|fl,A,t − µ(x)| ≤ 1

2ml
+

√
4 ln (T) + 2 ln (4/δ)

nl,A,t
+

ln (T) + ln (4/δ)

nl,A,t
:

∀x ∈ A, ∀A ∈ Al,t, ∀l ∈ {l0, l0 + 1, . . . , l∗}, ∀t ∈ [T]

}
. (7)

17

Note the following Lemmas hold for either Algorithm 2 or its variant Algorithm 3 since we define
the clean process with respect to each round t instead of each epoch. Note we only need to prove the
set Φ holds at the end of each epoch for the analysis of Algorithm 2. W.l.o.g. we will just prove the
regret bound in Theorem 5.1 of Algorithm 2, while it is easy to verify that the same arguments and
Theorem 5.1 hold for Algorithm 3 as well.

Corollary A.9. With probability at least 1 − δ
4 , we select one time of layer l0 at most every

BC log(4T/δ) times of other layers simultaneously.

Proof. The proof is straight forward based on Lemma A.6. According to the construction of {vl}l
∗

l=1,
it holds that C ≤ vl0 < BC. This implies that the probability of sampling layer l0 at each round is at
least 1

BC . Therefore, after sampling layer l0 in line 2 of Algorithm 2, with probability at least 1− δ
4T ,

we would sample all the other layers for at most

BC
log(4T/δ)

1− 1
BC

≤ BC log(4T/δ)

times. Since we know the number of time sampling layer l0 is naturally at most T , by taking the
union bound, we conclude the proof of Corollary A.9.

Lemma A.10. For algorithm 2, the probability of a clean process is at least 1− 3
4δ, i.e. P (Φ) ≥

1− 3
4δ.

Proof. For each layer l whose tolerance level surpasses C, i.e. l ≥ l0, we know the probability of
sampling this layer in line 2 of Algorithm 2 is at most 1/C, and this indicates that with probability
at least 1 − δ1, this layer suffers from at most (− ln (δ1) + 2e− 1) levels of corruptions based on
Lemma A.7. Note the number of layers is less than logB(T). This indicates that by taking the
union bound on all layers whose tolerance levels surpass C, we have with probability at least 1− δ1,
all these layers suffer from at most

(
ln
(

logB(T)
δ1

)
+ 2e− 1

)
levels of corruptions across the time

horizon T . And note

ln

(
logB(T)

δ1

)
+ 2e− 1 ≤ ln

(
T

δ1

)
since it is natural to have T/ logB(T) ≥ e3. Then for any time t, any layer l ≥ l0 and any active
region A ∈ Al,t, define xA,s, CA,s and random variables UA,s as the s-th time arm pulled, the
stochastic reward from pulling xA,s and the corruption injected on UA,s for 1 ≤ s ≤ nl,A,t. Also
denote

rl,A,t =
1

2ml,t
+

√
4 ln (T) + 2 ln (4/δ)

nl,A,t
+

ln (T) + ln (4/δ)

nl,A,t
.

With probability at least 1− δ/4, from the above argument, we know that all layers with the index
at least l0 suffer from at most ln

(
4T
δ

)
levels of corruptions across the time horizon T . Denote this

event as Ψ, i.e. P (Ψ) ≥ 1− δ/4, then under Ψ it holds that

P (|fl,A,t − µ(x)| ≤ rl,A,t, ∀x ∈ A)

= P

(∣∣∣∣∣
nl,A,t∑
s=1

Ux,s

nl,A,t
+

nl,A,t∑
s=1

Cx,s

nl,A,t
− µ(x)

∣∣∣∣∣ ≤ rl,A,t, ∀x ∈ A

)

≥ P

(∣∣∣∣∣
nl,A,t∑
s=1

Ux,s

nl,A,t
−

nl,A,t∑
s=1

µ(xA,s)

nl,A,t

∣∣∣∣∣+
∣∣∣∣∣
nl,A,t∑
s=1

µ(xA,s)

nl,A,t
−µ(x)

∣∣∣∣∣+
∣∣∣∣∣
nl,A,t∑
s=1

Cx,s

nl,A,t

∣∣∣∣∣ ≤ rl,A,t,∀x ∈ A

)
(i)
≥P

(∣∣∣∣∣
nl,A,t∑
s=1

Ux,s

nl,A,t
−

nl,A,t∑
s=1

µ(xA,s)

nl,A,t

∣∣∣∣∣+
∣∣∣∣∣
nl,A,t∑
s=1

µ(xA,s)

nl,A,t
− µ(x)

∣∣∣∣∣ ≤ 1

2ml,t
+

√
2 ln (4T 2/δ)

nl,A,t
,∀x ∈ A

)
(ii)
≥ P

(∣∣∣∣∣
nl,A,t∑
s=1

Ux,s

nl,A,t
−

nl,A,t∑
s=1

µ(xA,s)

nl,A,t

∣∣∣∣∣ ≤
√

2 ln (4T 2/δ)

nl,A,t

)

≥ 1− δ

2
· T−2.

18

Inequality (i) is due to the definition of event Ψ and inequality (ii) comes from the fact that the
diameter of A is at most 1/2ml,t and µ(·) is a Lipschitz function. We know that at most T active
regions would be played across time T . By taking the union bound on all rounds t ∈ [T] and all
active regions that have been played, it holds that

P (|fl,A,t − µ(x)| ≤ rl,A,t, ∀x ∈ A, ∀A ∈ Al,t, ∀l ∈ {l0, l0 + 1, . . . , l∗}, ∀t ∈ [T]) ≥ 1− δ

2

under the event Ψ. Since P (Ψ) ≥ 1− δ/4, overall it holds that

P (|fl,A,t − µ(x)| ≤ rl,A,t, ∀x ∈ A, ∀A ∈ Al,t, ∀l ∈ {l0, l0 + 1, . . . , l∗}, ∀t ∈ [T]) ≥ 1− 3δ

4
,

i.e. P (Φ) ≥ 1− 3δ/4. And this concludes our proof.

Lemma A.11. We have rl,A,t ≤ 2/2ml,t if nl,A,t = 6 ln(4T/δ) · 4ml,t .

Proof. Based on the formulation of rl,A,t

rl,A,t =
1

2ml,t
+

√
4 ln (T) + 2 ln (4/δ)

nl,A,t
+

ln (T) + ln (4/δ)

nl,A,t
.

It suffices to show that√
4 ln (T) + 2 ln (4/δ)

nl,A,t
+

ln (T) + ln (4/δ)

nl,A,t
≤ 1

2ml,t
(8)

by taking nl,A,t = 6 ln(4T/δ) · 4ml,t . Firstly, we have that√
4 ln (T) + 2 ln (4/δ)

nl,A,t
≤ 2

√
ln (T) + ln (4/δ)

6 ln(4T/δ) · 4ml,t
≤ 2

√
ln (T) + ln (4/δ)

(3 + 2
√
2) ln(4T/δ) · 4ml,t

≤ (2
√
2− 2)

1

2ml,t

Secondly, it holds that

ln (T) + ln (4/δ)

nl,A,t
≤ 1

3 + 2
√
2

1

4ml,t
≤ (3− 2

√
2)

1

2ml,t
.

Combining the above two results, we have Eqn. (8) holds, which concludes our proof.

Lemma A.12. Under a clean process, for any layer l whose tolerance level vl is no less than C, i.e.
l ≥ l0, it holds that

∆(x) ≤ 16/2ml,t , ∀x ∈ A,∀A ∈ Al,t,∀t ∈ [T].

Proof. Here we will focus on Algorithm 2, and the same argument could be used for its variant
Algorithm 3. Inspired by the techniques in [14], we will show that under a clean process Φ, the
optimal arm x∗ would never be eliminated from layers whose tolerance levels are no less than C.
Obviously, the optimal arm x∗ is in the covering when ml,t = 1, where the whole arm space X is
covered. Assume the layer lt reaches the end of epoch mlt,t at time t (i.e. mlt,t+1 = mlt,t + 1), and
the optimal arm x∗ is contained in some active region A∗ ∈ Alt,t. Then under a clean process, for
any active region A0 ∈ Alt,t it holds that,

flt,A∗,t ≥ µ(x∗)− rlt,A∗,t ≥ µ(x∗)− 2/2mlt,t (9)
flt,A0,t ≤ µ(x) + rlt,A0,t ≤ µ(x) + 2/2mlt,t ,∀x ∈ A0 (10)

based on Lemma A.11 since we have nlt,A,t = 6 ln(4T/δ) · 4mlt,t ,∀A ∈ Alt,t in the end of the
epoch. And since µ(x∗) ≥ µ(x),∀x ∈ A0, it holds that

flt,A0,t − flt,A∗,t ≤ 4/2mlt,t . (11)

This implies that A∗ will not be removed. Note the above argument holds for any epoch index and any
layer whose corruption level surpasses C, and hence the optimal arm x∗ would never be eliminated
from layers whose tolerance levels are no less than C.

19

To prove Lemma A.12. When ml,t = 1, it naturally holds since ∆(x) ≤ 1 ≤ 16/21. Otherwise, let
A∗ be the covering that contains the optimal arm x∗ for layer l in the previous epoch ml,t − 1, and
according to the above argument it is well defined. And we know x is also alive in the previous epoch,
where we denote Ax as the covering that contains x in the previous epoch ml,t − 1. Denote t0 as the
time the last epoch reaches the end of layer l (ml,t − 1 = ml,t0), and then it holds that

∆(x) ≤ fl,A∗,t0−fl,Ax,t0 + 2rl,A∗,t0 = fl,A∗,t0−fl,Ax,t0 +
4

2ml,t0
= fl,A∗,t0−fl,Ax,t0 +

8

2ml,t

since rl,A∗,t0 = rl,Ax,t0 = 4/2ml,t0 at the end of the epoch ml,t0 . On the other hand, since Ax was
not eliminated at the end of the epoch ml,t0 , based on the same argument used with Eqn. (9), (10),
(11), we have that

fl,A∗,t0 − fl,Ax,t0 ≤ 4

2ml,t0
=

8

2ml,t
,

and this fact indicates that
∆(x) ≤ 16

2ml,t
.

Note this result holds for any layer whose tolerance level surpasses C and any t ∈ [T]. This implies
Lemma A.12 holds conclusively.

A.2.2 Proof of Theorem 5.1

Proof. If the corruption budget C ≤ ln (4T/δ), then all the layers’ tolerance levels exceed the
unknown C, in which case based on Lemma A.10, with probability at least 1− 3δ/4, it holds that
∀x ∈ A,∀A ∈ Al,t, ∀l ∈ [l∗], ∀t ∈ [T]

|fl,A,t − µ(x)| ≤ 1

2ml
+

√
4 ln (T) + 2 ln (4/δ)

nl,A,t
+

ln (T) + ln (4/δ)

nl,A,t
.

We denote RegretT (l) as the cumulative regret encountered from the layer l across time T , which
implies that

RegretT =

l∗∑
l=1

RegretT (l).

For any fixed layer l ∈ [l∗], we will then show that RegretT (l) = Õ(T
dz+1
dz+2). Based on Lemma A.12,

we know that for any layer l, any arm played after the epoch m would at most incurs a regret of
volume 16/2m. Note at epoch m, the active arm set consists of 1/2m-coverings for some region in
{x ∈ X : ∆(x) ≤ 16/2m}. Therefore, the number of active regions at this epoch m could be upper
bounded by α2dzm for some constant α > 0. And for each active region, we will pull it for exactly
6 ln(4T/δ) · 4m times in epoch m. Therefore, the total regret incurred in the epoch m for any layer
would at most be

α2dzm × 6 ln(4T/δ) · 4m × 16/2m = 192α ln(4T/δ)2(dz+1)m.

Therefore, the total cumulative regret we experience for any layer l could be upper bounded as:

RegretT (l) ≤
M∑

m=1

192α ln

(
4T

δ

)
2(dz+1)m +

8

2M
T

≤ 192α ln

(
4T

δ

)
2(dz+1)(M+1) − 2dz+1

2dz+1 − 1
+

8

2M
T

≤ 384α ln

(
4T

δ

)
2(dz+1)M +

8

2M
T,

where the second term bound the total regret after finishing the epoch M . Note we could take M
as any integer here, even if the epoch M doesn’t exist, our bound still works. By taking M as the
closest integer to the value

(
ln
(

T
48α ln(4T/δ)

)
/ [(dz + 2) ln (2)]

)
. It holds that

RegretT (l) ≲ T
dz+1
dz+2 ln (T/δ)

1
dz+2 , ∀l ∈ [l∗].

20

Therefore, it holds that with probability at least 1− 3δ/4 ≥ 1− δ,

RegretT =

l∗∑
l=1

RegretT (l) ≲ T
dz+1
dz+2 ln (T/δ)

1
dz+2 · log2(T) = Õ(T

dz+1
dz+2).

On the other hand, if the corruption budget C > ln (4T/δ), then not all the layers could tolerate the
unknown total budget level C. We denote l0 as the minimum index of the layer that is resilient to C
as defined in Eqn. 7. Therefore, we could use the above argument to similarly deduce that:

l∗∑
l=l0

RegretT (l) ≲ T
dz+1
dz+2 ln (T/δ)

1
dz+2 · log2(T) = Õ(T

dz+1
dz+2). (12)

For the first (l0 − 1) layers that are vulnerable to attacks, we could control their regret by using
the cross-layer region elimination idea. Specifically, it holds that vl0 ≤ BC, then based on Corol-
lary A.9, we know that with probability at least 1− δ/4, we select one time of layer l0 at most every
BC log(4T/δ) times of the first (l0 − 1) non-robust layers. Since the active regions in a lower-index
layer are always a subset of the active regions for the layer with a higher index according to our
cross-layer elimination rule in Algorithm 2. We know when the layer l0 stays at the epoch m, any
arm played in the layer 1, 2, . . . , l0 would at most incurs a regret 16/2m. Therefore, when the layer
l0 stays in epoch m, we have probability at least 1− 3δ/4− δ/4 = 1− δ, the total regret incurred
from the first l0 layers altogether could be bounded as

BC log(4T/δ)× α2dzm × 6 ln(4T/δ) · 4m × 16/2m = 192BCα ln(4T/δ)22(dz+1)m.

Conclusively, it holds that
l0∑
l=1

RegretT (l) ≤
M∑

m=1

192BCα ln

(
4T

δ

)2

2(dz+1)m +
8

2M
T

≤ 192BCα ln

(
4T

δ

)2
2(dz+1)(M+1) − 2dz+1

2dz+1 − 1
+

8

2M
T

≤ 384BCα ln

(
4T

δ

)2

2(dz+1)M +
8

2M
T,

for arbitrary M . Similarly, then we can simply take M as the closest positive integer to the value(
ln

(
T

48αBC ln(4T/δ)

)
/ [(dz + 2) ln (2)]

)
,

and we have that
l0∑
l=1

RegretT (l) ≲ T
dz+1
dz+2

(
BC ln (T/δ)

2
) 1

dz+2

. (13)

Combine the results from Eqn. 12 and Eqn. 13, with probability at least 1− δ, it holds that

RegretT = Õ
(
T

dz+1
dz+2

(
B

1
dz+2C

1
dz+2 + 1

))
= Õ

(
T

dz+1
dz+2

(
C

1
dz+2 + 1

))
.

And this completes our proof.

A.3 Analysis of Theorem 5.3

A.3.1 Useful Lemmas

Lemma A.13. (Part of Theorem 3.2 and 5.3 in [31]) If the regret of the optimal base algorithm could
be bounded by U∗(T, δ) = O(c(δ)Tα) for some function c : R → R and constant α ∈ [1/2, 1), the
regret of EXP.P and CORRAL with smoothing transformation as the master algorithms are shown in
Table 2:

The proof of this Lemma involves lots of technical details and is presented in [31] elaborately. And
hence we would omit the proof here.

21

Table 2: Table for Lemma A.13
Known α, Unknown c(δ)

EXP3.P Õ
(
T

1
2−α c(δ)

)
CORRAL Õ

(
Tαc(δ)

1
α

)

A.3.2 Proof of Theorem 5.3

Proof. The proof of our Theorem 5.3 is based on the above Lemma A.13. According to Theorem 4.1,
with probability at least 1/δ, the regret bound of our Algorithm 1 could be bounded as

RegretT = Õ
(
T

dz+1
dz+2 + C

1
dz+1T

dz
dz+1

)
= Õ

(
T

dz+1
dz+2 + C

1
dz+2T

dz+1
dz+2

)
.

Due to the fact that dz is upper bounded by d and C = O(T), it further holds that

RegretT = Õ
((

C
1

dz+2 + 1
)
T

dz+1
dz+2

)
= Õ

((
C

1
d+2 + 1

)
T

d+1
d+2

)
.

Therefore, by taking α = d+1
d+2 (known) and c(δ) =

(
C

1
d+2 + 1

)
(unknown) and plugging them into

Lemma A.13, we have that

E(RegretT) =

Õ
(
(C

1
d+2 + 1)T

d+2
d+3

)
EXP3.P,

Õ
(
(C

1
d+1 + 1)T

d+1
d+2

)
CORRAL.

And this concludes our proof.

A.4 Analysis of Theorem 5.4

Under the assumption that the diameter of X is at most 1, we could also assume that µ(x) ∈
[0, 1],∀x ∈ X due to the Lipschitzness of µ(·) w.l.o.g. in this section.

A.4.1 Useful Lemmas

Lemma A.14. In Algorithm 4, for any batch i ∈
[⌈

T
H

⌉]
, the sum of stochastic rewards could be

bounded as ∣∣∣∣∣∣
min{iH,T}∑
t=(i−1)H+1

yt

∣∣∣∣∣∣ ≤ 2H +

√
2H log(

12T

Hδ
)

simultaneously with probability at least 1− δ/3.

Proof. For arbitrary batch index i ∈
[⌈

T
H

⌉]
, it holds that

P

∣∣∣∣∣∣
min{iH,T}∑
t=(i−1)H+1

yt

∣∣∣∣∣∣ ≥ 2H +

√
2H log(

12T

Hδ
)


=P

∣∣∣∣∣∣
min{iH,T}∑
t=(i−1)H+1

µ(xt) + ct(xt) + ηt

∣∣∣∣∣∣ ≥ 2H +

√
2H log(

12T

Hδ
)


≤P

 min{iH,T}∑
t=(i−1)H+1

|µ(xt)|+
min{iH,T}∑
t=(i−1)H+1

|ct(xt)|+

∣∣∣∣∣∣
min{iH,T}∑
t=(i−1)H+1

ηt

∣∣∣∣∣∣ ≥ 2H +

√
2H log(

12T

Hδ
)


≤P

∣∣∣∣∣∣
min{iH,T}∑
t=(i−1)H+1

ηt

∣∣∣∣∣∣ ≥
√
2H log(

12T

Hδ
)

 (i)
≤ H

6T
δ.

22

The inequality (i) comes from the fact that
∑iH

t=(i−1)H+1 ηt is sub-Gaussian with parameter H .
Therefore, by taking a union bound on all

⌈
T
H

⌉
batches, it holds that

P

∀i ∈
⌈
T

H

⌉
:

∣∣∣∣∣∣
min{iH,T}∑
t=(i−1)H+1

yt

∣∣∣∣∣∣ ≤ 2H +

√
2H log(

12T

Hδ
)

 ≥ 1− δ

3
.

And this concludes the proof of Lemma A.14.

A.4.2 Proof of Theorem 5.4

Proof. We are ready to prove Theorem 5.4 now. Since we have ⌈log2(T)⌉ base algorithms where
the i-th base algorithm is our Robust Zooming Algorithm (Algorithm 1) with tolerance level 2i,
we can denote the base algorithm set as W = {2i}⌈log2(T)⌉

i=1 in terms of their tolerance levels. For
any round t ∈ [T], let wt denote the base algorithm chosen from W . And denote xt(w), w ∈ W
as the arm pulled if the base algorithm w is chosen in the beginning of its batch. In other words,
we have xt = xt(wt). Denote Ci as the total budget of corruptions in the i-th batch and hence
C =

∑⌈T/H⌉
i=1 Ci, where recall that C is the unknown total budget of corruptions. And we also write

C∗ = maxi Ci as the maximum budget in a single batch. Let w∗ be the element in W such that
C∗ ≤ w∗ < 2C∗. Therefore, we could decompose the cumulative regret into the following two
quantities:

RegretT =

T∑
t=1

(µ(x∗)− µ(xt(w∗)))︸ ︷︷ ︸
Quantity (I)

+

T∑
t=1

(µ(xt(w∗))− µ(xt(wt)))︸ ︷︷ ︸
Quantity (II)

(14)

And it suffices to bound these two quantities respectively. We know the Quantity (I) could be further
represented as

T∑
t=1

(µ(x∗)− µ(xt(w∗))) =

⌈ T
H ⌉∑

i=1

min{iH,T}∑
t=(i−1)H+1

(µ(x∗)− µ(xt(w∗))) .

Here we will use the results from Theorem 4.1. Note by setting the probability rate as δ/3 in
Algorithm 1, we can prove that we have a clean process with probability at least 1− δ/3 (line 5 in
Algorithm 4). Although we run the Algorithm 1 here in a batch fashion and the total rounds is T , we
can still easily show that with probability at least 1 − δ/3 we have a clean process for all batches.
This is because the proof of Lemma A.2 only relies on taking a union bound over all rounds T where
whether a restart is proceeded doesn’t matter at all. According to Theorem 4.1 and the choice of w∗,
the cumulative regret of each batch could be upper bounded by the order of

Õ

(
H

dz+1
dz+2 + C

1
dz+1
∗ H

dz
dz+1

)
= Õ

(
H

dz+1
dz+2 + C

1
d+1
∗ H

d
d+1

)
,

since C∗ ≤ H naturally holds by definition. Therefore, it holds that

Quantity (I) = Õ

(⌈
T

H

⌉(
H

dz+1
dz+2 + C

1
d+1
∗ H

d
d+1

))
= Õ

(
TH

−1
dz+2 + TC

1
d+1
∗ H

−1
d+1

)
, (15)

with probability at least 1 − δ/3. For Quantity (II), according to Lemma A.14, for any batch
i ∈
[⌈

T
H

⌉]
the sum of stochastic rewards could be bounded by∣∣∣∣∣∣

min{iH,T}∑
t=(i−1)H+1

yt

∣∣∣∣∣∣ ≤ 2H +

√
2H log

(
12T

Hδ

)
simultaneously with probability at least 1− δ/3. We denote the event Ω as

Ω =

∀i ∈
⌈
T

H

⌉
:

∣∣∣∣∣∣
min{iH,T}∑
t=(i−1)H+1

yt

∣∣∣∣∣∣ ≤ 2H +

√
2H log

(
12T

Hδ

) ,

23

Algorithm 3 Alternative Robust Multi-layer Elimination Lipschitz Bandit Algorithm (RMEL)

Input: Arm metric space (X , D), time horizon T , probability rate δ, base parameter B.
Initialization: Tolerance level vl = ln (4T/δ)Bl−1,ml = 1, nl = 0,Al = 1/2-covering of

X , fl,A = nl,A = 0 for all A ∈ Al, l ∈ [l∗] where l∗ := min{l ∈ N : ln (4T/δ)Bl−1 ≥ T}.
1: for t = 1 to T do
2: Sample layer l ∈ [l∗] with probability 1/vl, with the remaining probability sampling l = 1.

Find the minimum layer index lt ≥ l such that Alt ̸= ∅. ▷ Layer sampling
3: Choose At = argminA∈Alt

nlt,A, break ties arbitrary.
4: Randomly pull an arm xt ∈ At, and observe the payoff yt.
5: Set nlt = nlt + 1, nlt,At = nlt,At + 1, and flt,At = (flt,At(nlt,At − 1) + yt) /nlt,At .
6: Obtain flt,∗ = maxA∈Alt

flt,A, nlt,∗ = minA∈Alt
nlt,A.

7: For each A ∈ Alt , if flt,∗ − flt,A > 2/2mlt +
√
8 ln (4T 2/δ)/nlt,∗ + 2 ln (4T/δ)/nlt,∗,

then we eliminate A from Alt and all active regions A′ from Al′ in the case that A′ ⊆ A,A′ ∈
Al′ , l

′ < l. ▷ Removal
8: if nlt = 6 ln(4T/δ) · 4ml × |Alt | then
9: Find 1/2ml+1-covering of each A ∈ Alt in the same way as A was partitioned in other

layers. Then reload the active region set Alt as the collection of these coverings.
10: Set nlt = 0, mlt = mlt + 1. And renew nlt,A = flt,A = 0,∀A ∈ Alt . ▷ Refresh
11: end if
12: end for

and it holds that P (Ω) ≥ 1− δ/3. And under the event Ω, from Theorem 6.3 in [4], we know with
probability at least 1− δ/3, it holds that

Quantity (II) = Õ

(√
H2

T

H

)
= Õ

(√
TH

)
. (16)

Specifically, in the statement of Theorem 6.3 [4], we have K = ⌈log2(T)⌉, δ = δ/3, T = ⌈ T
H ⌉ here.

And we multiply the regret bound in Theorem 6.3 [4] by
(
2H +

√
2H log(12THδ)

)
as well since the

original EXP3.P algorithm requires the magnitude of rewards not exceeding 1. Conclusively, by
combining the results from Eqn. 15 and Eqn. 16 and taking a union bound on the probability rates,
with probability at least 1− δ/3− δ/3− δ/3 = 1− δ, we have that

RegretT = Õ

(
TH

−1
dz+2 + TC

1
d+1
∗ H

−1
d+1 +

√
TH

)
.

By taking H = T
d+2
d+4 and using the fact that dz ≤ d, it holds that

RegretT = Õ

(
T

d+3
d+4 + C

1
d+1
∗ T

d2+4d+2
(d+1)(d+4)

)
= Õ

(
T

d+3
d+4 + C

1
d+1
∗ T

d+2
d+3

)
= Õ

(
T

d+3
d+4 + C

1
d+1T

d+2
d+3

)
,

with probability at least 1− δ.

A.5 Additional Algorithms

A.5.1 Alternative Algorithm for RMEL

Here we present another version of the RMEL algorithm in 3. Instead of executing the elimination
process after each epoch of any layer as in 2, here we conduct the elimination at each round. This
modification will make our algorithm more accurate and discard less promising regions in a timely
manner but will lead to higher computational complexity as well. Note the regret bound of Theorem
5.1 naturally holds since we could use the identical proof to reach the same regret bound here. And
we also add an explanation before Corollary A.9 in Appendix A.2.

24

Algorithm 4 BoB Robust Zooming Algorithm

Input: Arm metric space (X , D), time horizon T , probability rate δ, batch size H .

Initialization: Budget set for base algorithms I = {2i}Ni=1, N = ⌈log2(T)⌉, α = 2
√
ln (3NT

δ), γ =

min

{
3
5 , 2
√

3N ln (N)
5T

}
, weight wi = 1, i ∈ [N], cumulative sum s = 0.

1: for t = 1 to T do
2: if t ∈ {kH + 1 : k ∈ N} then
3: For i = 1, . . . , N set

pi = (1− γ)
wi∑N
j=1 wj

+
γ

N
.

4: Choose the base algorithm index i′ randomly with probability {pi}Ni=1.
5: Refresh the chosen Robust Zooming algorithm (Algorithm 1 with C = 2i

′
) with active

arm set J = {}, active space Xact = X and probability rate δ/3.
6: end if
7: Run the chosen Robust Zooming algorithm and receive the reward yt.
8: Update the chosen Robust Zooming algorithm according to Algorithm 1 and set s = s+ yt.
9: if t ∈ {kH : k ∈ N+} then

10: Let s = s/
[
pi′
(
2H +

√
2H log(12THδ)

)]
.

11: Update EXP3.P component for index i′: wi′ = wi′ exp
(

γ
3N

(
s+ α

pi′
√
NT

))
.

12: end if
13: end for

A.5.2 BoB Robust Zooming Algorithm

Due to the space limit, we defer the pseudocode of BoB Robust Zooming algorithm here in Algorithm
4. We can observe that the top layer is an EXP3.P algorithm, which chooses the corruption level
used for Robust Zooming algorithm in each batch adaptively. For each batch, we run our Robust
Zooming algorithm with the chosen corruption level from the top layer, and use the accumulative
rewards collected in each batch to update the components of EXP3.P (i.e. line 10 of Algorithm 4).

Note we normalize the cumulative reward by dividing it with (2H +
√

2H log(12THδ)), and this is
because that we could prove that the magnitude of the cumulative reward at each batch would be

at most (2H +
√
2H log(12THδ)) with high probability as shown in Lemma A.14. And the EXP3.P

algorithm [4] requires the magnitude of reward should at most be 1 with our chosen values of α and
γ. The regret bound of Algorithm 4 is given in Theorem 5.4 of our main paper.

A.6 Discussion on Lower Bounds

We now propose Theorem 4.2 and Theorem 5.2 with their detailed proof in Section A.6.1 and Section
A.6.2 respectively, where we provide a pair of lower bounds for the strong adversary and the weak
adversary.

A.6.1 Lower Bound for Strong Adversaries

We repeat our Theorem 4.2 for reference here and then provide a detailed proof as follows:

Theorem 4.2 Under the strong adversary with corruption budget C, for any zooming dimension
dz ∈ Z+, there exists an instance such that any algorithm (even is aware of C) must suffer from the
regret of order Ω

(
C

1
dz+1T

dz
dz+1

)
with probability at least 0.5.

Proof. Here we consider the metric space ([0, 1)d, l∞). For arbitrary ϵ ∈ (0, 1
2), we can equally

divide the space [0, 1]d into 1/ϵd small l∞ balls whose diameters are equal to ϵ by discretizing each
axis. (W.l.o.g we assume 1 is divisible by ϵ for simplicity since otherwise we could take ⌊1/ϵd⌋

25

instead.) For example, if d = 2 and ϵ = 1
2 , then we can divide the space into 22 = 4 l∞ balls:

[0, 0.5)2, [0, 0.5)× [0.5, 1), [0.5, 1)× [0, 0.5), [0.5, 1)2. We denote these balls as {Ai}1/ϵ
d

i=1 , [0, 1)d =

∪1/ϵd

i=1 Ai and their centers as {ci}1/ϵ
d

i=1 . (e.g. the center of [0, 0.5)2 is (0.25, 0.25).) Subsequently, we

could define a set of functions {fi(·)}1/ϵ
d

i=1 as

fi(x) =

{
ϵ
2 − ∥x− ci∥∞, x ∈ Ai;

0, x /∈ Ai.

We can easily verify that fi(·) is a 1-Lipschitz function. For the zooming dimension, if ϵ is of constant
scale, then the zooming dimension will become 0. However, in our analysis here, we would let ϵ
rely on T and be sufficiently small so that the zooming dimension is d. If the underlying expected
reward function is fk(·) and there is no random noise, consider the strong adversary that shifts the
reward of the arm down to whenever the pulled arm is in Ak and doesn’t attack the reward otherwise.
This attack could be done for roughly ⌊C/ϵ⌋ times. Intuitively, the learner can do no better than pull
each arm in [0, 1]d uniformly. This implies that roughly the learner should do ⌊C/ϵ⌋⌊1/ϵd⌋ rounds of
uniform exploration before the attack budget C is used up, where the learner pulls arms outside Ak

for approximately ⌊C/ϵ⌋ · ⌊(1− ϵd)/ϵd⌋ times. Take ϵ =
(
C
T

) 1
d+1 , we know that roughly the learner

should do ⌊C/ϵ⌋⌊1/ϵd⌋ = T rounds of uniform exploration, and the cumulative regret is at least⌊
C

ϵ

⌋
·
⌊
(1− ϵd)

ϵd

⌋
· ϵ = Θ

(
C

1
d+1T

d
d+1

)
= Θ

(
C

1
dz+1T

dz
dz+1

)
.

For a more rigorous argument, note that for the k-th instance fk(·), the adversary could maliciously
replace the reward with 0 until the arm in Ak is pulled at least ⌊C/ϵ⌋ times. After ⌊C/ϵ⌋⌊1/2ϵd⌋
rounds, for any algorithm even with the information of value C, there must be at least ⌊1/(2ϵd)⌋
balls among {Ai}1/ϵ

d

i=1 that have been pulled for at most ⌊C/ϵ⌋ times. As a consequence, when we

choose the problem instance k among these ⌊1/(2ϵd)⌋ balls and set ϵ =
(
C
T

) 1
d+1 , then we know that

the regret of order

ϵ ·
⌊
C

ϵ

⌋
·
(⌊

1

2ϵd

⌋
− 1

)
= Θ

(
C

1
dz+1T

dz
dz+1

)
is unavoidable. This implies that the regret could be no worse than Ω(C

1
dz+1T

dz
dz+1) under the strong

adversary with probability 0.5.

For the stochastic Lipschitz bandit problem, based on [33] we know for any algorithm there exists
one problem instance such that the expected regret is at least

inf
r0∈(0,1)

r0T + C log(T)
∑

r=2−i:i∈N,r≥r0

Nz(r)

r

 ,

where Nz(r) is the zooming number. And hence the corruption-free lower bound
O
(
ln(T)

1
dz+2T

dz+1
dz+2

)
is optimal in terms of the zooming dimension dz . Combining this result

with our Theorem 4.2, we can conclude that for any algorithm, there exists a corrupted bandit
instance where the algorithm must incur Ω

(
max

{
ln(T)

1
dz+2T

dz+1
dz+2 , C

1
dz+1T

dz
dz+1

})
cumulative

regret, which coincides with the order of regret for our Robust Zooming algorithm. Conclusively, our
algorithm obtains the optimal order of regret under the strong adversary.

We then restate our Theorem 4.3 for reference and then provide a detailed proof:

Theorem 4.3 For any algorithm, when there is no corruption, we denote R0
T as the upper bound of

cumulative regret in T rounds under our problem setting described in Section 3, i.e. RegretT ≤ R0
T

with high probability, and it holds that R0
T = o(T). Then under the strong adversary and unknown

attacking budget C, there exists a problem instance on which this algorithm will incur linear regret
Ω(T) with probability at least 0.5, if C = Ω(R0

T /4
dz) = Ω(R0

T).

26

Proof. For the case that dz = 0, we consider the metric space ([0, 1], l2) and define the Lipschitz
function f1(·) as

f1(x) =

{
0.25− |x− 0.25|, x ∈ [0, 0.5];

0, x ∈ (0.5, 1].
,

and we assume there is no random noise and no adversarial corruption. (We call this instance I0.)
For any algorithm with E(RegretT) ≤ R0

T when there is no adversarial corruption, we know that

E(# iterations playing arms in (0.5, 1])× 0.25 ≤ E(RegretT) ≤ R0
T ,

and hence E(# iterations playing arms in (0.5, 1]) ≤ 4R0
T . By Markov inequality, with probability

at least 0.5, the number of iterations that play arms in (0.5, 1] is no more than 8R0
T .

Next, we define a new problem setting in the same metric space as:

f2(x) =

{
0.25− |x− 0.25|, x ∈ [0, 0.5];

x− 0.5, x ∈ (0.5, 1].
.

And under the setting of f2(·) there is a malicious strong adversary with budget C = 4R0
T to attack

using the following strategy: whenever the arm in (0.5, 1] is selected and the corruption budget has
not been used up, the adversary moves the reward to 0. We call this instance I1. Therefore, before
the budget is used up, each selection of arm in (0.5, 1] returns a reward 0, and hence the agent can
never tell the difference between I0 and I1 and would follow the same strategy under I0 until the
total corruption level reaches C = 4R0

T and then the adversary stops to contaminate the rewards.
And this requires at least C/0.5 = 2C = 8R0

T rounds in which the agent chooses arms in (0.5, 1].
Therefore, with probability of at least 0.5, the regret in T rounds is at least (T − 8R0

T)/4 = Ω(T).

For dz > 0, we use the metric space ([0, 1]d, ∥ · ∥∞) with d = ⌈2dz⌉. We first partition the d-
dimensional cube [0, 1]d into 2d sub-cubes with side length 0.5, i.e. equally divide the cube [0, 1]d

into 0.5-radius l∞ balls whose diameters are equal to 0.5 by discretizing each axis. We denote these
balls as Ai

2d

i=1 and the center of these balls as ci2
d

i=1, e.g. c1 = [0.25]d. And we denote the vertex of
each ball that matches the vertexes of [0, 1]d as vi2

d

i=1, e.g. v1 = [0]d. Subsequently, we could define
the function f1(·) as

f1(x) =

{
4

−d
d−dz − ∥x− c1∥

d
d−dz∞ , x ∈ A1;

0, x /∈ A1.

and we assume there is no random noise and no adversarial corruption. (We call this instance I0.)
Since the regret of the algorithm under no corruption satisfies that E(RegretT) ≤ R0

T , and we know
that pulling any arm outside A1 will incur a single regret of 4

−d
d−dz , and hence we have that

E(# iterations playing arms not in A1) ≤ R0
T · 4

−d
d−dz .

Then by the pigeonhole principle, there exists a sub-ball 2 ≤ i ≤ 2d such that the expected number
of iterations to pull arms in Ai is no more than R0

T · 4
−d

d−dz /(2d − 1). Without loss of generality, we
assume i = 2, where c2 = [0.75, 0.25, . . . , 0.25] and v2 = [1, 0, . . . , 0]. Similarly by using Markov
Inequality, with probability at least 0.5, the number of iterations that play arms in A2 is no more than
2R0

T · 4
−d

d−dz /(2d − 1).

Next, we define a new problem setting in the same metric space as:

f2(x) =


4

−d
d−dz − ∥x− c1∥

d
d−dz∞ , x ∈ A1;

2
−d

d−dz − ∥x− v2∥
d

d−dz∞ , x ∈ A2;

0, x /∈ A1 ∪A2.

.

And under the setting of f2(·) there is a malicious strong adversary with budget C = 2R0
T ·

2
−d

d−dz /(2d − 1) = Θ(R0
T /2

d) to attack the rewards. (Note 1 ≤ d/(d− dz) ≤ 2). Specifically, the
adversary uses the following strategy: whenever the arm in A2 is selected and the corruption budget
has not been used up, the adversary moves the reward to 0. We call this instance I1. Therefore, before
the budget is used up, each selection of arm in A2 returns a reward 0, and hence the agent can never

27

tell the difference between I0 and I1 and would follow the same strategy under I0 until the total
corruption level reaches C = 2R0

T · 2
−d

d−dz /(2d − 1), and then the adversary stops to contaminate
the rewards. And this requires at least C/2

−d
d−dz = 2R0

T · 4
−d

d−dz /(2d − 1) rounds in which the agent
chooses arms in A2. Therefore, with probability of at least 0.5, the regret in T rounds is at least(

T − 24
−d

d−dz R0
T

2d − 1

)
×
(
2

−d
d−dz − 4

−d
d−dz

)
≥ 3

16

(
T − 32R0

T

2d − 1

)
= Ω(T).

A.6.2 Lower Bound for Weak Adversaries

Recall Theorem 5.2 in our main paper:

Theorem 5.2 Under the weak adversary with corruption budget C, for any zooming dimension dz ,
there exists an instance such that any algorithm (even is aware of C) must suffer from the regret of
order Ω(C) with probability at least 0.5.

Proof. We can modify the argument of the previous subsection A.6.1 to validate Theorem 5.2. If
dz = 0, we could simply use the metric space ([0, 1), l2) and the reward function

µ1(x) =

{
1
2 − |x− 1

4 |, x ∈ [0, 0.5);

0, x ∈ [0.5, 1).
µ2(x) =

{
0, x ∈ [0, 0.5);
1
2 − |x− 3

4 |, x ∈ [0.5, 1).

We can easily verify that the zooming dimension dz = 0 holds. Assume there is no random noise,
and at each iteration the weak adversary pushes the reward everywhere in [0, 1) to 0, which would
use a 0.5 budget. Therefore, this attack could last for the first ⌊2C⌋ rounds, when the agent would
just receive a 0 reward regardless of the pulled arm. For any algorithm, it would at least spend for
⌊C⌋ rounds on either [0, 0.5) or [0.5, 1) with probability at least 0.5. By considering the above two
reward functions, we know that it would incur Ω(C) regret with probability at least 0.5.

For dz > 0, we set d = ⌈2dz⌉ and consider the metric space ([0, 1)d, l∞). Similarly, we can equally
divide the space [0, 1]d into 1/2 small l∞ balls whose diameters are equal to 1/2 by discretizing each
axis. We denote these balls as {Ai}2

d

i=1, [0, 1)
d = ∪2d

i=1Ai and their centers as {ci}2
d

i=1. (e.g. the

center of [0, 0.5)2 is (0.25, 0.25).) Subsequently, we could define a set of functions {fi(·)}1/2
d

i=1 as

µi(x) =

{
4

−d
d−dz − ∥x− ci∥

d
d−dz∞ , x ∈ Ai;

0, x /∈ Ai.

We can easily verify that the zooming dimension of any instance is dz . Assume there is no random
noise, and at each iteration, the weak adversary pushes the reward everywhere in [0, 1) to 0, which
would use a 4

−d
d−dz budget. Therefore, this attack could last for the first ⌊4

d
d−dz C⌋ rounds, when

the agent would just receive a 0 reward regardless of the pulled arm. After ⌊4
dz

d−dz C⌋ rounds, for
any algorithm even with the information of value C, there must be at least ⌊2d−1⌋ balls among
{Ai}2

d

i=1 that have been pulled for at most ⌊2(
2d

d−dz
−d)C⌋ = Θ(C) times. As a consequence, as for

the problem instance k among these ⌊2d−1⌋ balls, the regret incurred Ω(C). Similarly, this means
that any algorithm must incur Ω(C) regret with probability 0.5.

A.7 Additional Experimental Details

Note in our main paper we assume that σ = 1, and our pseudocodes of Algorithms are based on this
assumption. When we know a better upper bound for σ, we could easily modify the components in
each algorithm based on σ. For example, we could modify the confidence radius of any active arm x
in Algorithm 1 as

r(x) = σ

√
4 ln (T) + 2 ln (2/δ)

n(x)
+

C

n(x)
.

Next, we exhibit the setup of algorithms involved in our experiments as follows:

28

• Zooming algorithm [23]: We use the same setting for stochastic Lipschitz bandit as in [23], and
set the radius for each arm as:

r(x) = σ

√
4 ln (T) + 2 ln (2/δ)

n(x)
.

And its implementation is available with the library [26].

• RMEL (ours): We use the same parameter setting for RMEL as shown in our Algorithm 2. And
based on the experimental results in Figure 1, this method apparently works best under different
kinds of attacks and reward functions.

• BoB Robust Zooming algorithm (ours): We use the same parameter setting with σ for BoB
Robust Zooming algorithm as shown in Algorithm 4 without restarting the algorithm after each
batch since we found that restarting will sometimes abandon useful information empirically. This
BoB-based approach also works well according to Figure 1.

The numerical results of final cumulative regrets in our simulations in Section 6 (Figure 1) are
displayed in Table 3.

Note our RMEL (Algorithm 2) is designed to defend against the weak adversary in the theoretical
analysis, and hence to be consistent, we also consider the weak adversary for both types of attacks
under the same experimental setting and three levels of corrupted budgets. Recall that in the previous
experiments in Section 6, the adversary will contaminate the stochastic rewards only if the pulled
action is in the specific region (Oracle: benign arm, Garcelon: targeted arm region), and otherwise
the adversary will not spend its budget. And hence it is a strong adversary whose action relies on
the current arm. To adapt these two attacks into a weak-adversary version, we could simply inject
both sorts of attacks at each round based on their principles at each round: the Oracle will uniformly
push the expected rewards of all “good arms” below the expected reward of the worst arm with an
additional margin of 0.1 with probability 0.5 at the very beginning of each round. And the Garcelon
will modify the expected rewards of all arms outside the targeted region into a random Gaussian noise
N(0, 0.01) with probability 0.5 ahead of the agent’s action. Consequently, adversaries may consume
the corruption budget at each round regardless of the pulled arm, and we expect that they will run out
of their total budget in fewer iterations than the strong adversary does. We use the same experimental
settings as in Section 6, and the results are exhibited in Table 4.

From Table 4, we can see the experimental results under the weak adversary are consistent with those
under the strong adversary. The state-of-the-art Zooming algorithm is evidently vulnerable to the
corruptions, while our proposed algorithms, especially RMEL, could yield robust performance across
multiple settings consistently. We can also observe that compared with the strong adversary, the weak
adversary is less malicious than expected.

Another remark is that the adversarial settings used in our experiments may not be consistent with the
assumption that |ct(x)| ≤ 1, while we find that (1). by modifying the original attacks and restricting
the attack volume to be at most one with truncation, we can get a very similar result as shown in
Table 3 and Table 4. (2). actually we can change the assumption to |ct(x)| ≤ u where u is an arbitrary
positive constant for the theoretical analysis.

29

Triangle reward function

Algorithm Budget (C) Oracle Garcelon

Zooming
0 366.58 366.58

3000 10883.51 10660.17
4500 11153.78 11487.59

RMEL
0 512.46 512.46

3000 921.95 504.78
4500 928.27 1542.17

BoB Robust Zooming
0 461.16 461.16

3000 495.06 531.37
4500 1323.97 736.85

Sine reward function

Algorithm Budget (C) Oracle Garcelon

Zooming
0 315.94 315.94

3000 5289.65 3174.26
4500 5720.30 3174.29

RMEL
0 289.86 289.86

3000 442.66 289.29
4500 862.90 332.71

BoB Robust Zooming
0 435.44 435.44

3000 414.54 746.96
4500 1887.35 1148.09

Two dim reward function

Algorithm Budget (C) Oracle Garcelon

Zooming
0 3248.54 3248.54

3000 8730.73 8149.79
4500 9496.83 13672.00

RMEL
0 2589.32 2589.32

3000 5660.10 2590.77
4500 6265.09 2872.64

BoB Robust Zooming
0 3831.94 3831.94

3000 6310.29 4217.74
4500 6932.09 4380.19

Table 3: Numerical values of final cumulative regrets of different algorithms under the experimental
settings used in Figure 1 in Section 6 (strong adversaries).

30

Triangle reward function

Algorithm Budget (C) Oracle Garcelon

Zooming
0 366.58 366.58

3000 10861.72 10660.18
4500 10862.75 10661.99

RMEL
0 512.46 512.46

3000 624.29 620.96
4500 623.50 634.59

BoB Robust Zooming
0 461.16 461.16

3000 545.27 561.77
4500 552.66 569.51

Sine reward function

Algorithm Budget (C) Oracle Garcelon

Zooming
0 315.94 315.94

3000 5178.81 2636.73
4500 5186.28 2799.22

RMEL
0 289.86 289.86

3000 280.62 277.22
4500 284.94 288.06

BoB Robust Zooming
0 435.44 435.44

3000 450.21 439.08
4500 461.13 456.36

Two dim reward function

Algorithm Budget (C) Oracle Garcelon

Zooming
0 3248.54 3248.54

3000 6380.37 6517.29
4500 6991.41 6854.05

RMEL
0 2589.32 2589.32

3000 3198.06 2940.93
4500 4231.88 4067.16

BoB Robust Zooming
0 3831.94 3831.94

3000 4019.08 3335.67
4500 4901.20 4054.05

Table 4: Numerical values of final cumulative regrets of different algorithms under the experimental
settings introduced in Appendix A.7 (weak adversaries).

31

	Introduction
	Related Work
	Preliminaries
	Warm-up: Robust Lipschitz Bandit with Known Budgets
	Robust Lipschitz Bandit with Unknown Budgets
	Algorithm for Weak Adversaries
	Algorithm for Strong Adversaries

	Experiments
	Conclusion
	Appendix
	Analysis of Theorem 4.1
	Useful Lemmas
	Proof of Theorem 4.1

	Analysis of Theorem 5.1
	Useful Lemmas
	Proof of Theorem 5.1

	Analysis of Theorem 5.3
	Useful Lemmas
	Proof of Theorem 5.3

	Analysis of Theorem 5.4
	Useful Lemmas
	Proof of Theorem 5.4

	Additional Algorithms
	Alternative Algorithm for RMEL
	BoB Robust Zooming Algorithm

	Discussion on Lower Bounds
	Lower Bound for Strong Adversaries
	Lower Bound for Weak Adversaries

	Additional Experimental Details

