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ABSTRACT

Transformers are deep architectures that define “in-context mappings” which en-
able predicting new tokens based on a given set of tokens (such as a prompt in NLP
applications or a set of patches for a vision transformer). In this work, we study
in particular the ability of these architectures to handle an arbitrarily large number
of context tokens. To mathematically, uniformly address their expressivity, we
consider the case that the mappings are conditioned on a context represented by
a probability distribution of tokens which becomes discrete for a finite number of
these. The relevant notion of smoothness then corresponds to continuity in terms
of the Wasserstein distance between these contexts. We demonstrate that deep
transformers are universal and can approximate continuous in-context mappings
to arbitrary precision, uniformly over compact token domains. This result implies,
as a special case, that transformers are universal approximators for continuous
permutation-invariant mappings over a fixed number of tokens. It also establishes
the universal approximation capability of transformers for certain in-context learn-
ing tasks, demonstrating in particular their ability to perform regression within
context. A key aspect of our results, compared to existing findings, is that for
a fixed precision, a single transformer can operate on an arbitrary (even infinite)
number of tokens. Additionally, it operates with a fixed embedding dimension of
tokens (this dimension does not increase with precision) and a fixed number of
heads (proportional to the dimension). The use of MLPs between multi-head at-
tention layers is also explicitly controlled. We consider both unmasked attentions
(as used for the vision transformer) and masked causal attentions (as used for NLP
and time series applications). We tackle the causal setting leveraging a space-time
lifting to analyze causal attention as a mapping over probability distributions of
tokens.

1 INTRODUCTION

Transformers have revolutionized the field of machine learning with their powerful attention mech-
anisms as introduced by Vaswani et al. (2017). The exceptional performance and expressivity of
large-scale transformers have been empirically well established for both NLP (Brown et al., 2020)
and vision applications (Dosovitskiy et al., 2020). One key property of these architectures is their
ability to leverage contexts of arbitrary length, which enables the parameterization of “in context”
mappings with an arbitrarily large complexity. In this paper, we present a rigorous formalism to
model inputs and the associated context with an arbitrarily large number of tokens, defining a notion
of continuity that enables the analysis of their expressivity.

Universality, from neural networks to neural operators. Multilayer Perceptrons (MLP) with
two layers are universal approximators, as shown decades ago in Cybenko (1989); Hornik et al.
(1989), with a comprehensive review in Pinkus (1999). The significance of depth in enhancing ex-
pressivity is explored in Hanin & Sellke (2017); Yarotsky (2017). These results have been extended
to cover a variety of architectural constraints on the networks, for instance, invoking weight sharing
in Convolutional Neural Networks (CNN) (Zhou, 2020) and skip connections in ResNets (Cuchiero
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et al., 2020; Tabuada & Gharesifard, 2022). It is also possible to design equivariant architectures,
in particular for graph neural networks (Kratsios & Papon, 2022; Keriven & Peyré, 2019; Xu et al.,
2018) and neural networks operating on sets of points (Qi et al., 2017; De Bie et al., 2019). The con-
nection between transformers and graph neural networks is exposed in Müller et al. (2023). Here,
we take a different point of view, with transformers operating on probability distributions rather than
on sets of points. Related to this setup are extensions of neural networks acting in finite-dimensional
vector spaces to infinite-dimensional function spaces resulting in the notion of neural operators (Ko-
vachki et al., 2023), the universality of which is studied in Furuya et al. (2023). Neural operators can
be generalized to cope with data in metric spaces, addressing topological obstructions, in Kratsios
et al. (2023b).

Mathematical modeling of transformers. It is now customary to describe transformers as per-
forming “in context” prediction, which means that it maps token to token, while this map depends
on a set of previously seen tokens. The size of this context might be very long, possibly arbitrarily
long, which is the focus of this article. The ability of trained transformers to effectively perform
in-context computation has been supported by both empirical studies (von Oswald et al., 2023) and
theoretical results (Ahn et al., 2024; Mahankali et al., 2023; Sander et al., 2024; Zhang et al., 2023)
on simplified architectures (typically linear attention) and specific data generation processes.

To make a rigorous analysis of arbitrarily long token lengths, and also to describe a “mean field”
limit of an infinite number of tokens, it is convenient to view attention as operating over probability
distributions of tokens (Vuckovic et al., 2020; Sander et al., 2022). The smoothness (Lipschitz
continuity) of the resulting attention layers is analyzed in Castin et al. (2024). Deep transformers
(with the residual connection) can be described by a coupled system of particles evolving across the
layers. The analysis of the clustering properties of such an evolution is studied in Geshkovski et al.
(2023a;b).

Universality of transformers. Yun et al. (2019) provides, to the best of our knowledge, the most
detailed account of the universality of transformers. The authors rely on shallow transformers with
only 2 heads but require that the transformers operate over an embedding dimension which grows
with the number of tokens. This result is refined in Nath et al. (2024) which highlights the difficulty
of attention mechanisms to capture smooth functions. Our focus is different, since we consider deep
transformers with a fixed embedding dimension, but which are universal for an arbitrary number of
tokens.

We note that there exist variations over the original transformer’s architecture which enjoys univer-
sality results, for instance, the Sumformer (Alberti et al., 2023) and stochastic deep networks (De Bie
et al., 2019), which also requires an embedding dimension that grows with the number of tokens.
We furthermore mention the introduction of probabilistic transformers (Kratsios et al., 2023a) which
can approximate embeddings of metric spaces. The work of Agrachev & Letrouit (2024) provides
an abstract universal interpolation result for equivariant architectures under genericity conditions,
but it is not known whether there exist generic attention maps.

While this is not directly related to our results, a line of works studies the expressivity of transform-
ers when operating on a discrete set of tokens as formal systems (Chiang et al., 2023; Merrill &
Sabharwal, 2023; Strobl et al., 2024; Elhage et al., 2021). Another line of work studies the impact
of positional encoding on their expressivity (Luo et al., 2022).

1.1 OUR CONTRIBUTIONS

Our work provides a rigorous formalization of transformer expressivity and continuity as operat-
ing over the space of probability distributions. The main mathematical results is the universality
presented in Theorems 1 and 2, respectively, for the unmasked and the masked settings. Our ap-
proach effectively handles an arbitrary number of tokens and leverages deep architectures without
requiring arbitrary width. The embedding dimension and the number of heads are proportional to
the dimension of the input tokens and are independent of precision. It is interesting to note that the
masked setting requires some stronger regularity hypothesis on the contexts, namely that they are
Wasserstein-Lipschitz with respect to time, which is needed to cope with the constraint of causality
in the relevant mappings.
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1.2 NOTATION

For a natural number N ∈ N, we denote by [N ] := {1, ..., N}. For vector x ∈ Rd, the Euclidean
norm of x is denoted by |x|. For two vectors x, y ∈ Rd, the Euclidean inner product of x and y is
denoted by ⟨x, y⟩ and the component-wise multiplication of x and y is denoted by x⊙y. The vector
1d is the vector of dimension d with all coordinates equal to 1, that is, 1d := (1, ..., 1) ∈ Rd. We
denote by P(Ω) the space of probability measures on Ω, and denote by C(Ω) the space of continuous
functions from Ω to R, where Ω ⊂ Rd is a compact domain for tokens’ embeddings. In what follows,
we frequently utilize notions such as the push-forward operator T♯, weak∗ topology (denoted by the
convergence ⇀∗), and Wasserstein distance Wp for 1 ≤ p < +∞. For further details on these
notions, we refer to Appendix A.

2 MEASURE-THEORETIC IN-CONTEXT MAPPINGS

Transformers are defined by alternating multi-head attention layers (which compute interactions
between tokens), MLP and normalization layers (which operate independently over each token).
For the sake of simplicity, we omit normalization in the following analysis. We first recall their
definition and then explain how they can be equivalently re-written using in-context mappings. This
definition provides new insights and can also be generalized to an infinite number of tokens encoded
in a probability measure.

2.1 ATTENTION AS IN CONTEXT MAPPINGS ON TOKEN ENSEMBLES

Classical definition. A set of n tokens, xi ∈ Rdtok , is denoted by X = (xi)
n
i=1 ∈ Rdtok×n. An

attention head maps these n tokens to the same number n of tokens in Rdhead through

∀X ∈ Rdtok×n, Attθ(X) := V X SoftMax(X⊤Q⊤KX/
√
k) ∈ Rdhead×n,

where the parameters are the (Key, Query, Value) matrices θ := (K,Q, V ) ∈ Rk×dtok × Rk×dtok ×
Rdhead×dtok . Here, the (possibly masked) SoftMax function operates in a row-wise manner:

∀Z ∈ Rn×n, SoftMax(Z) :=

(
Mi,je

Zi,j∑n
ℓ=1 Mi,ℓeZi,ℓ

)n

i,j=1

∈ Rn×n
+ ,

where Mi,j = 1 for the unmasked setting (bidirectional encoding transformers) and Mi,j = 1j≤i

in the masked setting (causal decoding transformers). Multiple heads with different parameters
θ := (Wh, θh)Hh=1 are combined in a linear way in a multi-head attention

MAttθ(X) := X +

H∑
h=1

Wh Attθh(X), (1)

where Wh ∈ Rdtok×dhead and θh := (Kh, Qh, V h). In the following, we denote the various di-
mensions of a multi-head attention layer by: dtok(θ), dhead(θ) for the token and head dimensions,
respectively, and k(θ) for the key/query dimensions, and H(θ) for the number of heads.

In-context mappings form. For the unmasked setting, the mapping X 7→ MAttθ(X) can be
re-written as the application of an “in context” function Gθ(X, ·) to each token,

xi 7→ Gθ(X,xi) i.e. MAttθ(X) = (Gθ(X,xi))
n
i=1,

where the in-context mapping is, ∀(X,x) ∈ Rdtok×n × Rdtok ,

Gθ(X,x) := x+

H∑
h=1

Wh
n∑

j=1

exp
(

1√
k
⟨Qhx, Khxj⟩

)
∑n

ℓ=1 exp
(

1√
k
⟨Qhx, Khxℓ⟩

)V hxj . (2)

In the masked setting, due to the lack of permutation equivariance, it is required to track also the
index i of the token. The mapping X 7→ MAttθ(X) can then be re-written as MAttθ(X) =
(Gθ(X,xi, i))

n
i=1 where the in-context mapping is,

Gθ(X,x, i) := x+

H∑
h=1

Wh
i∑

j=1

exp
(

1√
k
⟨Qhx, Khxj⟩

)
∑i

ℓ=1 exp
(

1√
k
⟨Qhx, Khxℓ⟩

)V hxj . (3)
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Here, the terminology “in context” refers to the fact that Gθ(X, ·) depends on the tokens X them-
selves, and can thus be seen as a parametric map that is modified for each token depending on its
interactions with the other tokens. While this re-writing is equivalent to the original one, it highlights
the fact that transformers define spatial mappings. This also allows us to clearly state the associated
mathematical question at the core of this paper, which is the approximation of arbitrary in-context
mappings by (compositions of) such parametric maps. Another interest in this reformulation is that
it enables the definition of generalized attention operating over a possibly infinite number of tokens,
as explained in Section 2.2.

Composition of in-context mappings. A transformer (ignoring normalization layers at this mo-
ment) is a composition of L attention layers and Multi-Layer Perceptrons (MLP):

MLPξL ◦MAttθL ◦ . . . ◦MLPξ1 ◦MAttθ1 . (4)

Here, the MLPξ functions process each token independently from one another:

MLPξ(X) = (Fξ(xi))
n
i=1,

i.e., they are “context-free” mappings (in the above notation, Fξ(X,x) = Fξ(x)), while the attention
maps, Gθ(X, ·) depend on the context X .

On the level of in-context mappings, the composition of layers in (4) induces a new “in-context”
composition rule, which we denote by ⋄:

(G2 ⋄G1)(X,x) := G2(X1, G1(X,x)) where X1 := (G1(X,xi))
n
i=1, (5)

for the unmasked case, and

(G2 ⋄G1)(X,x, i) := G2(X1, G1(X,x, i), i) where X1 := (G1(X,xi, i))
n
i=1, (6)

for the masked case. This rule can be applied whether G1(X, ·) or G2(X, ·) depends on the context
X or not (such as for the Fξ mappings above). Using this rule, the transformer’s definition in (4)
translates into a composition of in-context and context-free maps, i.e.,

FξL ⋄GθL ⋄ . . . ⋄ Fξ1 ⋄Gθ1 . (7)

The core question this paper addresses is the uniform approximation of a continuous (in a suitable
topology) in-context maps (X,x) 7→ G(X,x) or (X,x, i) 7→ G(X,x, i) by transformers’ in-context
mappings of the form of (4), with clear control of the dimensions and the number of heads involved
in the different layers. The main originality of our approach is that we aim to do so for an arbitrary
number n of tokens, as we now explain.

2.2 MEASURE-THEORETIC IN-CONTEXT MAPPINGS: UNMASKED SETTING

A first key observation is that the definition in (2) makes sense irrespective of the number n of
tokens. The second key observation is that, in the un-masked case, Mi,j = 1, the attention mapping
is permutation equivariant. To make this more explicit, and also handle the limit of an infinite
number of tokens, we represent a set X of tokens using a probability distribution µ ∈ P(Rdtok) over
Rdtok . A finite number of tokens is encoded using a discrete empirical measure,

µ =
1

n

n∑
i=1

δxi ∈ P(Rdtok). (8)

This encoding is not only for notional convenience, it also allows us to define clearly a correct notion
of smoothness for the in-context mappings. This smoothness corresponds to the displacement of the
tokens and is quantified through the optimal transport distance as presented in Section 1.2. This
enables us to compare context with different sizes and, for instance, to compare a set of tokens with
a large (but finite) n to a continuous distribution. The in-context mapping in (2) is now defined as,
∀(µ, x) ∈ P(Rdtok)× Rdtok ,

Γθ(µ, x) := x+

H∑
h=1

Wh

∫ exp
(

1√
k
⟨Qhx, Khy⟩

)
∫
exp

(
1√
k
⟨Qhx, Khz⟩

)
dµ(z)

V hy dµ(y). (9)
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The discrete case is contained in this more general definition in the sense that

∀X = (xi)
n
i=1, Gθ(X,x) = Γθ

( 1
n

n∑
i=1

δxi
, x
)
.

In the following, we will invoke, whenever convenient, the following slight abuse of notation,

Γθ(µ, x) = Γθ(µ)(x),

so that Γθ(µ) : Rdtok → Rdtok defines a map between Euclidean spaces. Using this general defini-
tion, the attention map X 7→ MAttθ(X) can be rewritten as displacing the tokens’ positions, which
corresponds to applying a push-forward to the measure as defined in (22),

µ ∈ P(Rdtok) 7−→ Γθ(µ)♯µ ∈ P(Rdtok).

This formulation of transformers as a mapping between probability measures was introduced
in Sander et al. (2022) and also used in Castin et al. (2024) to prove a convergence result of deep
transformers. We re-use it here but put emphasis on the in-context mapping itself, which is the object
of interest of this paper (rather than on studying the mapping between measures).

Composition of in-context unmasked measure-theoretic mappings. The definition of compo-
sition in (5) generalizes to the measure-theoretic setting in the unmasked setting as

(Γ2 ⋄ Γ1)(µ, x) := Γ2(µ1,Γ1(µ, x)), where µ1 := Γ1(µ)♯µ, (10)

i.e., (Γ2 ⋄ Γ1)(µ) = Γ2(µ1) ◦ Γ1(µ). Transformers operating over an arbitrary (possibly infinite)
number of tokens are then obtained by replacing the original definition of (7) by

FξL ⋄ ΓθL ⋄ . . . ⋄ Fξ1 ⋄ Γθ1 . (11)

Here, the Fξ are “context-free” MLP mappings, i.e., Fξ(µ, x) = Fξ(x) is independent of µ. It
is important to keep in mind that when restricted to finite discrete empirical measures of the form
of (8), definitions in (7) and in (11) coincide. Our theory encompasses classical transformers as well
as their “mean field” limits operating over arbitrary measures.

2.3 MEASURE-THEORETIC IN-CONTEXT MAPPINGS: MASKED SETTING

In the masked setting (for NLP or time series applications), Mi,j = 1j≤i, the attention mappings
are not any more permutation equivariant. To restore this invariance, and be able to write in-context
mappings using measures, we introduce a space-time lifting so that the input tokens are of the form
{xi, ti}ni=1, where ti ∈ [0, 1]. For instance, assuming an upper bound, N , on the number of tokens,
one can use ti = i/N , but it is also possible to assume that the ti are positioned arbitrarily in [0, 1],
which enables considering an arbitrarily large (and even infinite) number of tokens.

We thus let the context be encoded as a space-time measure µ ∈ P(Rdtok × [0, 1]). Similarly to
Castin et al. (2024, Definition 2.6), we introduced the in-context map, ∀(x, t) ∈ Rdtok × [0, 1],

Γθ(µ, x, t) := x+

H∑
h=1

Wh

∫ exp
(

1√
k
⟨Qhx,Khy⟩

)
1[0,t](r)∫

exp
(

1√
k
⟨Qhx,Khz⟩

)
1[0,t](s) dµ(z, s)

V hy dµ(y, r), (12)

where 1[0,t](s) is a masking function that is 1 if 0 ≤ s ≤ t and 0 otherwise. For a finite number
of tokens, using a discrete measure, µ = 1

n

∑n
i=1 δ(xi,i/n), one retrieves the initial definition in (3)

in the masked case. The space-time lifting can incorporate positional information, however, recent
positional encoding methods, such as Rotary Positional Embedding (RoPE) (Kazemnejad et al.,
2024), are not included in the current formulation. This extension is left for future work.

Composition of in-context masked measure-theoretic mappings. The composition rule in the
masked setting is similar to the one in the unmasked setting (cf. (10)), except that the time position
of the token is kept unchanged while the push forward acts in space,

(Γ2 ⋄ Γ1)(µ, x, t) := Γ2(µ1,Γ1(µ, x, t), t), where µ1 := (Γ1(µ), IdR)♯µ. (13)

Here, (Γ1(µ), IdR) : (x, t) ∈ Rdtok+1 → (Γ1(µ)(x, t), t) ∈ Rdtok+1 (the time is kept unchanged).
Equipped with this definition, one retrieves the composition rule in (6) when the measure µ is dis-
crete.
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3 UNIVERSALITY IN THE UNMASKED CASE

3.1 STATEMENT OF THE RESULT AND DISCUSSION

Our first main result is the following universal approximation theorem for unmasked in-context
mappings.

Theorem 1. Let Ω ⊂ Rd be a compact set and Λ⋆ : P(Ω)× Ω → Rd′
be continuous, where P(Ω)

is endowed with the weak∗ topology. Then for all ε > 0, there exist L and parameters (θℓ, ξℓ)Lℓ=1,
such that

∀(µ, x) ∈ P(Ω)× Ω, |FξL ⋄ ΓθL ⋄ . . . ⋄ Fξ1 ⋄ Γθ1(µ, x)− Λ⋆(µ, x)| ≤ ε,

with dtok(θℓ) ≤ d+ 3d′, dhead(θℓ) = k(θℓ) = 1, H(θℓ) ≤ d′.

Appendix D demonstrates that this result can be applied to two key settings: permutation-invariant
mappings over a fixed number of tokens and in-context learning of regression operators.

The two strengths of the result above are (i) the approximating architecture performs the approxi-
mation independently of n (it even works for an infinite number of tokens), and (ii) the number of
heads and the embedding dimension do not depend on ε. Moreover, its proof technique is notable,
particularly because, unlike classical MLPs with cosine activation functions, shallow attention ar-
chitectures lack an algebraic structure as these cannot be multiplied. To address this, we rely on
depth to accommodate this limitation.

A weakness is that the theorem is “non-quantitative”, meaning that that we have no explicit control
over the dependency of the number of MLP parameters ξℓ on ε. A limitation of our proof technique
is that the number of heads grows proportionally to the output dimension while each head only
outputs a scalar dhead(θℓ) = 1. Obtaining a better balance between these two parameters is an
interesting problem. As explained in the proof, these MLPs approximate a real-valued squaring
operator R ∋ a 7→ a2, so we expect this dependency to be well-behaved in common situations;
however, our construction does not provide any a priori bound on how the magnitude of the tokens
grows through the layers. The main hypothesis of Theorem 1 is that the underlying map, Λ⋆, is
a continuous map for the weak∗ topology over measures (see Section 1.2 for some background).
However, this setting might not be a proper one for conducting further quantitative studies; we leave
these for future work.

3.2 PROOF OF THEOREM 1

We first consider “elementary” in-context mappings, which map (x, µ) to a real variable

γλ(µ, x) := ⟨x, a⟩+ b+

∫
ec(⟨x, a⟩+b)(⟨y, a⟩+b)v (⟨a, y⟩+ b)∫

ec(⟨x, a⟩+b)(⟨z, a⟩+b)dµ(z)
dµ(y), (14)

where λ := (a, b, c, v) ∈ Rd × R× R× R. These elementary mappings are built by composing an
affine scalar-valued MLP with a single-head attention (with skip connection) as in (9), operating in
1-D. Indeed, defining Fξ(x) = ⟨a, x⟩+ b ∈ R as an affine MLP, where ξ = (a, b), we have

γλ(µ, x) = (Γθ ⋄ Fξ)(µ, x),

where θ = (k, q, v) ∈ R3 (recalling that this attention operates in 1-D), and we let c = qk.

We now define A, the algebra spanned by these elementary functions:

A :=
{
P(Ω)× Ω ∋ (µ, x) 7→

N∑
n=1

γλ1,n
(µ, x)⊙ · · · ⊙ γλT,n

(µ, x) ∈ R : N,T ∈ N
}
.

The first main ingredient of the proof is to show that this algebra is dense. Elements of this algebra
are sums of products of elementary functions, which are often referred to as “cylindrical functions”.
Proposition 1. A is dense in the space of (weak∗ × ℓ2)-continuous functions from P(Ω)×Ω to R.

Proof. We apply the Stone-Weierstrass theorem. First, we note that P(Ω) × Ω is compact for the
(weak∗ × ℓ2) topology (Aliprantis & Border, 2006, Theorem 15.11). We then check the three key
hypotheses needed to apply the Stone-Weierstrass theorem:
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1. The functions γλ are continuous because the denominator
∫
ec(⟨x, a⟩+b)(⟨z, a⟩+b)dµ(z) in

the elementary mapping is not always zero for any µ ∈ P(Ω) and x ∈ Ω.

2. When setting a = 0, b = v = 1, one has that γλ(µ, x) = 1 is the constant function.

3. We need to show that the set (γλ)λ separates points, which is more challenging.

For the last one, we need to show that if

∀λ, γλ(µ, x) = γλ(µ
′, x′), (15)

then (µ, x) = (µ′, x′). First setting v = 0, this implies that ⟨x, a⟩ = ⟨x′, a⟩ for all a ∈ Rd and,
hence, x = x′. Then, setting b = 1− ⟨a, x⟩, (15) reads L(µ)(a, c) = L(µ′)(a, c) where we defined
a generalized Laplace-like transform

L(µ)(a, c) :=

∫
ec⟨a, y⟩⟨a, y⟩∫
ec⟨a, z⟩ dµ(z)

dµ(y). (16)

We conclude that µ = µ′ using the following key lemma.

Lemma 1. The map µ 7→ L(µ) defined in (16) is injective.

See Appendix B.1 for a detailed proof. To approximate vector-valued in-context mappings, we use
the previous algebra of cylindrical functions along each dimension. Since the elementary mapping,
γλ, is built by the composing an affine MLP and single-head attention, we arrive at the following
lemma.

Lemma 2. For any ε > 0, there exist T,N ∈ N and (θ̃t,n, ξ̃t,n)t∈[T ],n∈[N ] such that

∀(µ, x) ∈ P(Ω)× Ω, |G(µ, x)− Λ⋆(µ, x)| ≤ ε,

where G(µ, x) :=

N∑
n=1

(Γθ̃1,n
⋄ Fξ̃1,n

)(µ, x)⊙ · · · ⊙ (Γθ̃T,n
⋄ Fξ̃T,n

)(µ, x), (17)

with dtok(θ̃t,n) = d′, dhead(θ̃t,n) = k(θ̃t,n) = 1, H(θ̃t,n) = d′.

See Appendix B.2 for the details of the proof. We finally need to approximate G in (17) by a
deep transformer of the form of (7). To do that, we furthermore approximate the component-wise
multiplication maps, (x, y) ∈ R2d′ 7→ x⊙ y ∈ Rd′

, in (17) by some MLPs. This way, we obtain the
following lemma.

Lemma 3. For any ε > 0, there exist L and parameters (θℓ, ξℓ)Lℓ=1, such that

∀(µ, x) ∈ P(Ω)× Ω, |G(µ, x)− FξL ⋄ ΓθL ⋄ . . . ⋄ Fξ1 ⋄ Γθ1(µ, x)| ≤ ε,

with dtok(θℓ) ≤ d+ 3d′, dhead(θℓ) = k(θℓ) = 1, H(θℓ) ≤ d′.

See Appendix B.3 for a detailed proof.

4 UNIVERSALITY IN THE MASKED CASE

4.1 CAUSAL MAPS, LIPSCHITZ CONTEXTS, AND MAIN RESULT

As before, Ω ⊂ Rd is a compact set, and we define Ω̃ := Ω × [0, 1] as the space-time domain.
Throughout this section, µ̄ ∈ P([0, 1]) is the marginal with respect to only the time variable of some
space-time measure, µ ∈ P(Ω̃), i.e.,

µ̄ := P♯µ where P : Ω̃ ∋ (x, t) 7→ t ∈ [0, 1]. (18)

Approximation in the masked setting is more subtle than in the unmasked setting because causal
attentions are typically less regular due to the masking. To cope with this difficulty, we impose
additional smoothness constraints on the context, which still allow for an arbitrary number of tokens.

7



Published as a conference paper at ICLR 2025

Definition 1 (Lipschitz contexts). A map t ∈ [0, 1] 7→ µ(·|t) ∈ P(Ω) is C-Lipschitz if

∀(s, t) ∈ [0, 1]2, W2(µ(·|s), µ(·|t)) ≤ C|s− t|.

The set of space-time C-Lipschitz measures is

LipC(Ω̃) := {µ ∈ P(Ω̃) : ∃µ(·|t) s.t. µ(x, s) = µ(x|s)µ̄(s) and µ(·|t) is C-Lipschitz}.

The conditional measure t 7→ µ(·|t) ∈ P(Ω) is any valid disintegration of µ against the marginal
µ̄, and must be C-Lipschitz. We also define, ∀σ ∈ (0, 1),

LipσC(Ω̃) := {µ ∈ LipC(Ω̃) : µ̄({0}) ≥ σ}.

It is worth noting that these conditions are automatically satisfied by a discrete measure, µ =
1
n

∑n
i=1 δ(xi,ti), with distinct times δ := mini ̸=j |ti − tj | > 0 (using C = Radius(Ω)/δ). More

generally, if t ∈ [0, 1] → ϕ(t) ∈ Ω is C-Lipschitz and ν ∈ P([0, 1]), then µ = ϕ♯ν ∈ LipC(Ω̃).

Masked attention can be conveniently re-expressed as operating over masked contexts which are
defined as follows.
Definition 2 (Masked measure). For µ ∈ LipσC(Ω̃), the masked probability measure µt ∈ LipσC(Ω̃)
is defined as

µt :=
1[0,t]

µ̄([0, t])
· µ. (19)

Thanks to µ ∈ LipσC(Ω̃), where the starting point of µ̄ is fixed as 0 (i.e., 0 ∈ supp(µ̄)), the masked
probability measure µt is well-defined when t ∈ (0, 1]. We note that we can define µt at t = 0 as
the limit (in the weak∗ topology), and such a limit exists (See Lemma 10). Thus, the map [0, 1] ∋
t 7→ µt ∈ LipσC(Ω̃) is continuous (for the weak∗ topology).

In the masked setting, the aim is to approximate causal mappings, defined as follows, which are
maps where the output of time t only depends on tokens with smaller times.
Definition 3 (Causal identifiable map). A space-time in-context map Λ is said to be causal if

∀(µ, x, t) ∈ LipσC(Ω̃)× Ω̃, Λ(µ, x, t) = Λ(µt, x, t). (20)

Such a map Λ is said to be identifiable if for any context µ ∈ LipσC(Ω̃),

µt = µt′ ⇒ Λ(µt, ·, t) = Λ(µt′ , ·, t′). (21)

By the construction, the masked attention map Γθ, defined in (12), is a causal identifiable in-context
map (See Lemma 11). Since the composition of such maps preserves both causality and identifia-
bility (see Lemma 12), a deep transformer, formed by composing of causal identifiable in-context
maps, remains these properties.

The following theorem mimics Theorem 1, but is restricted to approximating on Lipschitz contexts
to cope with the causality constraint.

Theorem 2. Let Λ⋆ be a continuous (where LipσC(Ω̃) is endowed with the weak∗ topology) and
causal identifiable in-context mapping. Then, for all ε > 0, there exist L and parameters (θℓ, ξℓ)Lℓ=1
such that

∀(µ, x, t) ∈ LipσC(Ω̃)× Ω̃, |FξL ⋄ ΓθL ⋄ . . . ⋄ Fξ1 ⋄ Γθ1(µ, x, t)− Λ⋆(µ, x, t)| ≤ ε,

with dtok(θℓ) ≤ d+ 3d′, dhead(θℓ) = k(θℓ) = 1, H(θℓ) ≤ d′.
Remark 1 (Sharpness of the identifiability and Lipschitz hypotheses). The masked approximation
in Theorem 2 shares the same conclusion as the unmasked Theorem 1, but it requires stronger
assumptions. In particular, the map Λ⋆ is assumed to be identifiable. This hypothesis is sharp and
cannot be weakened: transformers define identifiable maps, and as proved in Lemma 13 identifiable
maps can only approximate uniformly identifiable maps. Identifiability is also crucial since our proof
technique involves recasting the approximation over (µ, x, t) as an approximation over a reduced
space (µt, x). Another important assumption is that we restrict our approximation to Lipschitz
contexts. This limitation is essential for ensuring that the set of masked contexts µt is compact,
which allows us to apply the Stone-Weierstrass theorem.
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Remark 2 (Fixing the time marginal). We impose that contexts have Dirac masses at 0, namely
µ̄({0}) ≥ σ. While this is not restrictive for discrete measures, this prevents for instance measures
with density with respect to Lebesgues. It is possible to lift this constraint, and instead impose that
the time marginal µ̄ is fixed, i.e. replace the set LipσC(Ω̃) by {µ ∈ LipC(Ω̃) : µ̄ = ν} for any
ν ∈ P([0, 1]) satisfying 0 ∈ supp(ν). One can check that the proof of Theorem 2 carries over to
this setting with minor modifications.

4.2 PROOF OF THEOREM 2

To translate into the setting that can exploit the Stone-Weierstrass theorem, we first introduce the
following operation, which can be defined for any probability measure.
Definition 4 (Reduced mapping). For Λ : P(Ω̃) × Ω̃ → Rd′

, we define the reduced map Λ̄, which
takes two argument (µ, x), as

∀(µ, x) ∈ P(Ω̃)× Ω̃, Λ̄(µ, x) := Λ(µ, x, e(µ̄)),

where e(µ̄) is the end point of supp(µ̄), that is, e(µ̄) := max{r ∈ supp(µ̄)} ∈ [0, 1].

We introduce the reduced space on which we consider the approximation,

X σ
C := {(µt, x) : µ ∈ LipσC(Ω̃), x ∈ Ω, t ∈ [0, 1]}.

Lemma 4. Let Λ : LipσC(Ω̃) × Ω̃ → Rd′
be a causal identifiable in-context mapping defined in

Definition 3. Then the following holds true.

(i) For any (µ, x, t) ∈ LipσC(Ω̃)× Ω̃, Λ(µ, x, t) = Λ̄(µt, x).

(ii) If Λ is continuous, then the reduced map of X σ
C ∋ (µt, x) 7→ Λ̄(µt, x) is (weak∗ × ℓ2)-

continuous.

See Appendix C.2 for details of the proof. As the target map Λ⋆ is a continuous and causal iden-
tifiable in-context mapping, by applying Lemma 4, Λ⋆ has the form (i), and is continuous on X σ

C .
Also, the masked attention map Γθ holds the same properties (See Lemma 11). Thus, it suffices to
show that the following proposition.
Proposition 2. For all ε > 0, there exist L and parameters (θℓ, ξℓ)Lℓ=1 such that

∀(µt, x) ∈ X σ
C , |FξL ⋄ Γ̄θL ⋄ . . . ⋄ Fξ1 ⋄ Γ̄θ1(µt, x)− Λ̄⋆(µt, x)| ≤ ε,

with dtok(θℓ) ≤ d+ 3d′, dhead(θℓ) = k(θℓ) = 1, H(θℓ) ≤ d′.

The proof of Proposition 2 is basically the same as in the unmasked case, just replacing the argu-
ments for µ ∈ P(Ω) with that for µt ∈ LipσC(Ω̃). For the application of the Stone-Weierstrass
theorem, we need to check the compactness of X σ

C , which is not obvious. Thus, we show that
following lemma.
Lemma 5. X σ

C is compact for the (weak∗ × ℓ2) topology.

Sketch of proof. Assume that µn ∈ LipσC(Ω̃) and (xn, tn) ∈ Ω̃. We denote by Pσ([0, 1]) := {ν ∈
P([0, 1]) : ν({0}) ≥ σ}, and µ̄n ∈ Pσ([0, 1]). As Pσ([0, 1]) and Ω̃ are compact, there exits
µ̄ ∈ Pσ([0, 1]) and (x, t) ∈ Ω̃ such that (if necessary, re-choosing a subsequence) µ̄n ⇀∗ µ̄
and (xn, tn) → (x, t). Since [0, 1] ∋ s 7→ µn(·|s) ∈ P(Ω) is C-Lipschitz, applying the general
Arzelà–Ascoli theorem (see e.g., Kelley (2017, Chapter 7, Theorem 17)), there exists µ(·|s) ∈ P(Ω)
such that (if necessary, re-choosing a subsequence)

sup
s∈[0,1]

W2(µn(·|s), µ(·|s)) → 0 as n → ∞.

Thus, we define by µ := µ(·|s)µ̄(s) which belongs to LipσC(Ω̃). Using this convergence and the fact
that the start points of µ̄n, µ̄ ∈ Pσ([0, 1]) are always fixed at t = 0, we can prove the convergence
of the masked probability measures, i.e.,

(µn)tn ⇀∗ µt as n → ∞.

The non-obvious situation is when tn > 0 and t = 0 since the masked probability measure µt is
differently defined on t = 0 or t ∈ (0, 1]. However, this can be solved by the continuity of the map
[0, 1] ∋ t 7→ µt ∈ LipσC(Ω̃) (see Lemma 10). See Appendix C.3 for more details of the proof.
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CONCLUSION AND DISCUSSION

In this work, we have presented a unified analysis of the expressivity of both unmasked and masked
transformers in settings with an arbitrarily large number of tokens. A limitation of our method is that
it is not quantitative. Using, for instance, the Wasserstein distance between token distributions could
be a way to impose smoothness on the map to obtain quantitative bounds. Our proof relies on the
approximation of the map along each dimension and the use of a commuting architecture (the trans-
former layers are multiplied together to obtain the output). This results in a growth of the number of
heads proportional to the dimension. Lowering this dependency would require the development of
new proof techniques beyond the use of the Stone-Weierstrass theorem. It is important to note that
universality results like ours do not directly translate into conclusions about the learning capabilities
of transformers. However, our proof techniques, which leverage ideas from optimal transport, share
similarities with those used in the analysis of two-layer MLPs (Chizat & Bach, 2018). Thus, we
believe that future work could build on this approach to investigate both convergence properties of
the training of transformers. We also leave extending our approach to more recent positional en-
codings, such as Rotary Positional Embedding (RoPE) (Kazemnejad et al., 2024), for future work.
RoPE modifies all attention layers to account for relative positional information, which would re-
quire slight adjustments to the proof to accommodate the different formulas.
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APPENDIX

A BASIC NOTIONS

In this section, we briefly review basic notations used in the main text.

Let Ω ⊂ Rd be a compact domain. For T : Ω ⊂ Rd → Ω′ ⊂ Rd′
being a measurable map, the

push-forward T♯µ ∈ P(Ω′) of µ ∈ P(Ω) is given by

∀A ⊂ Ω′, T♯µ(A) := T
(
f−1(A)

)
.

The push-forward operator, T♯, operates on discrete measures by simply displacing their supports,

T♯

( 1
n

n∑
i=1

δxi

)
:=

1

n

n∑
i=1

δT (xi).

For a general measure, ν = T♯µ is defined by a change of variables in integration, i.e.,

∀g ∈ C(Ω′),

∫
Ω′

g(y) dν(y) :=

∫
Ω

g(T (x)) dµ(x). (22)

We employ the weak∗ topology on P(Ω). This induces the following notion of convergence of
sequences:

µk ⇀∗ µ ⇔
(
∀f ∈ C(Ω),

∫
f(x) dµk(x) →

∫
f(x) dµ(x)

)
.

Intuitively, this corresponds to a “soft” notion of convergence where the support of µk approaches
that of µ.

In the special case of discrete measures, with a fixed number n of points, this corresponds, up to
relabeling of the points, to the usual convergence of points in finite dimensions:( 1

n

n∑
i=1

δxk
i
⇀∗ 1

n

n∑
i=1

δxi

)
⇔

(
Xk = (xi,k)i ∈ Rd×n → X = (xi)i ∈ Rd×n

)
.

It is possible to metrize this weak∗ topology using the Wasserstein Optimal Transport distance,
which is defined, for 1 ≤ p < +∞, as

Wp(µ, ν)
p := min

π∈P(Ω2)

{∫
∥x− y∥p dπ(x, y) : π1 = µ, π2 = ν

}
,

where πi = (Pi)♯π are the marginals of π with P1(x, y) = x and P2(x, y) = y. One has

µk ⇀∗ µ ⇔ Wp(µk, µ) → 0,

see e.g., Santambrogio (2015, Theorem 5.10). This Wasserstein distance is used in the masked case
to impose a Lipschitz regularity with respect to the time of the contexts.

B PROOFS IN SECTION 3

B.1 PROOF OF LEMMA 1

First, we show the one dimensional case of Lemma 1.
Lemma 6. Let Ω ⊂ R be a compact set, and let µ, ν ∈ P(Ω). Then,

L1(µ)(c) = L1(ν)(c), ∀c ∈ R, ⇒ µ = ν.

where, for k ∈ N,

Lk(µ)(c) :=

∫
ecyyk dµ(y)∫
ecz dµ(z)

.
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Proof. One has
Lk(µ)

′(c) = Lk+1(µ)(c)− Lk(µ)(c)L1(µ)(c).

Hence, by recursion, we have that

L1(µ)(c) = L1(ν)(c), ∀c ∈ R, ⇒ Lk(µ)(c) = Lk(ν)(c), ∀c ∈ R, ∀k ≥ 1,

Evaluating the equation at c = 0, we obtain that

Lk(µ)(0) = Lk(ν)(0), ∀k ≥ 1 ⇔ ∀k,
∫

yk dµ(y) =

∫
yk dν(y),

which is equivalent to µ = ν.

Using Lemma 6, we arrive at the following lemma.
Lemma 7 (Lemma 1 in the main text). Let Ω ⊂ Rd be a compact set, and let µ, ν ∈ P(Ω). Then,

L(µ)(a, c) = L(ν)(a, c), ∀a ∈ Rd,∀c ∈ R, ⇒ µ = ν.

where

L(µ)(a, c) :=

∫
exp(c⟨a, y⟩)⟨a, y⟩dµ(y)∫

exp(c⟨a, z⟩) dµ(z)
.

Proof. We define
∀e ∈ Sd, µe := (Pe)♯µ,

where Sd is the d-dimensional sphere, and Pe(x) = ⟨x, e⟩ is the projection on e. We see that

L(µ)(e, c) =

∫
exp(c⟨e, y⟩)⟨e, y⟩dµ(y)∫

exp(c⟨e, z⟩) dµ(z)
=

∫
ecssdµe(s)∫
ecr dµe(r)

.

By Lemma 6, we can show that
∀e, (Pe)♯µ = (Pe)♯ν,

which implies that, by the injectivity of the Radon transform (see e.g., Boman & Lindskog (2009,
Theorem A)),

µ = ν.

B.2 PROOF OF LEMMA 2

We write
Λ⋆(µ, x) = (Λ⋆

1(µ, x), · · · ,Λ⋆
d′(µ, x)) ,

where Λ⋆
h : P(Ω)× Ω → R, so that

Λ⋆(µ, x) =

d′∑
h=1

Λ⋆
h(µ, x)eh,

where (eh)h∈[d′] is the standard basis in Rd′
. For each h = 1, . . . , d′, we apply Proposition 1 to Λ⋆

h

and conclude that there exist T,N ∈ N and (λh
t,n)t∈[T ],n∈[N ] such that

∀(µ, x) ∈ P(Ω)× Ω,

∣∣∣∣∣Λ⋆
h(µ, x)−

N∑
n=1

γλh
1,n

(µ, x)⊙ · · · ⊙ γλh
T,n

(µ, x)

∣∣∣∣∣ ≤ ε√
d′
.

This implies that

∀(µ, x) ∈ P(Ω)× Ω,

∣∣∣∣∣∣Λ⋆(µ, x)−
d′∑

h=1

[
N∑

n=1

γλh
1,n

(µ, x)⊙ · · · ⊙ γλh
T,n

(µ, x)

]
eh

∣∣∣∣∣∣
2

≤
d′∑

h=1

∣∣∣∣∣Λ⋆
h(µ, x)−

N∑
n=1

γλh
1,n

(µ, x)⊙ · · · ⊙ γλh
T,n

(µ, x)

∣∣∣∣∣
2

≤ ε2. (23)
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Here, we wrote
λh
t,n = (aht,n, b

h
t,n, c

h
t,n, v

h
t,n) ∈ Rd × R× R× R.

We introduce

G(µ, x) :=

d′∑
h=1

[
N∑

n=1

γλh
1,n

(µ, x)⊙ · · · ⊙ γλh
T,n

(µ, x)

]
eh,

or

G(µ, x) =

N∑
n=1

γ̄λ1,n
(µ, x)⊙ · · · ⊙ γ̄λT,n

(µ, x), (24)

in which
γ̄λt,n

(µ, x) :=
(
γλ1

t,n
(µ, x), ..., γλd′

t,n
(µ, x)

)
∈ Rd′

.

We define self-attentions by

Γθ̃t,n
(µ, x) := x+

d′∑
h=1

W̃h
t,n

∫ exp
(
⟨Q̃h

t,nx, K̃
h
t,ny⟩

)
∫
exp

(
⟨Q̃h

t,nx, K̃
h
t,nz⟩

)
dµ(z)

Ṽ h
t,ny dµ(y), x ∈ Rd′

, (25)

where

θ̃t,n := (W̃h
t,n, Ṽ

h
t,n, Q̃

h
t,n, K̃

h
t,n)h=1,...,d′ ⊂ Rd′×1 × R1×d′

× R1×d′
× R1×d′

,

i.e., dtok(θ̃t,n) = d′, dhead(θ̃t,n) = k(θ̃t,n) = 1 and

W̃h
t,n = (0, ..., 0, 1︸︷︷︸

h−th

, 0, ..., 0) = eh,

Ṽ h
t,n = (0, ..., 0, vht,n︸︷︷︸

h−th

, 0..., 0), Q̃h
t,n = (0, ..., 0, cht,n︸︷︷︸

h−th

, 0..., 0), K̃h
t,n = (0, ..., 0, 1︸︷︷︸

h−th

, 0..., 0).

We define affine transforms, Fξ̃t,n
: Rd → Rd′

, according to

Fξ̃t,n
(x) := At,nx+ bt,n, (26)

where ξ̃t,n = (At,n, bt,n) ∈ Rd′×d × Rd′
in which

At,n = (a1t,n, ..., a
d′

t,n), bt,n = (b1t,n, ..., b
d′

t,n).

Then we have the composition,

Γθ̃t,n
⋄ Fξ̃t,n

(µ, x) = Γθ̃t,n
((Fξ̃t,n

)♯µ, Fξ̃t,n
(x)) = At,nx+ bt,n (27)

+

d′∑
h=1

W̃h
t,n

∫ exp
(
⟨Q̃h

t,n(At,nx+ bt,n), K̃
h
t,n(At,ny + bt,n)⟩

)
∫
exp

(
⟨Q̃h

t,n(At,nx+ bt,n), K̃h
t,n(At,nz + bt,n)⟩

)
dµ(z)

× Ṽ h
t,n(At,ny + bt,n) dµ(y) =

d′∑
h=1

[
⟨aht,n, x⟩+ bht,n

+

∫ exp
(
(⟨aht,n, x⟩+ bht,n)c

h
t,n(⟨aht,n, y⟩+ bht,n)

)
∫
exp

(
(⟨aht,n, x⟩+ bht,n)c

h
t,n(⟨aht,n, z⟩+ bht,n)

)
dµ(z)

vht,n(⟨aht,n, y⟩+ bht,n) dµ(y)

]
eh

=

d′∑
h=1

γλh
t,n

(µ, x)eh = γ̄λt,n
(µ, x).

With (24), we find that

G(µ, x) =

N∑
n=1

(Γθ̃1,n
⋄ Fξ̃1,n

)(µ, x)⊙ · · · ⊙ (Γθ̃T,n
⋄ Fξ̃T,n

)(µ, x). (28)

Therefore, with the estimate in (23), we obtain the statement in Lemma 2.
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B.3 PROOF OF LEMMA 3

We first establish the following lemma.

Lemma 8. For any ε > 0, there exists an MLP Φ : R2d′ → Rd′
such that

∀(µ, x) ∈ P(Ω)× Ω, |G(µ, x)−GΦ(µ, x)| ≤ ε,

where GΦ(µ, x) :=

N∑
n=1

Φ
(
(Γθ̃T,n

⋄ Fξ̃T,n
)(µ, x),Φ

(
(Γθ̃T−1,n

⋄ Fξ̃T−1,n
)(µ, x),

· · ·Φ
(
(Γθ̃2,n

⋄ Fξ̃2,n
)(µ, x),Φ

(
(Γθ̃1,n

⋄ Fξ̃1,n
)(µ, x),1d′

))))
.

Proof. We note that

(Γθ̃1,n
⋄ Fξ̃1,n

)(µ, x)⊙ · · · ⊙ (Γθ̃T,n
⋄ Fξ̃T,n

)(µ, x)

= (Γθ̃T,n
⋄ Fξ̃T,n

)(µ, x)⊙
(
(Γθ̃T−1,n

⋄ Fξ̃T−1,n
)(µ, x)⊙ · · ·

⊙
(
(Γθ̃2,n

⋄ Fξ̃2,n
)(µ, x)⊙

(
Γθ̃1,n

⋄ Fξ̃1,n
)(µ, x)⊙ 1d′

)))
.

Because the component-wise multiplication map (x, y) ∈ R2d′ 7→ x ⊙ y ∈ Rd′
is continuous, by

the universality of MLPs, for any ε > 0 and R > 0, there exists an MLP Φ : R2d′ → Rd′
, such that

∀(x, y) ∈ BR2d′ (0, R), |x⊙ y − Φ(x, y)| ≤ ε. (29)

Since Ω ⊂ Rd is compact then 0 ≤ CΩ := supx∈Ω ∥x∥2 is finite. Thus, using (27), we obtain the
estimate,

∣∣∣(Γθ̃t,n
⋄ Fξ̃t,n

)(µ, x)
∣∣∣ ≤ ∥At,n∥2CΩ + ∥bt,n∥2 +

d′∑
h=1

(∥At,n∥2CΩ + ∥bt,n∥2) ∥W̃h
t,nṼ

h
t,n∥2

≤ max
t∈[T ],n∈[N ]

(∥At,n∥2CΩ + ∥bt,n∥2)(1 +
d′∑

h=1

∥W̃h
t,nṼ

h
t,n∥2)


=:CΓ̃ for all (µ, x) ∈ P(Ω)× Ω, (30)

where the constant, CΓ̃ > 0, depends on Ω, W̃h
t,n, Ṽ

h
t,n, At,n, bt,n, but is independent of t, n, µ and

x. Thus, using the universality in (29), choosing a large radius R > 0 depending on the constant
CΓ̃ > 0, we can show that∣∣∣∣∣(Γθ̃1,n

⋄ Fξ̃1,n
)(µ, x)⊙ · · · ⊙ (Γθ̃T,n

⋄ Fξ̃T,n
)(µ, x)

− Φ
(
(Γθ̃T,n

⋄ Fξ̃T,n
)(µ, x),Φ

(
(Γθ̃T−1,n

⋄ Fξ̃T−1,n
)(µ, x),

· · ·Φ
(
(Γθ̃2,n

⋄ Fξ̃2,n
)(µ, x),Φ

(
(Γθ̃1,n

⋄ Fξ̃1,n
)(µ, x),1d′

))))∣∣∣∣∣ ≤ ε

N
.

Upon summing from n = 1, . . . , N and using the form (17), we complete the proof of Lemma 8.

Remark 3. (The challenge to derive quantitative estimates.) The key is to approximate and cap-
ture the mentioned multiplicity by MLPs, for which quantitative estimates have been studied, e.g.,
Elbrächter et al. (2022, Lemma 6.2), which is a variant of Yarotsky (2017, Proposition 2). However,
the depth and width of MLPs depend on the bound of input variables. Specifically, an existential Φ in
the above depends on the bound CΓ̃ (see (30)), which in turn depends on parameters in Γθ̃t,n

⋄Fξ̃t,n

that are chosen to approximate Γ∗ within ε through the application of the Stone-Weierstrass theorem
(see Proposition 1). Thus, providing the quantitative estimate for the MLP, Φ, is challenging.
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Finally in this appendix we prove, by construction, the following result.

Lemma 9. Let Φ : R2d′ → Rd′
be an MLP. There exist ξ0, (ξt,n)t∈[T ],n∈[N ], ξ∗, and θ0,

(θt,n)t∈[T ],n∈[N ], θ∗ such that

∀(µ, x) ∈ P(Ω)× Ω, GΦ(µ, x) = Fξ∗ ⋄ Γθ∗ ⋄
(
⋄Nn=1 ⋄Tt=1 Fξt,n ⋄ Γθt,n

)
⋄ Fξ0 ⋄ Γθ0(µ, x).

with following sizes:

dtok(θ0) = d, dhead(θ0) = k(θ0) = H(θ0) = 1,

dtok(θt,n) = d+ 3d′, dhead(θt,n) = k(θt,n) = 1, H(θt,n) = d′,

dtok(θ∗) = d+ 3d′, dhead(θ∗) = k(θ∗) = H(θ∗) = 1.

Proof. The proof is based on the following scheme:

x
Fξ0

⋄Γθ0−−−−−−−→
[Step A]


x

F
ξ̃1,1

(x)

φ1,1(x)
f1(x)


Fξ1,1

⋄Γθ1,1−−−−−−−−−−→
[Step B]


x

F
ξ̃2,1

(x)

φ2,1(x)
f1(x)

 Fξ2,1
⋄Γθ2,1−−−−−−−−−−→

[Step B]
· · ·

FξT−1,1
⋄ΓθT−1,1−−−−−−−−−−−−−−−→

[Step B]


x

F
ξ̃T,1

(x)

φT,1(x)
f1(x)

 FξT,1
⋄ΓθT,1−−−−−−−−−−→

[Step C]


x

F
ξ̃2,1

(x)

φ1,2(x)
f2(x)


Fξ1,2

⋄Γθ1,2−−−−−−−−−−→
[Step B]


x

F
ξ̃2,2

(x)

φ2,2(x)
f2(x)

 Fξ2,2
⋄Γθ2,2−−−−−−−−−−→

[Step B]
· · ·

FξT−1,2
⋄ΓθT−1,2−−−−−−−−−−−−−−−→

[Step B]


x

F
ξ̃T,2

(x)

φT,2(x)
f2(x)

 FξT,2
⋄ΓθT,2−−−−−−−−−−→

[Step C]


x

F
ξ̃1,3

(x)

φ1,3(x)
f3(x)


.
.
.

Fξ1,N
⋄Γθ1,N−−−−−−−−−−−→

[Step B]


x

F
ξ̃2,N

(x)

φ2,N (x)
fN (x)

 Fξ2,N
⋄Γθ2,N−−−−−−−−−−−→

[Step B]
· · ·

FξT−1,N
⋄ΓθT−1,N−−−−−−−−−−−−−−−−→

[Step B]


x

F
ξ̃T,N

(x)

φT,N (x)
fN (x)

 FξT,N
⋄ΓθT,N−−−−−−−−−−−−→

[Step C]


x

F
ξ̃1,N+1

(x)

φ1,N+1(x)
fN+1(x) =


Fξ∗⋄Γθ∗−−−−−−−→

[Step D]
fN+1(x) = GΦ(µ, x)

where φt,n : Rd → Rd′
is given by

φt,n(x) :=


Φ
(
(Γθ̃t,n

⋄ Fξ̃t,n
)(µ, x),Φ

(
(Γθ̃t−1,n

⋄ Fξ̃t−1,n
)(µ, x)

· · ·Φ
(
(Γθ̃2,n

⋄ Fξ̃2,n
)(µ, x),Φ

(
(Γθ̃1,n

⋄ Fξ̃1,n
)(µ, x),1d′

))))
), t ≥ 2

1d′ , t = 1

,

and fn : Rd → Rd′
by

fn(x) :=

{ ∑n−1
i=1 φT,i(x), n ≥ 2

0 n = 1
,

where Γθ̃t,n
and Fξ̃t,n

: Rd → Rd′
are the self-attention and affine maps chosen in (25) and (26),

respectively. Here, Γθ0 , Γθt,n , Γθ∗ , Fξ0 , Fξt,n and Fξ∗ will be specified below, in the following
steps:

[Step A] Let Γθ0(µ) : Rd → Rd be
Γθ0(µ, x) = x,

and let Fξ0 : Rd → Rd+3d′
be the affine transform defined by

Fξ0(x) := (x,A1,1x+ b1,1,1d′ , 0) = (x, Fξ̃1,1
(x), φ1,1(x), f1(x)).

Then we see that
Fξ0 ⋄ Γθ0(µ, x) = (x, Fξ̃1,1

(x), φ1,1(x), f1(x)),

and
µ1,1 := (Fξ0 ⋄ Γθ0(µ))♯ µ =

(
µ, (Fξ̃1,1

)♯µ, (φ1,1)♯µ, (f1)♯µ
)
.

We proceed with [Step B] in which we handle the case when n = t = 1.
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[Step B] Let t = 1, ..., T − 1 and n = 1, ..., N . We already have that(
⋄t−1
j=1Fξj,n ⋄ Γθj,n

)
⋄
(
⋄n−1
i=1 ⋄Ts=1 Fξs,i ⋄ Γθs,i

)
⋄Fξ0 ⋄Γθ0(µ, x) =

(
x, Fξ̃t,n

(x), φt,n(x), fn(x)
)
,

and

µt,n :=
((
⋄t−1
j=1Fξj,n ⋄ Γθj,n

)
⋄
(
⋄n−1
i=1 ⋄Ts=1 Fξs,i ⋄ Γθs,i

)
⋄ Fξ0 ⋄ Γθ0(µ)

)
♯
µ

=
(
µ, (Fξ̃t,n

)♯µ, (φt,n)♯µ, (fn)♯µ
)
.

When n = 1 or t = 1, the above reduces to ⋄n−1
i=1 ⋄Ts=1 Fξs,i ⋄Γθs,i = Id+3d′ or ⋄t−1

j=1Fξj,n ⋄Γθj,n =
Id+3d′ .

Let Γθt,n(µt,n) : Rd+3d′ → Rd+3d′
be given by

Γθt,n(µt,n, (x, u, p, w)) = (x, u, p, w)

+
d′∑

h=1

Wh
t,n

∫ exp
(
⟨Qh

t,n(x, u, p, w), K
h
t,n(y

′, v′, q′, z′)⟩
)

∫
exp

(
⟨Qh

t,n(x, u, p, w), K
h
t,n(y, v, q, z)⟩

)
dµt,n(y, v, q, z)

V h
t,n(y

′, v′, q′, z′) dµt,n(y
′, v′, q′, z′)

=

x, u+

d′∑
h=1

W̃h
t,n

∫ exp
(
⟨Q̃h

t,nu, K̃
h
t,nv

′⟩
)

∫
exp

(
⟨Q̃h

t,nu, K̃
h
t,nv⟩

)
dµt,n(y, v, q, z)

Ṽ h
t,nv

′ dµt,n(y
′, v′, q′, z′), p, w


=
(
x,Γθ̃t,n

((Fξ̃t,n
)♯µ, u), p, w

)
,

where x, y, y′ ∈ Rd, u, v, v′ ∈ Rd′
, p, q, q′ ∈ Rd′

, and w, z, z′ ∈ Rd′
. Here, θt,n is given by

θt,n := (Wh
t,n, V

h
t,n, Q

h
t,n,K

h
t,n)h=1,...,d′ ⊂ Rd+3d′×1 × R1×d+3d′

× R1×d+3d′
× R1×d+3d′

,

that is,
dtok(θt,n) = d+ 3d′, dhead(θt,n) = k(θt,n) = 1, H(θt,n) = d′,

and

Wh
t,n := (O, W̃h

t,n, O,O), V h
t,n := (O, Ṽ h

t,n, O,O),

Qh
t,n := (O, Q̃h

t,n, O,O), Kh
t,n := (O, K̃h

t,n, O,O).

Let Fξt,n : Rd+3d′ → Rd+3d′
be defined by

Fξt,n(x, u, p, w) = (x,At+1,nx+ bt+1,n,Φ(u, p), w) = (x, Fξ̃t+1,n
(x),Φ(u, p), w). (31)

Then we have

(⋄tj=1Fξj,n ⋄ Γθj,n) ⋄ (⋄n−1
i=1 ⋄Ts=1 Fξs,i ⋄ Γθs,i) ⋄ Fξ0 ⋄ Γθ0(µ, x)

= Fξt,n ⋄ Γθt,n ⋄ (⋄t−1
j=1Fξj,n ⋄ Γθj,n) ⋄ (⋄n−1

i=1 ⋄Ts=1 Fξs,i ⋄ Γθs,i) ⋄ Fξ0 ⋄ Γθ0(µ, x)

= Fξt,n ⋄ Γθt,n(µt,n, (x, Fξ̃t,n
(x), φt,n(x), fn(x)))

= Fξt,n(x,Γθ̃t,n
((Fξ̃t,n

)♯µ, Fξ̃t,n
(x)), φt,n(x), fn(x))

= Fξt,n(x, (Γθ̃t,n
⋄ Fξ̃t,n

)(µ, x), φt,n(x), fn(x))

=
(
x, Fξ̃t+1,n

(x), φt+1,n(x), fn(x))
)
,

and

µt+1,n :=
((
⋄tj=1Fξj,n ⋄ Γθj,n

)
⋄
(
⋄n−1
i=1 ⋄Ts=1 Fξs,i ⋄ Γθs,i

)
⋄ Fξ0 ⋄ Γθ0(µ)

)
♯
µ

=
(
µ, (Fξ̃t+1,n

)♯µ, (φt+1,n)♯µ, (fn)♯µ
)
.
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We repeat [Step B] until obtaining µT,n. Once µT,n is obtained, we proceed with [Step C].

[Step C] Let ΓθT,n
(µT,n) : Rd+3d′ → Rd+3d′

be given by

ΓθT,n
(µT,n, (x, u, p, w))

=

x, u+

d′∑
h=1

W̃h
T,n

∫ exp
(
⟨Q̃h

T,nu, K̃
h
T,nv

′⟩
)

∫
exp

(
⟨Q̃h

T,nu, K̃
h
T,nv⟩

)
dµT,n(y, v, q, z)

Ṽ h
T,nv

′ dµT,n(y
′, v′, q′, z′), p, w


=
(
x,Γθ̃T,n

((Fξ̃T,n
)♯µ, u), p, w

)
.

Let FξT,n
: Rd+3d′ → Rd+3d′

be defined by

FξT,n
(x, u, p, w) = (x,A1,n+1x+b1,n+1,1d′ , w+Φ(u, p)) = (x, Fξ̃1,n+1

(x), φ1,n+1(x), w+Φ(u, p)).

(32)

When n = N , we define by Fξ̃1,N+1
(x) := 0 and φ1,N+1 := 0 in the above. We find that

(⋄Tj=1Fξj,n ⋄ Γθj,n) ⋄ (⋄n−1
i=1 ⋄Ts=1 Fξs,i ⋄ Γθs,i) ⋄ Fξ0 ⋄ Γθ0(µ, x)

= FξT,n
(x, (Γθ̃T,n

⋄ Fθ̃T,n
)(µ, x), φT,n(x), fn(x))

=
(
x, Fξ̃1,n+1

(x), φ1,n+1(x), fn+1(x))
)
,

and

µT+1,n :=
((
⋄Tj=1Fξj,n ⋄ Γθj,n

)
⋄
(
⋄n−1
i=1 ⋄Ts=1 Fξs,i ⋄ Γθs,i

)
⋄ Fξ0 ⋄ Γθ0(µ)

)
♯
µ

=
(
µ, (Fξ̃1,n+1

)♯µ, (φ1,n+1)♯µ, (fn+1)♯µ
)
.

Denoting
µ1,n+1 := µT+1,n,

we return to [Step B], and repeat [Step B] and [Step C] until obtaining µT+1,N . Once µT+1,N is
obtained, we proceed with [Step D].

[Step D] Let Γθ∗(µT+1,N ) : Rd+3d′ → Rd+3d′
be given by

Γθ∗(µT+1,N , (x, u, p, w)) = (x, u, p, w),

and let Fξ∗ : Rd+3d′ → Rd′
be the affine transform defined by

Fξ∗(x, u, p, w) := w.

Then we conclude that

Fξ∗ ⋄ Γθ∗ ⋄
(
⋄Nn=1 ⋄Ts=1 Fξs,n ⋄ Γθs,n

)
⋄ Fξ0 ⋄ Γθ0(µ, x)

= Fξ∗ ⋄ Γθ∗

(
µT+1,N ,

(
x, Fξ̃1,N+1

(x), φ1,n+1(x), fN+1(x))
))

= fN+1(x)

=

N∑
n=1

Φ
(
(Γθ̃T,n

⋄ Fξ̃T,n
)(µ, x),Φ

(
(Γθ̃T−1,n

⋄ Fξ̃T−1,n
)(µ, x),

· · ·Φ
(
(Γθ̃2,n

⋄ Fξ̃2,n
)(µ, x),Φ

(
(Γθ̃1,n

⋄ Fξ̃1,n
)(µ, x),1d′

))))
= GΦ(µ, x).

Remark 4. Note that if the MLPs represent the identity map, such as when using ReLU activation
functions, then context-free maps Fξt,n in (31) and (32) can be represented by MLPs. If this is not
the case, it is sufficient to further approximate FξT,n

using MLPs.
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C PROOFS IN SECTION 4

C.1 BASIC PROPERTIES FOR THE MASKED CASE

Lemma 10. The map [0, 1] ∋ t 7→ µt ∈ LipσC(Ω̃) is continuous (for the weak∗ topology).

Proof. Let µ ∈ LipσC(Ω̃). We re-define the masked probability measure (including at t = 0) by

µt :=

{ 1[0,t]
µ̄([0,t]) · µ t ∈ (0, 1]

µ(·|s)δs=0 t = 0
. (33)

Thus, the continuity on t ∈ (0, 1] is obvious. We now show that as t → 0

µt ⇀
∗ µ0.

For f ∈ C(Ω̃), we see that∣∣∣∣∫ f(x, s) dµt −
∫

f(x, s) dµ0

∣∣∣∣
=

∣∣∣∣∫ f(x, s) dµ(x|s)
1[0,t](s)

µ̄([0, t])
dµ̄(s)−

∫
f(x, 0) dµ(x|0)

∣∣∣∣
=

∣∣∣∣∫ f(x, s) dµ(x|s)
1[0,t](s)

µ̄([0, t])
dµ̄(s)−

∫
f(x, 0) dµ(x|0) d

1[0,t](s)

µ̄([0, t])
dµ̄(s)

∣∣∣∣
≤
∫ ∣∣∣∣1[0,t](s)µ̄([0, t])

(F (s)− F (0))

∣∣∣∣ dµ̄(s) ≤ sup
s∈[0,t]

|F (s)− F (0)|,

where
F (s) :=

∫
f(x, s) dµ(x|s),

and s 7→ F (s) is continuous as µ ∈ LipσC(Ω̃). Thus we have, as t → 0,∫
f(x, s) dµt →

∫
f(x, s) dµ0,

which implies that
µt ⇀

∗ µ0.

Lemma 11. Let Γθ be the masked in-context map defined in (12). Then we have the following:

(a) Γθ is a causal identifiable in-context map in the sense of Definition 3.

(b) For any (µ, x, t) ∈ LipσC(Ω̃)× Ω̃,
Γθ(µ, x, t) = Γ̄θ(µt, x).

(c) The reduced map of X σ
C ∋ (µt, x) 7→ Γ̄θ(µt, x) is (weak∗ × ℓ2)-continuous.

Proof. To show (a), we observe that

Γθ(µ, x, t) = x+

∫ exp
(

1√
k
⟨Qhx,Khy⟩

)
1[0,t](r)∫

exp
(

1√
k
⟨Qhx,Khz⟩

)
1[0,t](s) dµ(z, s)

V hy dµ(y, r)

= x+

∫ exp
(

1√
k
⟨Qhx,Khy⟩

)
∫
exp

(
1√
k
⟨Qhx,Khz⟩

)
1[0,t](s)

µ̄([0,t]) dµ(z, s)
V hy

1[0,t](r)

µ̄([0, t])
dµ(y, r)

= x+

∫ exp
(

1√
k
⟨Qhx,Khy⟩

)
1[0,t](r)∫

exp
(

1√
k
⟨Qhx,Khz⟩

)
1[0,t](s) dµt(z, s)

V hy dµt(y, r) = Γθ(µt, x, t).

(34)
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This proves the causality. To show the identifiability, we assume that µt = µt′ where µ ∈ LipσC(Ω̃)
and t, t′ ∈ [0, 1]. Without loss of generality, we assume that t < t′. Then we have that µ̄ = 0 on
[t, t′], so that

Γθ(µt, x, t) = x+

∫ exp
(

1√
k
⟨Qhx,Khy⟩

)
1[0,t](r)∫

exp
(

1√
k
⟨Qhx,Khz⟩

)
1[0,t](s) dµt(z, s)

V hy dµt(y, r)

= x+

∫ exp
(

1√
k
⟨Qhx,Khy⟩

)
1[0,t](r)∫

exp
(

1√
k
⟨Qhx,Khz⟩

)
1[0,t](s) dµt′(z, s)

V hy dµt′(y, r)

= x+

∫ exp
(

1√
k
⟨Qhx,Khy⟩

)
1[0,t′](r)∫

exp
(

1√
k
⟨Qhx,Khz⟩

)
1[0,t′](s) dµt′(z, s)

V hy dµt′(y, r) = Γθ(µt′ , x, t
′).

Thus we obtain (a).

From Lemma 11 (a), Γθ is a causal identifiable in-context map in the sense of Definition 3. By
applying Lemma 4 (i), as Λ = Γθ, we obtain (b).

Using Lemma 11 (b), we find that

Γ̄θ(µt, x) = Γθ(µt, x, t)

= x+

∫ exp
(

1√
k
⟨Qhx,Khy⟩

)
1[0,t](r)∫

exp
(

1√
k
⟨Qhx,Khz⟩

)
1[0,t](s) dµt(z, s)

V hy dµt(y, r)

= x+

∫ exp
(

1√
k
⟨Qhx,Khy⟩

)
∫
exp

(
1√
k
⟨Qhx,Khz⟩

)
dµt(z, s)

V hy dµt(y, r). (35)

We can show the continuity of the map

P(Ω̃)× Ω ∋ (µ, x) 7→ x+

∫ exp
(

1√
k
⟨Qhx,Khy⟩

)
∫
exp

(
1√
k
⟨Qhx,Khz⟩

)
dµ(z, s)

V hy dµ(y, r) ∈ Rd′
,

which, in fact, follows from the continuity of the unmasked self-attention. Thus, with (35), we
obtain (c).

Lemma 12. Let Γ1 and Γ2 be causal identifiable in-context maps in the sense of Definition 3. Then,
the composition Γ2 ⋄ Γ1 in the sense of (13) is a causal identifiable in-context map.

Proof. Assume that (µ, x, t) ∈ LipσC(Ω̃)× Ω̃. We first show that

[(Γ1(µ), IdR)♯µ]t = (Γ1(µt), IdR)♯µt. (36)

Indeed, we see that for all f ∈ C(Ω̃)∫
f(x, s) d [(Γ1(µ), IdR)♯µ] (x, s) =

∫
f (Γ1(µ)(x, s), s) dµ(x, s)

=

∫
f (Γ1(µ)(x, s), s) dµ(x|s) dµ̄(s)

=

∫
f (x, s) d [Γ1(µ)(·, s)♯µ(·|s)] (x) dµ̄(s),

which obtains that
(Γ1(µ), IdR)♯µ = [Γ1(µ)(·, s)♯µ(·|s)] µ̄(s). (37)
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This implies that by using the causality of Γ1∫
f(x, s) d [(Γ1(µ), IdR)♯µ]t (x, s)

=

∫
f (x, s) d [Γ1(µ)(·, s)♯µ(·|s)] (x)

1[0,t](s)

µ̄([0, t])
dµ̄(s)

=

∫
f (Γ1(µ, x, s), s) dµ(x|s)

1[0,t](s)

µ̄([0, t])
dµ̄(s)

=

∫
f (Γ1(µs, x, s), s) dµ(x|s)

1[0,t](s)

µ̄([0, t])
dµ̄(s)

=

∫
f (Γ1(µt, x, s), s) dµ(x|s)

1[0,t](s)

µ̄([0, t])
dµ̄(s)

=

∫
f (Γ1(µt, x, s), s) dµt(x, s)

=

∫
f (x, s) d [(Γ1(µt), IdR)♯µt] (x, s),

where we have used that µs = µt when s ≤ t. This shows (36).

We see that by using the causality of Γ1 and Γ2, and (36)

Γ2 ⋄ Γ1(µ, x, t) = Γ2 ((Γ1(µ), IdR)♯µ,Γ1(µ, x, t), t)

= Γ2

(
[(Γ1(µ), IdR)♯µ]t ,Γ1(µt, x, t), t

)
= Γ2 ((Γ1(µt), IdR)♯µt,Γ1(µt, x, t), t)

= Γ2 ⋄ Γ1(µt, x, t).

These discussions apply for t ∈ (0, 1], and the case when t = 0 follows by the same argument.
Thus, we obtains the causality of Γ2 ⋄ Γ1.

Assume that µt = µt′ where µ ∈ LipσC(Ω̃) and t, t′ ∈ [0, 1]. Without loss of generality, assume that
t < t′. We have that by the identifiability of Γ1 and Γ2, and (36)

Γ2 ⋄ Γ1(µt, x, t) = Γ2 ((Γ1(µt), IdR)♯µt,Γ1(µt, x, t), t)

= Γ2 ((Γ1(µt), IdR)♯µt,Γ1(µt′ , x, t
′), t)

= Γ2

(
[(Γ1(µ), IdR)♯µ]t ,Γ1(µt′ , x, t

′), t
)

= Γ2

(
[(Γ1(µ), IdR)♯µ]t′ ,Γ1(µt′ , x, t

′), t′
)

= Γ2 ((Γ1(µt′), IdR)♯µt′ ,Γ1(µt′ , x, t
′), t′)

= Γ2 ⋄ Γ1(µt′ , x, t
′),

where we have used the following fact from (37)

[(Γ1(µ), IdR)♯µ]t = [Γ1(µ)(·, s)♯µ(·|s)]
1[0,t]

µ̄([0, t])
µ̄(s)

= [Γ1(µ)(·, s)♯µ(·|s)]
1[0,t′]

µ̄([0, t′])
µ̄(s) = [(Γ1(µ), IdR)♯µ]t′ .

These discussions apply for t ∈ (0, 1], and the case when t = 0 follows by the same argument.
Thus, we obtain the identifiability of Γ2 ⋄ Γ1.

Lemma 13. Identifiability is stable in the following sense: Let Λn be continuous and causal, identi-
fiable in-context mappings, and let Λ∗ be continuous and causal in-context mappings. Assume that,
as n → ∞,

sup
(µ,x,t)∈Lipσ

C(Ω̃)×Ω̃

|Λn(µ, x, t)− Λ∗(µ, x, t)| → 0. (38)

Then, the map Λ∗ is identifiable.
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Proof. Assume that µt = µt′ where µ ∈ LipσC(Ω̃) and t, t′ ∈ [0, 1]. As Λn(µt, x, t) = Λn(µt′ , x, t
′)

and µt, µt′ ∈ LipσC(Ω̃), we see that

|Λ∗(µt, x, t)− Λ∗(µt′ , x, t
′)|

≤ |Λ∗(µt, x, t)− Λn(µt, x, t)|+ |Λn(µt, x, t)− Λ∗(µt′ , x, t
′)|

≤ sup
(µ,x,t)∈Lipσ

C(Ω̃)×Ω̃

|Λ∗(µ, x, t)− Λn(µ, x, t)|+ |Λn(µt′ , x, t
′)− Λ∗(µ′

t, x, t
′)|

≤ 2 sup
(µ,x,t)∈Lipσ

C(Ω̃)×Ω̃

|Λ∗(µ, x, t)− Λn(µ, x, t)| → 0,

which implies that
Λ∗(µt, x, t) = Λ∗(µt′ , x, t

′).

C.2 PROOF OF LEMMA 4

For the representation (i) we find that, by using (20), (21) and µt = µe(µ̄t),

Λ(µ, x, t) = Λ(µt, x, t) = Λ(µe(µ̄t), x, e(µ̄t)) = Λ̄(µe(µ̄t), x) = Λ̄(µt, x),

where we have used, for the second and fourth equality, µt = µe(µ̄t).

The continuity (ii) follows from (20). Indeed, we observe that

Λ̄(µt, x) = Λ(µt, x, e(µ̄t)) = Λ(µe(µ̄t), x, e(µ̄t)). (39)

Viewing
µe(µ̄t) = (µe(µ̄t))e(µ̄t) = (µe(µ̄t))1 = µt, (40)

where (µe(µ̄t))e(µ̄t) and (µe(µ̄t))1 are regarded as the masked probability measures of µe(µ̄t) at
t = e(µ̄t) and t = 1, respectively, we obtain, using (20), (39) and (40), that

Λ̄(µt, x) = Λ((µe(µ̄t))e(µ̄t), x, e(µ̄t)) = Λ((µe(µ̄t))1, x, 1) = Λ(µt, x, 1).

Thus, by the continuity of Λ, we conclude that the map (µt, x) 7→ Λ̄(µt, x) = Λ(µt, x, 1) is contin-
uous.

C.3 PROOF OF LEMMA 5

Assume that µn ∈ LipσC(Ω̃) and (xn, tn) ∈ Ω̃. We see that

{s 7→ µn(·|s)}n∈N ⊂ C([0, 1];P(Ω)) is equicontinuous,

as s 7→ µn(·|s) is C-Lipschitz. We also see that

{µn(·|s)}n∈N ⊂ P(Ω) is compact for each s ∈ [0, 1].

as P(Ω) is compact in the W2 topology (see e.g., Aliprantis & Border (2006, Theorem 15.11)). By
the Arzelà–Ascoli theorem (Kelley, 2017, Chapter 7, Theorem 17), there exists µ(·|s) ∈ P(Ω) such
that the map s 7→ µ(·|s) is continuous map and (if needed, re-choose a subsequence)

sup
s∈[0,1]

W2(µn(·|s), µ(·|s)) → 0 as n → ∞. (41)

As (µ̄n)n∈N ⊂ Pσ([0, 1]) := {ν ∈ P([0, 1]) : ν({0}) ≥ σ} and Pσ([0, 1]) is compact, there exists
µ̄ ∈ Pσ([0, 1]) such that (if needed, re-choose a subsequence) as n → ∞

µ̄n ⇀∗ µ̄.

We set
µ := µ(·|s)µ̄(s).

Then we have
µ ∈ LipσC(Ω̃),
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because

W2(µ(·|s), µ(·|s′)) ≤ W2(µ(·|s), µn(·|s)) +W2(µn(·|s), µn(·|s′)) +W2(µn(·|s′), µ(·|s′))
≤ 2 sup

s∈[0,1]

W2(µ(·|s), µn(·|s)) + C|s− s′|,

and taking limit as n → ∞, we see that s 7→ µ(·|s) ∈ P(Ω) is C-Lipschitz.

Note that form (41)

∀g ∈ C(Ω), sup
s∈[0,1]

∣∣∣∣∫ g(x) dµn(x|s)−
∫

g(x) dµ(x|s)
∣∣∣∣→ 0. (42)

Indeed, since the set Lip(Ω) of all Lipschitz functions on Ω is dense in C(Ω), for any g ∈ C(Ω)
and any ϵ ∈ (0, 1), we choose h ∈ Lip(Ω) such that supx∈Ω |g(x) − h(x)| ≤ ϵ. We see that as
W1 ≤ W2 and the dual formulae∫

g(x) dµn(x|s)−
∫

g(x) dµ(x|s)

≤ 2 sup
x∈Ω

|g(x)− h(x)|+ Lip(h)

(∫
h(x)

Lip(h)
dµn(x|s)−

∫
h(x)

Lip(h)
dµ(x|s)

)
≤ 2ϵ+ Lip(h)W1(µn(·|s), µ(·|s)) ≤ 2ϵ+ Lip(h)W2(µn(·|s), µ(·|s)).

Taking sups∈[0,1] and the limit as n → ∞, we obtain (42).

As (xn, tn) ∈ Ω̃ and Ω̃ is compact, there are (x, t) ∈ Ω̃ (if needed re-choose the subsequence) such
that

(xn, tn) → (x, t) in Ω̃.

We finally need to show that, as n → ∞,

(µn)tn ⇀∗ µt,

which is equivalent to

∀f ∈ C(Ω̃),
∫

f d(µn)tn →
∫

f dµt. (43)

It is enough to check on any functions f which are separable, i.e. of the form f(x, s) = g(x)h(s)

because linear combinations of separable functions of the form
∑

i gi(x)hi(s) are dense in C(Ω̃).
To prove (43), we distinguish three cases (appropriately choosing a subsequence again):

(i) tn ∈ (0, 1] and t ∈ (0, 1], (ii) tn ∈ (0, 1] and t = 0, and (iii) tn = t = 0

CASE (i): We see that as n → ∞∫
f d(µn)tn −

∫
f dµt

=

∫
[0,1]

1[0,tn](s)h(s)

µ̄n([0, tn])

(∫
Ω

g(x) dµn(x|s)
)
dµ̄n(s)−

∫
[0,1]

1[0,t](s)h(s)

µ̄([0, t])

(∫
g(x) dµ(x|s)

)
dµ̄(s)

→ 0,

because µ̄([0, t]) > 0, equation (42), and using that µ̄n ⇀∗ µ̄.
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CASE (ii): We see that as n → ∞∫
f d(µn)tn −

∫
f dµ0

=

∫
[0,1]

1[0,tn](s)h(s)

µ̄n([0, tn])

(∫
Ω

g(x) dµn(x|s)
)
dµ̄n(s)− h(0)

∫
g(x) dµ(x|0)

=

∫
[0,1]

1[0,tn](s)h(s)

µ̄n([0, tn])

(∫
Ω

g(x) dµn(x|s)
)
dµ̄n(s)−

∫
[0,1]

1[0,tn](s)h(0)

µ̄n([0, tn])

(∫
g(x) dµ(x|0)

)
dµ̄n(s)

≤ sup
s∈[0,tn]

∣∣∣∣h(s)∫ g(x) dµn(x|s)− h(0)

∫
g(x) dµ(x|0)

∣∣∣∣
∣∣∣∣∣
∫
[0,1]

1[0,tn](s)

µ̄n([0, tn])
dµ̄n(s)

∣∣∣∣∣
≤ sup

s∈[0,tn]

∣∣∣∣h(s)∫ g(x) dµn(x|s)− h(s)

∫
g(x) dµ(x|s)

∣∣∣∣
+ sup

s∈[0,tn]

∣∣∣∣h(s)∫ g(x) dµ(x|s)− h(0)

∫
g(x) dµ(x|0)

∣∣∣∣
≤ sup

s∈[0,1]

|h(s)| sup
s∈[0,1]

∣∣∣∣∫ g(x) dµn(x|s)−
∫

g(x) dµ(x|s)
∣∣∣∣

+ sup
s∈[0,tn]

∣∣∣∣h(s)∫ g(x) dµ(x|s)− h(0)

∫
g(x) dµ(x|0)

∣∣∣∣→ 0,

where we have used (42) and the continuity of the map s 7→ h(s)
∫
g(x) dµ(x|s).

CASE (iii): We see that, as n → ∞,∫
f d(µn)tn −

∫
f dµt =

∫
f d(µn)0 −

∫
f dµ0

= h(0)

∫
g(x) dµn(x|0)− h(0)

∫
g(x) dµ(x|0)

≤ |h(0)|
∣∣∣∣∫ g(x) dµn(x|0)−

∫
g(x) dµ(x|0)

∣∣∣∣→ 0,

by using (42). Therefore, we obtain (43).

D EXAMPLES OF OUR THEORY

D.1 DISCRETE CASE

We consider a fixed n and an in-context map G(X,x), with X ∈ Rdtok×n, which is continuous on ℓ2

and permutation equivariant with respect to the tokens. This defines a map on discrete probability
measures

Γ

(
1

n

∑
i

δxi , x

)
:= G((xi)i, x),

which is continuous for the weak∗ topology on the set, Pn(Ω) ⊂ P(Ω), of n-point measures (that is,
uniform distributions supported on n points). The map Γ is continuous on Pn(Ω) (because on point
sets, the weak∗ topology coincides with the ℓ2-topology up to permutations), and Pn(Ω) is compact
(because it is a closed subset of a compact set P(Ω)). Hence, we can use our theorem on Pn(Ω), and
obtain that Γ can be approximated by a transformer on this space. This implies the approximation
of G by a transformer.

D.2 LINEAR REGRESSION

In the discrete case, tokens are assumed to be of the form xi = (ui, vi) where ui are features and
vi are labels to be predicted. Then simplified (linear attention) transformers are shown to learn
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in context a linear relation vi ≈ Wui; the in-context (I-C) “prediction” then maps some (u, v)
to (u,Wu) (that is, the value of v is discarded). Adding a ridge penalty, λ, to make the problem
well-posed, this corresponds to the I-C map

G(X, (u, v)) := (u,W (X)u) where W (X) := argminW

n∑
i=1

∥Wui − vi∥2 + λ∥W∥2.

We note that Von Oswald et al. (2023) consider, in fact, a single attention layer and replace this
minimization with a single step of gradient descent for simplicity; however, this is just a modification
of the in-context map.

Thanks to our framework which operates over measures, the above regression can be written, for
any n, upon considering a data distribution µ over the space (u, v) of (feature, label), in terms of the
more general in-context map,

Γ(µ, (u, v)) := (u,W (µ)u) where W (µ) := argminW

∫
∥Wu− v∥2dµ(u, v).

This map has the closed form,

W (µ) =

[∫
uu⊤dµ(u, v) + λId

]−1 [∫
vu⊤dµ(u, v)

]
,

and is weak∗ continuous as long as λ > 0. Hence, our theorem states that it can be learned in
context.
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