
Appendix for “Preference-grounded Token-level Guidance for657

Language Model Fine-tuning”658

Table of Contents659

1 Introduction 1660

2 Main Method 2661

2.1 Token-level Guidance Learning for Preference Grounding 3662

2.2 LM Training with Preference-grounded Token-level Guidance 4663

3 Related Work 5664

4 Experiments 6665

4.1 Input-agnostic Discrete-prompt Generation . 6666

4.2 Text Summarization . 7667

4.3 Ablation Study . 8668

5 Conclusion 9669

A Additional Experimental Results 18670

A.1 Tabular Results . 18671

A.2 Further Ablation Study . 20672

B Additional Experiment Details 22673

B.1 Prompt Generation . 22674

B.2 Text Summarization . 23675

C A Naïve Numeric Example for the Average Aggregation 24676

D Details on the Prompt Generation Task 24677

E More Related Work 24678

F A Discussion on Applying RL Methods to LM Tasks 26679

F.1 LM Generation as a Token-level MDP . 26680

F.2 Delayed Feedback in RL-based LM Training . 26681

F.3 Sparse Reward with KL Penalty . 27682

G Further Discussion on the Guidance Re-estimation Scheme 27683

H Potential Negative Societal Impacts 28684

I Limitations 28685

J Computational Resources 28686

17

A Additional Experimental Results687

A.1 Tabular Results688

Table 3: Examples of the generated discrete input-agnostic text-prompt and their classification accuracy on the
corresponding test set.

SST-2 AG News
Prompt Accuracy Prompt Accuracy

guys filmmaker filmmaker rated Grade 94.18 newsIntroduction Comments Tags Search 85.78
MovieMovieFilm rated Grade 94.18 newsTopic Blog Support Category 85.55
Rated CinemaScoreReporting Grade 94.01 news RecentRecentPhotosIntroduction 84.53
employment theater rated Oscars Grade 93.96 news Recent Brief LatestExample 84.51
scene filmmaking rated comedian Grade 93.85 newsVirtualBlogBlogNet 84.33

Table 4: Detailed results on CNN/DM summarization under T5-base LM for Section 4.2. We bold the best result
of each metric. Baseline results are directly cited from RL4LMs [58]. “Env. Reward” denotes the environmental
reward in RL4LMs. The “ROUGE-L” here refers to “Rouge-LSum” in RL4LMs and in the Hugging Face
interface, which is discussed in details in Appendix B.2. In Section 4.2, we plot the results of our method with
the average aggregation, which is the best variant in Table 2. We report the mean and standard deviation of our
method over three random seeds.

Algorithm Env. Reward ROUGE-1 ROUGE-2 ROUGE-L Meteor

Lead-3 40.1 17.5 36.3 33.3

Supervised 41.1 17.7 34.3 30.9

PPO
Rouge-1 41.0 18.2 34.9 27.6
Rouge-Avg 39.6 17.6 33.8 27.0
Meteor 40.8 17.8 34.2 30.1

NLPO
Rouge-1 40.4 18.0 34.4 27.5
Rouge-Avg 40.4 17.7 34.4 27.4
Meteor 40.5 18.0 34.3 29.2

Supervised + PPO
Rouge-1 41.7 18.9 35.8 27.8
Rouge-Avg 42.5 19.4 36.3 29.6
Meteor 42.6 19.4 36.1 31.6

Supervised + NLPO
Rouge-1 42.1 19.3 36.1 28.7
Rouge-Avg 42.4 19.3 36.3 29.5
Meteor 42.9 19.4 36.1 31.9

Ours (AVG) 43.09 (0.06) 20.17 (0.04) 39.99 (0.07) 35.23 (0.06)

Ours (SUM) 42.86 (0.08) 19.92 (0.08) 39.76 (0.11) 34.74 (0.37)

Ours (MIN) 42.92 (0.14) 20.01 (0.02) 39.84 (0.08) 34.88 (0.13)

Ours (MAX) 42.38 (0.17) 19.49 (0.02) 39.34 (0.09) 34.13 (0.32)

18

Table 5: Scores on each ROUGE metric for our method using sequence-level and token-level preference-based
guidance in the summarization tasks in Section 4.3 (a). “Seq.” denotes our method with sequence-level
preference-based guidance, and “Token” denotes our method with token-level preference-based guidance. The
reported numbers are mean (standard deviation) over three random seeds. The row “Average” shows the average
of the three ROUGE scores, i.e., (ROUGE-1 + ROUGE-2 + ROUGE-L) / 3.

CNN/DM XSum CNN/DM (T5-base LM)
Seq. Token Seq. Token Seq. Token

ROUGE-1 40.20 (0.07) 40.94 (0.02) 32.56 (0.08) 33.62 (0.03) 42.10 (0.15) 43.09 (0.06)

ROUGE-2 17.80 (0.08) 18.78 (0.03) 9.98 (0.04) 11.17 (0.02) 19.23 (0.11) 20.17 (0.04)

ROUGE-L 37.08 (0.06) 38.17 (0.03) 25.11 (0.07) 26.33 (0.05) 38.09 (0.14) 39.99 (0.07)

Average 31.69 32.63 22.55 23.71 33.14 34.42

Table 6: Scores on each ROUGE metric for our method with and without the reward-function retraining scheme
in the summarization tasks in Section 4.3 (b). “Without Retrain” denotes our method without reward-function
retraining, and “With Retrain” denotes our method with reward-function retraining. The reported numbers are
mean (standard deviation) over three random seeds. The row “Average” shows the average of the three ROUGE
scores, i.e., (ROUGE-1 + ROUGE-2 + ROUGE-L) / 3.

CNN/DM XSum CNN/DM (T5-base LM)
Without Retrain With Retrain Without Retrain With Retrain Without Retrain With Retrain

ROUGE-1 40.83 (0.10) 40.94 (0.02) 33.45 (0.11) 33.62 (0.03) 42.98 (0.08) 43.09 (0.06)

ROUGE-2 18.70 (0.07) 18.78 (0.03) 11.07 (0.06) 11.17 (0.02) 20.09 (0.06) 20.17 (0.04)

ROUGE-L 38.07 (0.09) 38.17 (0.03) 26.23 (0.10) 26.33 (0.05) 39.87 (0.08) 39.99 (0.07)

Average 32.53 32.63 23.58 23.71 34.31 34.42

Table 7: Scores on each ROUGE metric for the summarization task on CNN/DM in Section 4.3 (c), where we
vary the number of sequences used to learn the token-level guidance. The reported numbers are mean (standard
deviation) over three random seeds. The row “Average” shows the average of the three ROUGE scores, i.e.,
(ROUGE-1 + ROUGE-2 + ROUGE-L) / 3.

Number of Sequences

2 3 5 7 9

ROUGE-1 40.80 (0.06) 40.94 (0.02) 40.87 (0.09) 40.86 (0.08) 40.95 (0.01)

ROUGE-2 18.70 (0.04) 18.78 (0.03) 18.71 (0.02) 18.74 (0.06) 18.78 (0.01)

ROUGE-L 38.05 (0.03) 38.17 (0.03) 38.09 (0.07) 38.08 (0.08) 38.18 (0.02)

Average 32.52 32.63 32.56 32.56 32.64

Table 8: Scores on each ROUGE metric for the summarization task on XSum in Section 4.3 (c), where we vary
the number of sequences used to learn the token-level guidance. The reported numbers are mean (standard
deviation) over three random seeds. The row “Average” shows the average of the three ROUGE scores, i.e.,
(ROUGE-1 + ROUGE-2 + ROUGE-L) / 3.

Number of Sequences

2 3 5 7 9

ROUGE-1 33.54 (0.06) 33.62 (0.03) 33.56 (0.08) 33.56 (0.02) 33.63 (0.02)

ROUGE-2 11.12 (0.04) 11.17 (0.02) 11.12 (0.05) 11.19 (0.05) 11.20 (0.03)

ROUGE-L 26.26 (0.06) 26.33 (0.05) 26.28 (0.06) 26.34 (0.06) 26.36 (0.03)

Average 23.64 23.71 23.65 23.70 23.73

19

2−2 2−1 20 21 22

90.5

91.0

91.5

92.0

(a) Temperature β (SST-2)

2−2 2−1 20 21 22
32.45

32.48

32.51

(b) Temperature β (CNN/DM)

0.06 0.08 0.1 0.125 0.15 0.2

80

85

90

95

(c) Balancing Coeff. α (SST-2)

Figure 6: Line plots comparing the performance under different values of the hyperparameter β in Eq. (4) and α
in Eq. (5). The plotted numbers are mean over three random seeds. Error bars show one standard deviation.

A.2 Further Ablation Study689

In learning the preference-based sequence-level guidance in Section 4.3, the aggregation function690

f(·) in Section 2.1 is removed, since it is inapplicable and unnecessary to the sequence-level reward691

function. For the minimalist LM training objectives Eqs. (5) and (6) in Section 2.2, we change them to692

the corresponding versions that use sequence-level guidance. Self-normalization in reward-weighted693

MLE Eq. (6) is removed, since it is again inapplicable and unnecessary to the sequence-level setting.694

In this section, we continue the discussion in Section 4.3 by answering the following additional695

questions on our method.696

(a): Is our method robust to the hyperparameter(s): temperature β and balancing coefficient α?697

To study the choice of the temperature parameter β in the soft-maximum/minimum aggregation698

Eq. (4), we vary the value of β in the MIN variant in Tables 1 and 2 from β = 2. Furthermore,699

to study the balancing coefficient α in the REINFORCE-style LM-training approach Eq. (5), we700

vary the α parameter in the AVG variant in Table 1 from α = 2−3. Fig. 6 respectively shows the701

prompt results on the SST-2 dataset and the summarization results on the CNN/DM dataset. For702

summarization, we again plot the average ROUGE scores, with the breakdown scores of the three703

ROUGE metrics in Table 9 below.704

Recall that the best baseline result on SST-2 in Table 1 is 90.5, and on CNN/DM in Table 2 is 31.3.705

We see that our method can achieve competitive results on a relatively wide range of the temperature706

β. A too-small value of β, such as 0.25 and 0.5, may incur a harder optimization problem and thus707

an inferior performance on both prompt and summarization tasks.708

For the choice of the balancing coefficient α, we see that our method provides competitive results709

in a relatively wide range of α ∈ [0.08, 0.15], when compared to the best baseline result of 90.5 in710

Table 1. A too-small value of α may not prevent the REINFORCE-style method from pre-mature711

convergence. The resulting LM therefore may not sufficiently explore the sampling space or capture712

multiple good behavior-modes, resulting in an inferior and highly varying performance. A too-large713

value of α distracts the optimization of the LM, and again leads to a worse result.714

Table 9: Scores on each ROUGE metric for the summarization task on CNN/DM, where we vary the temperature
parameter β in the soft-minimum aggregation Eq. (4). The reported numbers are mean (standard deviation)
over three random seeds. The row “Average” shows the average of the three ROUGE scores, i.e., (ROUGE-1 +
ROUGE-2 + ROUGE-L) / 3.

β = 2−2 β = 2−1 β = 20 β = 21 β = 22

ROUGE-1 40.77 (0.11) 40.74 (0.09) 40.79 (0.11) 40.78 (0.06) 40.80 (0.01)

ROUGE-2 18.67 (0.06) 18.68 (0.05) 18.68 (0.09) 18.67 (0.03) 18.71 (0.04)

ROUGE-L 38.00 (0.10) 37.98 (0.08) 38.03 (0.12) 38.01 (0.04) 38.02 (0.01)

Average 32.48 32.47 32.50 32.49 32.51

(b): How does our method perform in generating longer prompts compared with the baseline?715

To further validate the harm of the delayed-feedback issue to the related LM-training methods that716

learn under the sequence-level feedback, we compare our method with RLPrompt [57] on generating717

20

prompts with length increased from 5 to 10 and to 20 tokens, on the SST-2 dataset. Table 10 below718

shows the results.719

Table 10: Test accuracy on the prompt task on the SST-2 dataset, for our method and RLPrompt on generating
prompts with length 5, 10, and 20 tokens. We report the mean and standard deviation over three random seeds.

RLPrompt Ours (AVG) Performance Gap

5 Tokens 90.5 (1.5) 92.6 (1.7) 2.1
10 Tokens 75.8 (7.6) 86.0 (2.9) 10.2
20 Tokens 65.2 (6.0) 80.9 (4.5) 15.7

We see that RLPrompt performs worse than our method on generating longer prompts. In particular,720

the performance gap increases as the prompt length (feedback delaying) increases. This comparison721

can further show the harm of the delayed-feedback issue in training text-generation LMs, and that our722

framework, in particular our preference-grounded token-level guidance for LM training, is a viable723

solution to it.724

It is intrigued that the results of both methods deteriorate with the prompt length. After checking725

the generated prompts from our method, we find that longer prompts mostly contain many repeated726

tokens, as shown by the following example prompt of length 20727

PerformanceExceptionMovieMovieMovieMovieMovieMovieMovieVideoVideoVideoVideo\728

VideoVideoVideoImageVideoImageImage729

730

which is separated into two lines at the location of “\” due to the page width. In this prompt731

example, the tokens Movie and Video are each consecutively repeated seven times, and the bi-732

gram ImageVideo is repeated two times. Such prompts with heavy repetitions may confuse the733

downstream classifier.5 This aligns with our intuition that a clear and succinct instruction is preferable734

than a long but verbose one.735

As a side note, in generating Table 10, we use the default hyperparameters for both our method and736

RLPrompt. It is possible that RLPrompt requires careful tuning for generating longer prompts, due737

to the delayed-feedback issue that we try to address. We leave a thorough tuning of RLPrompt on738

long-prompt generation as a future work.739

(c): Is the efficacy of our framework tied to the specific preference sources considered in Section 4?740

To investigate whether the performance of our framework is tied to the specific preference-sources741

considered in the experiment section (Section 4), inspired by RL4LMs [58], we simulate the sequence-742

level preference on the summarization task by using another two automatic metrics “Rouge-avg” and743

“Rouge-avg2”, rather than the classical Meteor score [82] in Section 4. Table 11 below presents the744

ROUGE scores of our method under each of the three preference sources on the CNN/DM dataset745

under the T5-base LM. For a more thorough investigation, we provide the results for our method both746

with and without the guidance re-estimation scheme. The baseline results in Table 11 below come747

from the best baseline method in Table 4 of Appendix A.1.748

Table 11: Results for our method on CNN/DM summarization under T5-base LM when using different automatic
metrics to simulate the sequence-level preference. We provide the detailed ROUGE scores for our method both
with and without guidance re-estimation. “Baseline” denotes the results of the best baseline method in Table 4 of
Appendix A.1. The reported numbers are mean over three random seeds. The row “Average” shows the average
of the three ROUGE scores, i.e., (ROUGE-1 + ROUGE-2 + ROUGE-L) / 3.

Baseline With Guidance Re-estimation Without Guidance Re-estimation
Rouge-avg Rouge-avg2 Meteor Rouge-avg Rouge-avg2 Meteor

ROUGE-1 42.9 43.14 43.07 43.09 42.96 42.98 42.98
ROUGE-2 19.4 20.18 20.12 20.17 20.07 20.05 20.09
ROUGE-L 36.1 39.93 39.89 39.99 39.80 39.77 39.87

Average 32.8 34.42 34.36 34.42 34.28 34.27 34.31

5A detailed description of the prompt task is deferred to Appendix D.

21

Concretely, these two new automatic metrics “Rouge-avg” and “Rouge-avg2” are constructed as749

Rouge-avg = 0.5× ROUGE-1 + 0.5× ROUGE-2 + 0.5× ROUGE-L ,

Rouge-avg2 = 0.5× ROUGE-1 + 0.5× 2× ROUGE-2 + 0.5× ROUGE-L ,

where the “Rouge-avg” metric is exactly the same as that in the RL4LMs [58]. The “Rouge-avg2”750

metric is constructed by multiplying ROUGE-2 by 2 to make its numerical value similar to the others.751

It is clear that changing the preference source from Meteor to these two alternative metrics does not752

significantly alter the performance of our method, especially when compared to the performance753

improvement of our method over the best baseline method in Table 4 of Appendix A.1. This set of754

comparisons confirms that the efficacy of our framework is generally not tied to a specific preference755

source. It could also further corroborate the effectiveness of our preference-grounding perspective on756

guiding the LM training.757

B Additional Experiment Details758

B.1 Prompt Generation759

Implementation Details. To ensure a fair comparison, the implementation of our framework is760

based on the official codebase of RLPrompt available at https://github.com/mingkaid/rl-prompt, and761

the Hugging Face library [67]. We have already provided some implementation details in Section 4.1.762

Here we continue the discussion.763

The LM πθ is parametrized as a frozen distilGPT-2 model with parameter θ being one MLP-layer of764

size 2048 inserted right before the output head. The token-level reward function rϕ is implemented765

as a distilGPT-2 with a two-layer projection-MLP of sizes 2048 and 1 on top. The LM πθ is trained766

by a maximum of 12000 steps with early stopping on the validation set. The reward training is767

reconducted every 1000 steps during the first 6000 steps of the LM training process and is (and768

almost always) early stopped. RoBERTa-large is used [8] as the pre-trained downstream LM πDLM.769

Datasets. We use the standard datasets provided in the RLPrompt codebase [57]. We test on770

three popular few-shot classification datasets in prior work [e.g., 71, 72], i.e., two sentiment binary-771

classification datasets SST-2 [73] and Yelp Polarity [74], and the topic four-way-classification dataset772

AG News [74]. In keeping with the standard few-shot setting [70], both the training and the validation773

sets have 16 examples per class. To mitigate the randomness in the few-shot setting, each dataset is774

subsampled into five few-shot training-validation sets, while the test set is standard. We train our775

models on each few-shot (sub-)dataset with three random seeds and evaluate three generated prompts776

in each case. For all three tested datasets, we report the average test accuracy and standard deviation777

across all evaluated prompts in all random seeds and all few-shot (sub-)datasets.778

Hyperparameters. Apart from the hyperparameters discussed in the ablation study (Section 4.3779

and Appendix A.2), most other hyperparameters as well as the training and evaluation procedures of780

our framework follow RLPrompt. Additionally, we list the important hyperparameters for training781

our reward model in Table 12, and important hyperparameters for training our LM in Table 13. The782

generated prompts have a fixed length of 5. The same hyperparameters are used in all tested datasets.783

Baselines. For the baseline results in Table 1, we rerun the codebase of RLPrompt under the same784

random seeds and evaluation script as our method. Other baseline results are from the literature785

[57, 80]. We note that our reported RLPrompt results have some small discrepancies compared to786

the original paper’s results. We have confirmed our reproduced results with RLPrompt’s authors and787

with Table 2 of the recent TEMPERA paper [80].788

22

https://github.com/mingkaid/rl-prompt

Table 12: Hyperparameters for training our reward
model in the prompt-generation task.

Hyperparameter Value

Gradient clipping norm 5.0
Max train steps 10000
Steps per epoch 100
Number of epochs 100
Learning rate 5e-5
Batch size 64
Learning-rate decay 0.8
Learning-rate scheduler ReduceLROnPlateau
Scheduler patience 2
Early-stop count 7
Optimizer Adam [86]
Backbone distilGPT-2

Table 13: Hyperparameters for training our LM in the
prompt-generation task.

Hyperparameter Value

Gradient clipping norm 5.0
Max train steps 12000
Steps per epoch 500
Number of epochs 24
Learning rate 5e-5
Batch size 32
Learning-rate decay 0.8
Learning-rate scheduler ReduceLROnPlateau
Scheduler patience 2
Early-stop count 7
Optimizer Adam
Backbone distilGPT-2
Reward retrain period 1000 steps

789

B.2 Text Summarization790

Implementation Details and Hyperparameters. The implementation of our framework is based791

on the Hugging Face library [67]. We have provided some implementation details in Section 4.2. The792

discussion is continued here.793

Due to our limited computational resources, unless explicitly mentioned, we use the standard T5-small794

model [81] for the LM. Similar to the prompt tasks, the token-level reward function is implemented795

also as a T5-small model, with a two-layer projection-MLP on top with sizes 2048 and 1. The LM πθ796

is trained for a standard 5 epochs. Apart from the hyperparameters discussed in the ablation study797

(Section 4.3 and Appendix A.2), most other hyperparameters as well as the training and evaluation798

procedure of our framework follow the standard setting of using a T5 model for text summarization799

on the Hugging Face library. Additionally, we list the important hyperparameters for training our800

reward model in Table 14, and important hyperparameters for training our LM in Table 15. The same801

hyperparameters are used in both the CNN/DailyMail and the XSum datasets.802

We note that the ROUGE-L metric we report is technically the rougeLsum metric from the Hugging803

Face interface and in the RL4LMs’ codebase [58]. This one matches the result scales in prior work804

especially on texts with newlines (“\n”), as reported in this GitHub issue.805

Baselines. For the baseline methods’ results in Table 2, we rerun the codebase of RL4LMs [58] with806

a T5-small model as our method. We have carefully tuned the (supervised+) PPO/NLPO in RL4LMs807

on several hyperparameters, such as learning_rate, kl_div:coeff, kl_div:target_kl, and so808

on. Furthermore, we ran these baseline methods on the same random seeds as our method and we809

provide error bars. Since we use the T5-small model and the same random seeds for both our method810

and the baselines, our reported results are therefore (more) fair comparisons.811

Table 14: Hyperparameters for training our reward
model in the text-summarization task.

Hyperparameter Value

Gradient clipping norm 5.0
Number of epochs 1
Amount of training data 10% of training set
Learning rate 5e-5
Batch size 32
Optimizer Adam
Backbone T5-small

Table 15: Hyperparameters for training our LM
in the text-summarization task.

Hyperparameter Value

Gradient clipping norm 5.0
Number of epochs 5
Learning rate 5e-5
Batch size 32
Optimizer AdamW [87]
Weight decay 0.0
Backbone T5-small
Reward retrain period 0.5 epoch

812

23

https://github.com/huggingface/datasets/issues/617#issuecomment-691615081

C A Naïve Numeric Example for the Average Aggregation813

This section provides a naïve numeric comparison that the average aggregation in Section 2.1 will814

not automatically favor longer sequences, while the classical summation will.815

Suppose we have K = 2 sequences τ1 and τ2 for preference learning, respectively having length816

T 1 = 5 and T 2 = 15. For simplicity, assume that all tokens in τ1 and τ2 are the same and all have817

reward 1, i.e., rϕ(skt , a
k
t) = 1,∀ k, t. The average sequence length C is then C = (1/2)× (5+15) =818

10. For the first sequence τ1, the average-aggregated sequence-level evaluation eavgϕ (τ1) = (10/5)×819 ∑4
t=0 1 = (10/5) × 5 = 10. And for the second sequence τ2, eavgϕ (τ2) = (10/15) ×∑14

t=0 1 =820

(10/15)× 15 = 10. Therefore, no sequence will be automatically preferred based only on the length.821

By contrast, when using the classical summation as the aggregation function, τ1 will be evaluated as822 ∑4
t=0 1 = 5 while τ2 will be evaluated as

∑14
t=0 1 = 15. So, indeed, the longer sequence τ2 will be823

automatically preferred.824

D Details on the Prompt Generation Task825

Task Description. In discrete text-prompt generation [e.g., 9, 68], we input a discrete text-prompt a826

and an observation sequence o to a large pre-trained downstream LM πDLM(yDLM |a, o) to directly827

classify text o, without finetuning πDLM. Here, yDLM denotes the output of the large downstream828

LM πDLM on the observation text o prompted by text a. We follow the classical prompt setting829

[e.g., 9, 69, 57] that solves the classification problem by an encoder-only downstream LM via token830

infilling. Classification is reduced to selecting tokens corresponding to some predefined class labels,831

known as verbalizers, such as “happy” for positive and “sad” for negative. The set of verbalizers is832

denoted as C. As an example, to classify an observation text o by prompt a using an encoder-only833

downstream LM πDLM, we input a template such as “[o] [a] [MASK]” to πDLM, and select the834

most probable verbalizer token that fills into [MASK].835

Setting. In our input-agnostic setting, the generated prompt is independent of the observation text o.836

During inference time, only the learned prompts are used and the LM πθ is discarded. The initial837

input x to πθ is a dummy, and the target y is the class label in the mask position. We also adopt the838

few-shot setting, where the training set consists of a small number of samples per class. There is a839

larger standard test set for evaluation. With a fixed length T , the goal is to find discrete text-prompts840

a = (a0, . . . , aT−1) that have high test accuracy.841

Source of the Preference. For learning the token-level guidance, we simulate the sequence-level842

preference by the recently proposed stepwise metric Rstep in Deng et al. [57], i.e., the higher the843

metric value the better prompt. This choice ensures a fair comparison with RLPrompt [57] and avoids844

a potential overfitting that we train and evaluate the LM on the same evaluation metric “accuracy”.845

Given a prompt a, observation text o, and the true class label y ∈ C, Rstep measures the gap between846

the true class’s probability and the highest probability in other classes. The gap is defined as847

Gapo(a, y) = πDLM(y |a, o)− max
y′∈C,y′ ̸=y

πDLM(y′ |a, o),

where Gapo(a, y) > 0 when the prediction yDLM(a, o) for text o is correct and < 0 otherwise.848

Define the indicator for correct prediction for o, Corro, as Corro = 1{Gapo(a, y) > 0}. The849

stepwise metric Rstep for prompt a on observation text o and true class label y is define as850

Rstep(yDLM(a, o), y) = λ1−Corro
1 λCorro

2 ×Gapo(a, y),

where λ1 = 180 and λ2 = 200. In the experiments (Section 4 and Appendix A.2), we report test851

accuracy as in prior works.852

LM Training. Since the prompt-generation task does not assume the availability of supervised data853

— the ground-truth prompts, the LM πθ is trained by the REINFORCE-style update in Section 2.2 to854

automatically discover highly-accurate prompts.855

E More Related Work856

Prompt Generation. Prior works [e.g., 6, 9, 77, 88] have shown that manual prompts can steer LMs857

to perform NLP tasks in the few/zero-shot setting. In general, prompts can be discrete, consisting858

24

of real token-strings; or can be continuous, where the prompts are entirely free word-embeddings859

that do not map to real tokens. Several works [e.g., 89–93, 75] tune continuous soft prompts using860

gradient descent, which typically requires some expensive gradient information [72, 94]. In this861

work, we apply our framework to the task of input-agnostic discrete-prompt optimization due to862

its challenging setting, better human understandability of the learned prompts [95, 96], potential863

transferability across LMs [97, 70, 57], and more robustness in the low-data regime [90]. Recent864

works propose some new settings such as input-dependent prompt-tuning [80], which are potential865

further applications of our framework and are left for future work.866

Text Summarization. Apart from using RL techniques discussed in Sections 3, prior works on867

text summarization [e.g., 7, 98, 81, 99, 100] mainly focus on structural designs of the LMs and868

improvements on the source of the (pre-)training data, where the LMs are typically trained by vanilla869

MLE on the supervised data. In this paper, we apply our preferenced-grounded token-level guidance870

to this task by considering a weighted-MLE objective for LM training. The weights given by the871

learned reward function reflect some sequence-level preference among multiple candidate summaries.872

Our framework thus has the potential to learn and improve from lower-quality data, and generate873

summaries fulfilling more general evaluation metrics, such as human preference.874

Align LMs with Preference. As our paper, prior works on aligning LMs with preference typically875

focus on adjusting the pretrained LMs, where preference comes from human feedback or from some876

automatic metrics. A classical strategy is to add external filters on top of the pretrained LMs to the877

generated text sequences or to the training sequences [e.g., 17], where the LMs are trained using878

MLE on abundant supervised data. Another classical approach finetunes LMs using supervised879

learning (vanilla MLE) on some curated/improved datasets [18–20], or on massive highly-curated880

collections of tasks phrased as instructions for supervised finetuning the LMs [101, 102]. Apart from881

supervised learning, reinforcement learning techniques have also been applied to learn from human882

feedback (RLHF). Similar to the discussion in Section 3, these works typically learn a sequence-level883

classifier that predicts human (pairwise) preferences and during LM training add a general-purpose884

KL penalty that is less-targeted to the specific LM task and feedback (preference, metric scores, etc.)885

[e.g., 21, 12, 22, 23], such as a token-level KL penalty towards the initial LM prior to training.886

Alternatively, the divergence of the LMs from a target distribution can also be used as the finetuning887

objectives. This line of research [e.g., 103–105] formalizes controlled text generation as a constraint888

satisfaction problem over LM’s probability distribution, with an additional divergence-minimization889

objective that the LMs should have a minimal KL- or f -divergence from the original pretrained890

LM. These approaches, however, require explicit functional specification on the constraints or on891

the human preference, rather a more vague form of (binary) comparison between LM samples. For892

example, Go et al. [105] consider human preference as a probability distribution measuring how well893

the generated text-sequence satisfies the preference. Apart from this more demanding requirement,894

these approaches further require special methods to sample from the resulting LM.895

To sum up, prior works on aligning LMs with preference mostly focus on an ungrounded sequence-896

level guidance, which can suffer from the delay-feedback issue in LM training, as discussed in897

Sections 1 and 3. By contrast, our preference-grounding perspective can provide a stable, data-driven,898

task-specific token-level guidance on LM training, and can potentially improve on vanilla MLE,899

especially when the quality of the supervised data cannot be guaranteed. We experimentally validate900

this intuition in Section 4 and Appendix A.2.901

Apart from fine-tuning the pretrained LMs, Korbak et al. [106] recently apply preference alignment902

to the pre-training stage of the LMs. As with prior works, the sparse sequence-level evaluation903

(without KL penalty/stabilizer) is directly used, to learn a token-level value function, to condition the904

LM generation on, or for a reward-weighted regression objective. The pre-training stage in Korbak905

et al. [106] is a potential further application of our framework since we make no assumption on the906

zero-shot ability of the initialized LMs, as discussed in Sections 2.2 and 4.3.907

We also notice that a recent robotics paper [107] proposes to learn a weighted-sum aggregation908

together with the per-step reward, to form the sequence-level evaluation in learning the reward909

function, based on pairwise preference over two trajectories of equal length. Compared with this910

recent work, our aggregation functions in Section 2.1 do not require additional modeling and training,911

and therefore can be more efficient and more stable for the reward-function learning. Additionally,912

we do not assume that trajectory lengths are equal, as this may be infeasible for LM tasks such as text913

summarization. Furthermore, our framework allows utilizing the preference among more than two914

25

trajectories, rather than the classical pairwise preference. In this particular aspect, our framework can915

be more general than this recent work of Kim et al. [107].916

F A Discussion on Applying RL Methods to LM Tasks917

F.1 LM Generation as a Token-level MDP918

In most LM generation tasks, there is a dataset D = {(xi, yi)}Ni=1 of N supervised examples, where x919

is the input to the LM that can be a dummy, and y ∈ Y is the target text sequence. Viewing the LM as920

a token-level RL policy, LM generation can be formulated as a sequential decision-making problem,921

specified by the Markov Decision Process (MDP) M = (S,A, P,R, γ, µ0) [108]. Specifically, S922

is the state space, where the state at timestep t, st, consists of the LM input x and the previously923

generated tokens a<t = (a0, . . . , at−1), t > 0, i.e., s0 = x and ∀ t > 0, st = (x, a<t). A is the924

action space, which is the vocabulary V , and an action at at timestep t ≥ 0 is a token from V .925

P (st, at) : S× A → S is the transition function that deterministically appends the newly sampled926

token to the end of the current state, i.e., ∀ t ≥ 0, st+1 = (st, at) = (x, a≤t). R(sT , y) : S×Y → R927

is the environmental reward (task-specific evaluation metric) that depends on the final state sT of928

the LM-generation trajectory and the target sequence y. Here T is the ending time of the trajectory,929

i.e., the length of the full generated text sequence; and sT = (x, a0, . . . , aT−1) is the final state930

of the generation trajectory consisting of the LM input x and the full generated text sequence931

a = (a0, . . . , aT−1). γ ∈ [0, 1] is the discount factor. And µ0(x) : S → [0, 1] is the distribution of932

the initial input x.933

We denote the LM as πθ(at | st), parametrized by θ. At each timestep t, πθ(at | st) generates the next934

token at given the current state st = (x, a<t). The ultimate goal of policy learning (LM training) is935

to maximize the expected environmental reward R, which can be expressed as936

maxθ E(x,y)Ea∼
∏T−1

t=0 πθ(at | st) [R(sT = (x,a), y)] ,

where (x, y) is drawn from the corresponding sampling distribution.937

F.2 Delayed Feedback in RL-based LM Training938

As discussed in Appendix F.1, the environmental reward R(sT , y) is only defined on the full generated939

text sequence a. The token-level MDP formulation of LM generation thus meets the problem of940

sparse reward-signal or the delayed feedback issue discussed in Section 1. Hereafter, we will use941

“sparse reward (signal)” and “delayed feedback” interchangeably depending on the context, as they942

are used synonymously in the RL literature.943

Specifically, prior works [e.g., 29, 57, 30] often manually interpolate the intermediate rewards by944

some non-informative values such as 0 or −1, i.e., ∀ t ≥ 0945

R(st, y) =

{
0 or − 1, t < T

R(sT , y), t = T
. (7)

It is clear that the reward signal is sparse. In other words, the feedback to intermediate actions/tokens946

is delayed until the full text-sequence has been generated.947

We note that this sparse-reward/delayed-feedback problem will not be addressed by the standard948

actor-critic or Q-learning methods in RL. With only sparse reward-signals, it can be difficult to949

estimate the token-level value functions in these RL methods.950

Specifically, the standard Monte Carlo estimate of the value functions is known to have high variance951

due to the large sampling space [108]. This problem is even severe in the LM tasks where there are952

exponentially many text sequences that can follow a partial sequence.953

Further, as discussed in Guo et al. [29], the sparse-reward/delayed-feedback problem can also hurt the954

bootstrapping-style method for learning the value functions, since the standard value-function learning955

can suffer from “the unstable per-step bootstrapping-style training with sparse reward signals.” This956

can subsequently harm the LM training since many actor-critic or Q-learning methods rely heavily on957

how accurately the learned value functions assess the quality of intermediate text sequences [108, 29].958

26

F.3 Sparse Reward with KL Penalty959

With the sparse-reward/delayed-feedback issue in Appendix F.2, prior works typically add a token-960

level KL-penalty to the sparse sequence-level environmental rewards Eq. (7). For simplicity, assume961

that in Eq. (7) the intermediate rewards are interpolated by 0. The KL-stabilized reward signal962

R(st, at, y) is963

R(st, at, y) =

{−c ·KL(πθ(at | st) ||π0(at | st)), t < T − 1

R(sT , y)− c ·KL(πθ(at | st) ||π0(at | st)), t = T − 1
, (8)

where c is a hyper-parameter and π0 is some prior distribution, such as the uniform distribution964

[29, 57], the initial LM prior to training [21, 58], the supervised-fine-tuned model [59, 60, 10, 12],965

or the base momentum model [61]. For a concrete example, see Line 224-235 of the popular trlx966

package’s implementation.967

With this KL-stabilized reward signal R(st, at, y), the action-value function for the policy/LM πθ is968

Q(st, at, y) = E{at′}
T−1

t′=t+1
∼πθ

[
T−1∑
t′=t

γt′−tR(st′ , at′ , y) | st, at
]

= E{at′}
T−1

t′=t+1
∼πθ

[
γT−1−tR(sT , y)− c ·

T−1∑
t′=t

γt′−tKL(πθ(at′ | st′) ||π0(at′ | st′)) | st, at
] (9)

It is clear from Eq. (9) that the environmental reward R(sT , y) is multiplied by a factor exponentially969

decayed with respect to the length of the remaining horizon T − 1− t. Without the KL penalty, the970

action-value Q(st, at, y) could be tiny when t is small, i.e., at the beginning of the text-sequence971

generation. This could make it hard to accurately model and learn the action values, echoing the972

previously-stated harm of the sparse-reward/delayed-feedback problem mentioned by Guo et al. [29]973

Recall that the standard actor-critic and Q-learning methods in RL use the action-value function974

Q(st, at, y) as the token-level guidance (per-step critic) for policy/LM training. Due to the expo-975

nentially decaying factor γT−1−t, when the discount factor γ in Eq. (9) is not sufficiently large, this976

token-level guidance Q(st, at, y) in RL-based LM training mainly reflects the (discounted) sum of977

future KL-penalty, rather than the actual goal of LM training — the environmental reward R(sT , y).978

This phenomenon can be more evident at the beginning of the text-sequence generation, i.e., when979

the length of the remaining horizon T − 1− t is long. On the other hand, learning the action-value980

function Q(st, at, y) under a large discount factor γ is known to be challenging [108], since the highly981

varying (late) future can significantly affect the current action value Q(st, at, y). The selection of the982

discount factor γ, therefore, becomes a tradeoff and a challenge. Note that R(sT , y) here is generic983

and can represent automatic evaluation metrics or (human) preference, and that the beginning of text984

generation can affect all subsequent token selections. Intuitively, using Eq. (9) as the token-level985

guidance for policy/LM training can thus be less successful in the concrete LM task, especially when986

generating longer sequences, as we verified in Appendix A.2.987

In the experiments (Section 4 and Appendix A.2), we compare our preference-grounding approach988

with RL-based baselines that estimate a standard value function similar to Eq. (9) from sparse989

environmental reward with KL penalty, such as the RLPrompt method [57] and the (supervised+)990

PPO/NLPO methods in RL4LMs [58]. We leave as future work the potential combination of our991

preference-grounded guidance with actor-critic and Q-learning methods in RL-based LM training.992

G Further Discussion on the Guidance Re-estimation Scheme993

As discussed in Section 2.2, in this paper, we deal with the most general setting where the LM994

training directly starts from a raw pre-trained LM, rather than an initial LM that has been fine-tuned995

via supervised learning on the desired dataset, such as in Stiennon et al. [10]. We also make no996

assumptions about the zero-shot ability of the raw pre-trained LM. We choose this setting because it997

is more general and naturally fits into the task of text-prompt generation, where supervised datasets998

of good prompts are not available and the initial LM cannot generate good prompts.999

As discussed before, under this general setting, the LM πθ can evolve from a less-preferred distribution1000

to a highly-preferred one, over the training process. Since our reward function rϕ is trained by text1001

sequences sampled from πθ, there is a distribution shift between the sequences used to train rϕ during1002

27

https://github.com/CarperAI/trlx/blob/0c5246f64e5e0ecb5fb2de65d440b122c792caf8/trlx/orchestrator/ppo_orchestrator.py#L224
https://github.com/CarperAI/trlx/blob/0c5246f64e5e0ecb5fb2de65d440b122c792caf8/trlx/orchestrator/ppo_orchestrator.py#L224
https://github.com/CarperAI/trlx/blob/0c5246f64e5e0ecb5fb2de65d440b122c792caf8/trlx/orchestrator/ppo_orchestrator.py#L224

reward-function learning, and the sequences evaluated by rϕ during LM training, especially after πθ1003

has been sufficiently improved. To keep rϕ as accurate guidance for LM training, a natural idea is1004

to refine rϕ periodically on the text generations from the latest LM, leading to our reward-function1005

retraining scheme.1006

We emphasize that the reward-function retraining scheme does not give our method an unfair1007

advantage over the baseline methods. In particular, RLPrompt [57] and RL4LMs’ methods [58]1008

retrain their value-functions in every optimization step, and thus, they query the environmental1009

reward in every optimization step. Specifically, in Algorithm 1 of the RL4LMs paper, the penalized1010

reward R̂t is calculated in each optimization step, whose calculation requires the true environmental1011

reward R (Eq. (1) of the RL4LMs paper). Besides, in the codebase of RLPrompt, this environmental1012

interaction is implemented in this line, which is queried in every optimization step, as seen in this line.1013

In the notion of Reinforcement Learning from Human Feedback (RLHF), this every-step interaction is1014

similar to asking humans to score the LM generations in every training step, which can be infeasible.1015

By contrast, in our paper, we reduce the frequency of these environmental interactions by retraining1016

the guidance model only periodically and only during the first half of the LM-training process.1017

Though the motivation of this reward-function retraining scheme comes from model-based RL1018

(Section 2.2), we notice that some prior RLHF works do implement similar ideas. For example,1019

Page 2 of Ziegler et al. [21] mentions that “..., we continue to collect additional data and retrain our1020

reward model as the policy improves (online data collection).” Page 2 of Stiennon et al. [10] mentions1021

that “We can then gather more human data using samples from the resulting policy, and repeat the1022

process.” Page 5 of Menick et al. [23] and Page 20 of Bai et al. [22] also have similar discussions.1023

Based on these, our reward-function retraining scheme is both well-motivated and practical, even1024

with human rankings in RLHF.1025

H Potential Negative Societal Impacts1026

Since our framework can ground the sequence-level preference into token-level guidance for LM1027

training and can be not tied to a specific preference source, it is possible that this framework may be1028

used to train ill-intended LMs by grounding some malicious or unethical preferences. This potential1029

negative impact may be mitigated by closer monitoring the datasets on which our framework operates.1030

I Limitations1031

Since our token-level guidance is learned by grounding sequence-level preference, a potential failure1032

case of our framework will be when the preference orderings are very noisy. In this situation, the1033

learned guidance may not be meaningful and hence could even deteriorate the subsequent utilization1034

of it in LM training.1035

Even though we have shown in Section 4.3 that it can be beneficial to use more than two sequences1036

to learn the token-level guidance, it can be practically challenging to obtain a high-quality ranking1037

among many candidate text sequences, e.g., when the number of sequences is more than seven.1038

Besides, the reward-function retraining scheme may incur some additional computational complexity,1039

compared with training the reward function only once and fixing it throughout the LM-training1040

process.1041

J Computational Resources1042

The experiments are conducted on NVIDIA GeForce RTX 3090 and NVIDIA A100 GPUs. Depending1043

on the specific task and setting, several experiments could be run concurrently on a single GPU.1044

28

https://github.com/mingkaid/rl-prompt/blob/24ff3e6a81bbd39e4d9ccaaaee41885bc5058682/rlprompt/modules/sql_module.py#L125
https://github.com/mingkaid/rl-prompt/blob/24ff3e6a81bbd39e4d9ccaaaee41885bc5058682/rlprompt/trainers/trainer.py#L158

