
Automatic Instruction Evolving for Large Language Models

Anonymous ACL submission

Abstract

Fine-tuning large pre-trained language models001
with Evol-Instruct has achieved encouraging002
results across a wide range of tasks. How-003
ever, designing effective evolving methods for004
instruction evolution requires substantial hu-005
man expertise. This paper proposes Auto Evol-006
Instruct, an end-to-end framework that evolves007
instruction datasets using large language mod-008
els without any human effort. The frame-009
work automatically analyzes and summarizes010
suitable evolutionary strategies for the given011
instruction data and iteratively improves the012
evolving method based on issues exposed dur-013
ing the instruction evolution process. Our ex-014
tensive experiments demonstrate that the best015
method optimized by Auto Evol-Instruct out-016
performs human-designed methods on various017
benchmarks, including MT-Bench, AlpacaEval,018
GSM8K, and HumanEval.019

1 Introduction020

Fine-tuning large language models (LLMs) to fol-021

low detailed instructions is vital to unlocking their022

power (Ouyang et al., 2022; Touvron et al., 2023b).023

High-quality datasets, such as ShareGPT (Chiang024

et al., 2023), OpenAssistant (Köpf et al., 2023),025

LIMA (Zhou et al., 2023), have greatly improved026

the performance of instruction-tuning, promoting027

the prosperity of LLM alignment. However, an-028

notating instruction following datasets with such029

quality is hard to scale, and its quality upper limit is030

also uncontrollable. Researchers (Xu et al., 2023;031

Yu et al., 2023; Liu et al., 2023b) are actively explor-032

ing ways to break through the quality upper-bound033

of existing datasets. Evol-Instruct (Xu et al., 2023)034

takes the high-quality data as a starting point, and035

further iteratively refines it using LLMs, improving036

its complexity and diversity. It has demonstrated037

superior performance across a broad range of pub-038

lic benchmarks that evaluate diverse capabilities,039

including instruction following (Zheng et al., 2023;040

Li et al., 2023), code generation (Luo et al., 2023b; 041

Chen et al., 2021), and mathematical reasoning 042

(Luo et al., 2023a; Cobbe et al., 2021). 043

While Evol-Instruct exhibits outstanding per- 044

formance, its heavy reliance on heuristic efforts 045

presents notable challenges. Whenever it is used 046

for a completely new task, the methods for exe- 047

cution evolution need to be redesigned. Such a 048

process requires a high level of expertise and con- 049

siderable costs, hindering its adaptation to a wider 050

spectrum of capabilities. To address these chal- 051

lenges, it needs to automate the Evol-Instruct pro- 052

cess, which will encounter the following difficul- 053

ties: (1) Design evolving methods automatically 054

that make the instructions more complex for a given 055

task (2) To keep the instruction evolution process 056

working properly, the evolving method needs to 057

avoid evolution failure. 058

In this paper, we propose Auto Evol-Instruct, an 059

effective approach to utilizing LLMs to replace hu- 060

man experts in designing methods for executing 061

instruction evolution. Auto Evol-Instruct automati- 062

cally designs evolving methods that make given in- 063

struction data more complex, enabling almost cost- 064

free adaptation to different tasks by only changing 065

the input data of the framework. Firstly, to tran- 066

sition from manually-designed evolving rules to 067

automated ones, we begin with a universal initial 068

evolving method. Our initial evolving method is 069

different from the method of Evol Instruct, which 070

requires human experts to specify the rules of evo- 071

lution. Instead, it can autonomously analyze the 072

input instruction and brainstorm evolution rules 073

suitable for given data. Due to the diversity and 074

complexity of varied instruction datasets, a fixed 075

evolving method can not guarantee the stability 076

and effectiveness of all data evolution. Therefore, 077

we leverage LLM as the optimizer to optimize the 078

initial evolving method iteratively to ensure the 079

lowest failure rate for a given instruction dataset. 080

We refer to the model used for evolution as the evol 081

1

1+1=?

a+2=7, a=？

a+3=8, a=？

a+1=5, a=4

feedback : Unsolvable
Question

feedback Answering
Instead of Evolution

feedback : Unimproved
Complexity

et1

Evol Trajectory Analysis Evolving Method Optimization

Add: Ensure the
Complexity increase

Evol
Instruction

a+5=0 &
a>0, a=?

Optimizer LLM

Evol LLM

Figure 1: Overall architecture of Auto Evol-Instruct. It illustrates the process of optimizing the initial evolving
method e0 into the optimal evolving method e∗, which specifically outlines the transition from et−1 to et. The
yellow part and green part denote Evol Trajectory Analysis and Evolving Method Optimization respectively. x(1) to
x(l) represents the example of evolutionary trajectory obtained by the evol LLM guided by et−1 evolving x for l
rounds. The feedback and potential improved evolving methods obtained from m Multiple Optimizations denote f1

t

to fm
t and e1t to emt respectively.

LLM, and the model used for optimization as the082

optimizer LLM. This optimization process involves083

two critical stages: (1) Evol Trajectory Analysis:084

The optimizer LLM carefully analyzes the poten-085

tial issues and failures exposed in instruction evolu-086

tion performed by evol LLM, generating feedback087

for subsequent optimization. (2) Evolving Method088

Optimization: The optimizer LLM optimizes the089

evolving method by addressing these identified is-090

sues in feedback. These stages alternate and re-091

peat to progressively develop an effective evolving092

method using only a subset of the instruction data.093

Once the optimal evolving method is identified, it094

directs the evol LLM to convert the entire instruc-095

tion dataset into more diverse and complex forms,096

thus facilitating improved instruction tuning.097

Our experiments show that the evolving meth-098

ods designed by Auto Evol-Instruct outperform099

the Evol-Instruct methods (Xu et al., 2023; Luo100

et al., 2023a,b) designed by human experts in101

instruction tuning across various capabilities, in-102

cluding instruction following, mathematical rea-103

soning, and code generation. Using only 10K104

evolved ShareGPT for fine-tuning Mixtral-8x7B105

(Jiang et al., 2024), we achieve 8.09 on MT-106

Bench (Zheng et al., 2023) and 91.4 on AlpacaE-107

val (Li et al., 2023), surpassing GPT-3.5-Turbo108

and WizardLM-70B, and comparable with Claude-109

2.0. Using only 7K evolved GSM8K training data110

for fine-tuning Mixtral-8x7B, we achieve 82.49 on111

GSM8K, surpassing GPT-3.5-Turbo, WizardMath-112

70B and MetaMath-70B (Yu et al., 2023). Using113

20K evolved Code Alpaca to fine-tune DeepSeek-114

Coder-Base-33B (Guo et al., 2024), we achieve115

77.4 on HumanEval, surpassing GPT-3.5-Turbo 116

and WizardCoder-34B. 117

2 Background 118

2.1 Evol-Instruct 119

Instruction evolution (Xu et al., 2023) involves re- 120

fining an instruction dataset to boost its complex- 121

ity and diversity, enhancing instruction tuning ef- 122

fectiveness. This method uses a human-designed 123

evolving method, denoted as e, to transform orig- 124

inal instruction dataset X = {x1, x2, · · · , xn}, 125

where each xi is an instruction-response pair, into 126

an improved dataset Xe. The aim is for Xe to yield 127

superior performance Q(Xe) in a specific capabil- 128

ity after instruction tuning, compared to the original 129

dataset’s performance Q(X). Essentially, by evolv- 130

ing the instruction dataset and subsequently tuning 131

a model on Xe, the model should perform better 132

on the targeted capability than it would using the 133

original dataset. 134

2.2 Problem Formulation 135

While Evol-Instruct shows excellent performance 136

across many areas, its dependence on high ex- 137

pertise and limited scope restrict its broader use. 138

Our research aims to develop an automated frame- 139

work that identifies the optimal instruction evolving 140

method, e∗, which maximizes performance after 141

instruction tuning: 142

e∗ = argmax
e

Q(Xe). (1) 143

This framework seeks to find the evolving method 144

e∗ that delivers the highest performance Q(Xe) 145

2

after tuning a model on the evolved dataset Xe.146

By automating this process, we aim to reduce the147

need for extensive human expertise and expand the148

application of instruction evolution.149

3 Auto Evol-Instruct150

Unlike Evol-Instruct, Auto Evol-Instruct is a fully151

automated framework that improves the complexity152

and quality of instruction data without any human153

intervention. Its key advancements include: (1)154

automatically designing evolving methods for in-155

struction evolution, facilitating adaptation to a wide156

range of tasks and enhancing model capabilities157

across a broader spectrum; (2) developing evolv-158

ing methods that surpass those crafted by human159

experts, while minimizing failures and ensuring160

successful execution of instruction evolution.161

Figure 1 illustrates the process of automating162

the design of evolving methods in the Auto Evol-163

Instruct Framework (Section 3.1-3.3). We also de-164

tail specific examples of how the evolving method165

changes at each step in the Table 10. This frame-166

work begins with a carefully designed universal167

evolving method and a seed instruction dataset168

X (Section 3.1). It then iteratively optimizes this169

initial evolving method, e0, to obtain the optimal170

evolving method, e∗ 1. In each optimization step t,171

we randomly sample a mini batch from X and uti-172

lize the evol LLM to evolve each instruction in the173

batch l times. Then the optimizer LLM analyzes174

the evolutionary trajectory of all instructions in the175

current batch to identify existing issues and gen-176

erate feedback (Section 3.2). As shown in Figure177

1, the optimizer LLM identifies problems such as178

“Unimproved Complexity”. The optimizer LLM179

will make corresponding optimizations to evolving180

method et−1 to obtain et based on the feedback.181

Specifically, the feedback “Unimproved Complex-182

ity” will prompt the optimizer LLM to add a con-183

straint “Ensure the Complexity increase” in et. To184

improve the stability, we execute “analysis opti-185

mization” multiple times with sampling decoding186

in parallel to obtain m optimized evolving meth-187

ods. Then, we select the method with the lowest188

evolution failure rate as the final et. The optimiza-189

tion process terminates when the failure rate of190

instruction evolution no longer decreases, or a max-191

imum number of optimization steps has reached192

(Section 3.3). Once the optimal evolving method193

1This process uses a subset of the full instruction data,
randomly sampling approximately 2,000 entries, to minimize
costs associated with developing the evolving method.

is identified, it will be applied to guide the instruc- 194

tion evolution across the entire instruction dataset, 195

resulting in an evolved dataset (Section 3.4). 196

3.1 Initial Evolving Method Design 197

The reason why Evol-Instruct is not universally 198

applicable is that the methods for complicating 199

instructions vary across different domains. For in- 200

stance, in the coding domain, methods to increase 201

the complexity of instructions such as "propose 202

higher time or space complexity requirements" 203

(Luo et al., 2023b) are meaningful, but they are 204

not quite suitable in the chat domain. The meth- 205

ods for complicating instructions in Evol-Instruct 206

need to be designed and summarized by human 207

experts. The core difference in our initial evolving 208

method design lies in that we delegate the process 209

of designing and summarizing evolving rules to the 210

LLMs for automation. As shown in the Figure 2, 211

firstly we ask the evol LLM to "read the instruction 212

carefully and list all the possible methods to make 213

this instruction more complex". Subsequently, the 214

evol LLM is tasked with devising a comprehensive 215

plan based on the listed methods, and implements 216

the plan to generate the evolved instruction. Lastly, 217

the evol LLM conducts a thorough review of the 218

evolved instruction, rectifying any unreasonable 219

parts, and delivers the final evolved instruction. 220

3.2 Evol Trajectory Analysis 221

We primarily utilize the optimizer LLM to identify 222

issues emerging during the instruction evolution 223

process and offer subsequent feedback for the opti- 224

mization of evolving method. (Examples of issues 225

are given in the Appendix B) Specifically, at op- 226

timization step t, the evolving method et−1 steers 227

the evol LLM to perform l rounds of evolution 228

on a batch of data Xt, culminating in the evolu- 229

tionary trajectory, St = {Xt, X
(1)
t , · · · , X(l)

t }. In 230

this trajectory, X(i)
t denotes the instruction evolved 231

from X
(i−1)
t using et−1. Following this, the opti- 232

mizer LLM scrutinizes the evolutionary trajectory 233

to pinpoint and provide feedback ft on any issues 234

detected. (Prompt used is detailed in Figure 7) 235

3.3 Evolving Method Optimization 236

We employ the optimizer LLM to optimize the 237

evolving method in response to insights gathered 238

from the evol trajectory analysis, in accordance 239

with the overall instruction evolution requirements. 240

In essence, during the step t, the optimizer LLM 241

3

 Initial Evolving Method

You are an Instruction Rewriter that rewrites the given #Instruction# into a more complex version.

 Please follow the steps below to rewrite the given "#Instruction#" into a more complex version.

 Step 1: Please read the "#Instruction#" carefully and list all the possible methods to make this instruction more complex (to

make it a bit harder for well-known AI assistants such as ChatGPT and GPT4 to handle). Please do not provide methods to

change the language of the instruction!

 Step 2: Please create a comprehensive plan based on the #Methods List# generated in Step 1 to make the #Instruction# more

complex. The plan should include several methods from the #Methods List#.

 Step 3: Please execute the plan step by step and provide the #Rewritten Instruction#. #Rewritten Instruction# can only add 10 to

20 words into the "#Instruction#".

 Step 4: Please carefully review the #Rewritten Instruction# and identify any unreasonable parts. Ensure that the #Rewritten

Instruction# is only a more complex version of the #Instruction#. Just provide the #Finally Rewritten Instruction# without any

explanation.

 Please reply strictly in the following format:

 Step 1 #Methods List#:

 Step 2 #Plan#:

 Step 3 #Rewritten Instruction#:

 Step 4 #Finally Rewritten Instruction#:

 #Instruction#:

{Instruction}

Figure 2: Initial Evolving Method. Under this method, the Evol LLM evolves the instruction. Auto Evol-Instruct
will optimize this method into an optimal version for evolving the entire dataset of instructions efficiently.
refines the evolving method et−1, by leveraging242

the feedback ft. This meticulous optimization243

yields an updated version of the evolving method244

et. (Prompt in Optimization detailed in Figure 8).245

Multiple Optimizations In the Evol Trajectory246

Analysis and Method Optimization Process, the op-247

timizer LLM sometimes struggles to consistently248

provide constructive feedback and enhance the249

evolving method. To bolster the stability of the250

Auto Evol-Instruct framework and draw inspiration251

from the self-consistency (Wang et al., 2022), we252

implement a strategy where, at each step, the opti-253

mizer LLM conducts m times of analysis and opti-254

mization with sampling decoding. This generates255

m different potential improved evolving methods,256

namely e1t to emt in Figure 1, allowing the model257

to explore more possibilities simultaneously (Yang258

et al., 2023). Specifically, we divide the instruction259

data into training data X and a development set D.260

We use the obtained potential methods to evolve261

instructions in D and generate corresponding re-262

sponse sets, denoted as Re1t
to Remt

. For a given263

eit, we calculate its evolution failure rate based on264

corresponding response set Reit
:265

λR
eit

=

∑
r∈R

eit

F (r)

|D|
(2)266

Here, |D| represents the size of the development267

set. F(r) is a function that determines whether in-268

struction evolution has failed, returning 1 for fail-269

ure and 0 for success. We have designed a series270

of rules to determine whether evolution has failed 271

based on the reaction of evol LLM when generating 272

answers for evolved instructions. For example, if 273

the answer contains “understood” or “Thank you” 274

and ends with a question mark, it indicates that the 275

evolved instruction has not become more complex 276

but is responding to the instruction being evolved 277

(please refer to Appendix A for detailed judgment 278

rules). Finally, the evolving method demonstrating 279

the lowest evolution failure rate is selected as the 280

subsequent step’s evolving method et. 281

3.4 Instruction Tuning on Evolved Data 282

The Auto Evol-Instruct leads us to derive the op- 283

timal evolving method e∗. This method is then 284

employed to guide the evol LLM, which substan- 285

tially improving the complexity and diversity of the 286

entire instruction dataset. As a result, we acquire 287

an evolved dataset. Subsequently, this enriched 288

dataset is used to fine-tune the base LLM, thereby 289

broadening the model’s range of capabilities. 290

4 Experiment 291

In this section, we conduct a detailed study on 292

the effects of Auto Evol-Instruct. We begin with 293

an overview of the experimental setup, then test 294

our method’s effectiveness in instruction following, 295

math reasoning, and code generation. 296

4.1 Experimental Setup 297

Table 1 illustrates the experimental setup, including 298

the seed datasets, pre-training base models of vary- 299

4

ing sizes (small and large) for instruction tuning,300

and the configuration of evol LLM and optimizer301

LLM. Refer to Appendix D for more details, and302

for details of the Baseline, refer to Appendix E.303

4.2 Evaluation Results304

Instruction Following We evaluate the instruction-305

following using MT-Bench and AlpacaEval. MT-306

Bench tests the model across various domains307

through multi-turn dialogues, while AlpacaEval au-308

tomates assessment based on AlpacaFarm (Dubois309

et al., 2023). Table 2 shows that our method sub-310

stantially improves performance across different311

model scales. For smaller models, our method312

improves by approximately 0.63 on MT-Bench313

compared to seed data. For larger models, there’s314

still a performance boost of 0.44. Despite using315

only 10K data for fine-tuning on Mixtral-8x7B, our316

method matches or surpasses the performance of317

open-source models that utilize more data and train318

on larger models, achieving results comparable to319

Tulu-v2-dpo on MT-Bench and AlpacaEval. Our320

model even performs on par with powerful closed-321

source models like Claude 2.0 and GPT-3.5-Turbo.322

Math Reasoning We assess the mathematical323

reasoning capabilities using GSM8K benchmark324

(Cobbe et al., 2021). The GSM8K comprises com-325

plex graduate-level math problems, with 7,473326

training samples and 1,319 testing samples. We327

employ the zero-shot testing approach and use328

test accuracy as the metric. Table 2 demonstrates329

that our Auto Evol-Instruct has significantly im-330

proved mathematical reasoning. For instance, our331

method improved by 13.84 compared to the seed332

data on Mistral-7B. Simultaneously, our method333

uses a minimal amount of instruction data (only334

7K) and can exceed GPT-3.5-turbo after fine-tuning335

on Mixtral-8x7B. This indicates that our method336

can substantially raise the upper limit of quality in337

existing mathematical data.338

Code Generation We use the HumanEval (Chen339

et al., 2021) to test code-writing capabilities. Hu-340

manEval comprises 164 unique programming chal-341

lenges, and we use pass@1 as the metric. Table 2342

illustrates that our method enhances the model’s343

capabilities effectively. Our method demonstrates344

significant improvement across various model sizes345

compared to Evol Instruct. For instance, at the346

33B scale, Evol-Instruct yields only a slight im-347

provement, while our method shows a boost of 5.4348

compared to Seed Data. Our results remain compet-349

itive even when compared with DeepSeek-Coder-350

Instruct-33B, which uses the same base model but 351

with instructions for fine-tuning on a much larger 352

scale (about 2B tokens) than ours. 353

5 Analysis 354

5.1 Effect of Initial Evolving Method 355

In this section, we delve into the significance of 356

the Initial Evolving Method within the Auto Evol- 357

Instruct framework, particularly focusing on its 358

impact on data evolving across various capabilities. 359

We employ several techniques to evolve datasets 360

like GSM8K, Alpaca (Taori et al., 2023), and Code 361

Alpaca. Figure 3 underscores the robust versatility 362

of initial evolving method in boosting different ca- 363

pabilities, establishing it as an exemplary starting 364

evolving method in the framework. For instance, 365

when compared with Evol Instruct, initial evolv- 366

ing method demonstrates a notable improvement, 367

elevating the MT-Bench score from 6.31 to 6.60, 368

and the HumanEval from 61.0 to 62.2. Moreover, 369

the Auto Evol-Instruct framework, building on the 370

foundation laid by initial evolving method, exhibits 371

potential for further enhancements. It was observed 372

that on GSM8K, Auto Evol-Instruct could elevate 373

the performance from 62.7 to 64.4. These findings 374

highlight that our proposed method can effectively 375

optimize the initial evolving method, leading to 376

improvements in various benchmarks. 377

To demonstrate the effectiveness of the Auto 378

Evol-Instruct in enhancing different initial evolv- 379

ing methods, we conducted an experiment using a 380

deliberately simple evolving method. We removed 381

most of the key designs from the original initial 382

evolving method, such as step-by-step evolving pro- 383

cess, etc. (see Figure 9 for details). We applied our 384

framework to both this basic method and our well- 385

designed initial evolving method on the GSM8K 386

dataset. As evident from Figure 4, even when start- 387

ing with the simple method, our framework yielded 388

significant improvements. For instance, the per- 389

formance on GSM8K increased from 59.4 to 62.7 390

after refinement with our framework. These find- 391

ings underscore the adaptability of our framework 392

across varying initial methods. 393

5.2 Effect of Multiple Optimizations 394

We explore the impact of multiple optimizations 395

in Auto Evol-Instruct and choose GSM8K for ab- 396

lations. We keep the default hyper-parameters of 397

Auto Evol-Instruct, exploring the effect of the num- 398

ber of optimizations. Figure 5(a) reveals a distinct 399

5

Seed Data Base Models evol LLM optimizer LLM
Dataset Datasize Small Large

Instruction Following ShareGPT 10 K Mistral-7B Mixtral-8x7B GPT-4 GPT-4
Mathematical Reasoning GSM8K Train 7 K Mistral-7B Mixtral-8x7B GPT-4 GPT-4
Code Generation Code Alpaca 20 K CodeLlama-13B-Python DeepSeek-Coder-Base-33B GPT-4 GPT-4

Table 1: Data Stastics.
Instruction Following Math Reasoning Code GenerationModel Size MT-Bench AlpacaEval (%) GSM8K (%) HumanEval (%)

Closed-Source Models
Gemini Pro - - 79.66 76.42 59.76
Claude 2.0 - 8.06 91.36 88.00 71.20
GPT-3.5-Turbo - 7.90 89.37 80.80 73.20
GPT-4 - 8.99 95.28 92.00 84.10

Open-Source Base Models
Mistral 7 B - - 37.80 30.50
DeepSeek-Coder-Base 33 B - - 60.70 56.10
LLaMA-2 34 B - - 42.20 22.60
CodeLlama-Base 34 B - - 58.20 48.20
Mixtral 8x7B - - 58.40 40.20
LLaMA-2 70 B - - 56.80 29.90

Open-Source General Instruction-Tuned Models
Mistral-7B-Instruct-v0.1 7 B 6.84 69.65 14.25 31.10
Vicuna-v1.3 33 B 7.12 88.99 - -
Mixtral-8x7B-Instruct-v0.1 8x7B 8.30 94.78 60.73 34.15
LLaMA-2-Chat 70 B 6.86 92.66 - 32.30
Tulu-v2-dpo 70 B 7.89 95.10 71.50 -
WizardLM-v1.0 70 B 7.78 92.91 77.60 50.60

Open-Source Instruction Models For Specific Capabilities
WizardMath 7 B - - 54.90 -
MetaMath 7 B - - 66.50 -
WizardMath 70 B - - 81.60 -
MetaMath 70 B - - 82.30 -
WizardCoder 15 B - - - 57.30
CodeLlama-Instruct 34 B - - - 41.50
DeepSeek-Coder-Instruct 33 B - - - 79.30
WizardCoder 34 B - - - 71.50

Instruction Evolution Methods
Seed Data small 6.88 84.08 56.90 57.90
Evol-Instruct small 6.80 (-0.08) 86.67 (+2.59) 63.15 (+ 6.25) 61.59 (+ 3.69)
Auto Evol-Instruct small 7.51 (+ 0.63) 84.41 (+0.33) 70.74 (+13.84) 65.85 (+7.95)
Seed Data large 7.65 87.98 70.60 72.00
Evol-Instruct large 7.76 (+0.11) 89.50 (+1.52) 79.15 (+ 8.55) 73.20 (+1.2)
Auto Evol-Instruct large 8.09 (+ 0.44) 91.37 (+3.39) 82.49 (+ 11.89) 77.40 (+ 5.4)

Table 2: Main Result.

MT-Bench GSM8K HumanEval
Methods

Sc
or

es

5.95

6.31

6.6
6.71

56.9

61.4
62.7

64.4

57.9

61.0
62.2

64

Seed Data
Evol-Instruct
Initial Evol Prompt
Auto Evol-Instruct

Figure 3: Effect of the Initial Evolving Method. GPT-
3.5-turbo as evol LLM, GPT-4 as optimizer LLM.

pattern: as we increase the number of optimiza-400

tions, there’s a notable enhancement in data effi-401

ciency via optimal evolving methods. For example,402

setting the number of optimizations to 1 achieved403

62.7 on the GSM8K. This accuracy improved to404

Default Weak
Methods

56

58

60

62

64

Sc
or

es

62.7

59.4

64.4

62.7

Initial
Optimal

Figure 4: Effect of Auto Evol-Instruct on Initial Evolv-
ing Methods. GPT-3.5-turbo as evol LLM, GPT-4 as
optimizer LLM. Default and Weak respectively repre-
sent original and simple evolving method
65.0 when number of optimizations raised to 9. 405

This trend indicates that more optimizations allow 406

the optimizer LLM to explore a wider array of op- 407

tions, improving its ability to pinpoint areas where 408

6

1 3 5 7 9

63

64

65

(a) Multiple Optimizations

3 6 9 12 1560

61

62

63

64

65

(b) Total Steps
Figure 5: Hyperparameters for Auto Evol-Instruct. GPT-
3.5-turbo as evol LLM, GPT-4 as optimizer LLM.

evolving method can be further refined for opti-409

mal performance. However, there are important410

trade-offs to consider. Elevating the number of411

optimizations can also bring increase in resources412

consumption (Guo et al., 2023). On the other hand,413

fewer optimizations may lead to a more focused re-414

finement of current evolving method, which could415

result in local optimal that might not fully exploit416

the potential of evolving method. We also explored417

the relationship between the optimization steps and418

effects of instruction tuning. Figure 5(b) shows419

that as the number of optimization steps increases,420

the performance can increase monotonically in the421

beginning, but after 12 steps, it rapidly declines.422

This may be because over-optimization could po-423

tentially lead to an accumulation of superfluous424

information in the evolving method, consequently425

possibly diminishing its effectiveness (Examples426

in Section 5.7).427

5.3 Different Evol LLM428

In this section, we evaluate the performance of Auto429

Evol-Instruct when integrated with various evol430

LLMs. Table 3 reveals the impact of using GPT-3.5431

and GPT-4 as the underlying evol LLMs to evolve432

GSM8K. Notably, with GPT-4 as the evol LLM,433

our methodology yields an improvement from 63.2434

to 70.7, surpassing the Evol Instruct. Addition-435

ally, employing a more advanced evol LLM en-436

hances the effectiveness significantly. For instance,437

switching the evol LLM from GPT-3.5 to GPT-4438

leads to a notable increase in performance, jumping439

from 64.4 to 70.7. These findings clearly demon-440

strate the broad applicability and effectiveness of441

our framework across different evol LLMs.442

5.4 Mix Rounds Scaling443

We conduct experiments on a mixed set of evolved444

data across various rounds using GSM8K to evalu-445

ate the data scaling effect. Figure 6 illustrates the446

Method Evol LLM GSM8K
Seed Data - 56.9
Evol Instruct GPT-3.5 61.4
Evol Instruct GPT-4 63.2
Auto Evol-Instruct GPT-3.5 64.4
Auto Evol-Instruct GPT-4 70.7

Table 3: Different evolution execution LLMs.

0 1 1+2 1+2+356
58
60
62
64
66
68
70
72

Auto Evol-Instruct
Evol Instruct

Figure 6: Mix Rounds Experiment. Use GPT-3.5-turbo
as the evol LLM, GPT-4 as the optimizer LLM.

results, highlighting the superior scalability of our 447

approach in comparison to Evol Instruct. Notably, 448

the data from round 1 of our method outperforms 449

that of Evol Instruct’s combined data from rounds 1 450

and 2. Furthermore, the performance of our model 451

consistently improves as we scale the data from 452

round 1 to a mixture of rounds 1, 2, and 3. 453

5.5 Discussion of Complexity and Diversity 454

Liu et al. (2023b) underscore the significant impact 455

that dataset complexity and diversity have on model 456

alignment. Instag (Lu et al., 2023) suggests that 457

the variety and quantity of intentions and semantics 458

in a dataset are crucial factors for its complexity 459

and diversity. We evolve 100 instructions using 460

various techniques, employing Instag’s method for 461

automated tagging. We assessed diversity by calcu- 462

lating the average number of unique tags for each 463

data, and complexity by the mean tag count. Table 464

4 reveals a distinct correlation: as data becomes 465

more diverse and complex, model performance 466

markedly improves. For instance, Evol Instruct 467

enhanced the original code alpaca, increasing its 468

diversity from 1.95 to 2.37 and its complexity from 469

4.06 to 4.55. This enhancement was mirrored in 470

a notable elevation of the HumanEval, climbing 471

from 57.9 to 64.0. This supports the success of 472

Auto Evol-Instruct in substantially boosting data 473

complexity and diversity, thereby significantly im- 474

proving model capability. 475

5.6 Contamination Test 476

Current methods for data evolving predominantly 477

utilize LLMs. To safeguard against potential data 478

leakage, we employ Liu et al. (2023a)’s method- 479

ology for conducting a contamination assessment 480

7

Math Diversity Complexity GSM8K
GSM8K Training 1.39 4.82 56.9
Evol Instruct 1.69 4.90 61.4
Auto Evol-Instruct 2.2 5.54 64.4
Chat Diversity Complexity MT-Bench
Alpaca 2.16 2.70 5.95
Evol Instruct 3.15 3.63 6.31
Auto Evol-Instruct 3.19 3.89 6.71
Code Diversity Complexity HumanEval
Code Alpaca 1.95 4.06 57.9
Evol Instruct 2.37 4.55 61.0
Auto Evol-Instruct 3.05 5.18 64.0

Table 4: Result correlates with complexity and diversity.
GPT-3.5-turbo as evol LLM, GPT-4 as optimizer LLM.
GSM 8K, Alpaca and Code Alpaca as Seed Data

on evolving data, utilizing n-gram matches as a481

measure. Specifically, for the GSM8K, our evolv-482

ing process yielded 7K data, out of which merely483

10 exhibited any 13-gram match as detailed in the484

Table 8. These results indicate that our method485

effectively minimizes the risk of data leakage.486

5.7 Case Study487

The dynamic transformations inherent in the op-488

timization process are elaborated in Appendix H.489

This progression demonstrates a marked improve-490

ment in resolving issues encountered during in-491

struction evolution. Table 10 provides examples492

of how the evolving method is optimized at each493

step based on the previous one. For example, Ini-494

tial evolving method (Figure 10) guides the evol495

LLM to generate the evolved instruction. Then, the496

optimizer LLM analyzes the evolution trajectory497

and identifies issues such as redundancy and clar-498

ity in the evolved instruction, providing feedback.499

Based on this feedback, the optimizer LLM up-500

dates the evolving method by incorporating math-501

ematical elements like variables, constants, and502

conditions. This updated evolving method (Fig-503

ure 11) then guides the evol LLM to generate an504

updated evolved instruction, which introduces a505

clearer challenge focused on understanding mathe-506

matical relationships and variable quantities across507

two periods.508

5.8 Cost Comparison509

Auto Evol-Instruct utilizes a small subset of the510

complete data to devise an optimal evolving511

method. This method is then employed to evolve512

the entire instruction dataset. Table 9 compares513

the total API calls made by Auto Evol-Instruct and514

Evol Instruct. The results demonstrate that our Auto515

Evol-Instruct achieves significantly superior results516

compared to Evol Instruct, while incurring only a517

few thousand additional API calls. This negligible518

extra cost of a few thousand API calls is incon- 519

sequential when dealing with large-scale datasets 520

containing thousands or millions of instructions. 521

6 Related Work 522

Instruction tuning emerges as a pivotal strategy for 523

unlocking the potential of LLMs (Ouyang et al., 524

2022; Touvron et al., 2023b). By curating high- 525

quality datasets, we can more efficiently align these 526

models with desired direction (Zhou et al., 2023). 527

The challenge of scaling high-quality instruction 528

data remains a central research interest. Some re- 529

searchers prioritize human annotation for creat- 530

ing instruction data, such as ShareGPT (Chiang 531

et al., 2023) and OpenAssistant (Köpf et al., 2023). 532

Other researchers explore more efficient ways to 533

break through the quality upper-bound of exist- 534

ing datasets (Xu et al., 2023; Liu et al., 2023b; 535

Zhao et al., 2023). Xu et al. (2023) introduces 536

Evol-Instruct, a methodology that iteratively re- 537

fines instruction-following data to produce datasets 538

that are both more complex and diverse. Luo et al. 539

(2023b) develop evolving methods tailored to the 540

nuances of code data based on Evol-Instruct. Dis- 541

tinct from these methodologies, our approach intro- 542

duces a fully automated framework for developing 543

evolving methods. This innovation is not only scal- 544

able but also versatile, extending its utility across a 545

broad spectrum of capabilities. LLMs like GPT-4 546

and PaLM are capable of optimizing their output 547

through internal or external feedback mechanisms 548

(Suzgun and Kalai, 2024; Wang et al., 2022; Yang 549

et al., 2023). We use this capabilities to address 550

identified issues in the evolving method and adapt 551

to the characteristics of the instruction data. 552

7 Conclusion 553

This paper introduces Auto Evol-Instruct, an inno- 554

vative approach that successfully automates the evo- 555

lution of instruction datasets for LLMs, eliminating 556

the need for human intervention. Our method cen- 557

ters on the automatic analysis and summarization 558

of appropriate evolutionary strategies for the given 559

instruction data. It iteratively refines evolving meth- 560

ods by addressing the issues identified during the 561

instruction evolution process. The experiments con- 562

ducted have shown that methods optimized by Auto 563

Evol-Instruct, significantly surpass those crafted by 564

humans across various benchmarks, including MT- 565

Bench, AlpacaEval, GSM8K and HumanEval. 566

8

Limitations567

Although Auto Evol-Instruct has demonstrated ex-568

cellent performance in instruction tuning across569

various capabilities, several directions are worth570

exploring in future work:571

(1) While we have validated the effectiveness of572

Auto Evol-Instruct on benchmarks reflecting dif-573

ferent capabilities such as instruction following,574

mathematical reasoning, and code generation, we575

can further evaluate its performance on other tasks576

like MMLU (Hendrycks et al., 2021) and Truth-577

fulQA (Lin et al., 2022).578

(2) We have validated the effectiveness of our579

method on multiple base LLMs, including Mis-580

tral, Mixtral-8x7B, CodeLlama-13B-Python, and581

DeepSeek-Coder-Base-33B. However, we can still582

assess its effectiveness on other base LLM mod-583

els, such as Qwen (Bai et al., 2023) and LLaMA584

(Touvron et al., 2023a,b).585

(3) The evol LLM and Optimizer LLM used in586

Auto Evol-Instruct are primarily GPT-3.5-Turbo587

and GPT-4. In the future, this can be expanded to588

include other LLMs, such as Claude.589

(4) We aim to propose an end-to-end automated590

instruction evolution framework that utilizes sim-591

ple and universal prompts for Evolutionary Trajec-592

tory Analysis and Evolutionary Method Optimiza-593

tion. While the prompts we employ are straight-594

forward, experiments demonstrate that the frame-595

work is highly effective. Moving forward, we can596

explore more sophisticated prompts to implement597

Evolutionary Trajectory Analysis and Evolutionary598

Method Optimization, thereby further enhancing599

the efficacy of the Auto Evol-Instruct.600

Ethics Statement601

All the datasets used in this paper are public and602

have been reviewed to ensure they do not contain603

any personally identifiable information or offensive604

content. However, as these datasets are sourced605

from the Internet, potential bias may still be present.606

Furthermore, despite our careful review, the pro-607

cess of instruction evolution involving the LLMs608

throughout may inadvertently introduce inappro-609

priate information into the evolved data. It’s also610

worth noting that our models are fine-tuning on611

GPUs, which could have an environmental impact.612

References 613

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, 614
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei 615
Huang, et al. 2023. Qwen technical report. arXiv 616
preprint arXiv:2309.16609. 617

Sahil Chaudhary. 2023. Code alpaca: An instruction- 618
following llama model for code generation. 619

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 620
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 621
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 622
Greg Brockman, et al. 2021. Evaluating large 623
language models trained on code. arXiv preprint 624
arXiv:2107.03374. 625

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 626
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 627
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. 628
2023. Vicuna: An open-source chatbot impressing 629
gpt-4 with 90%* chatgpt quality. See https://vicuna. 630
lmsys. org (accessed 14 April 2023). 631

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 632
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 633
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 634
Nakano, et al. 2021. Training verifiers to solve math 635
word problems. arXiv preprint arXiv:2110.14168. 636

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, 637
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy 638
Liang, and Tatsunori B. Hashimoto. 2023. Alpaca- 639
farm: A simulation framework for methods that learn 640
from human feedback. Preprint, arXiv:2305.14387. 641

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 642
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 643
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the 644
large language model meets programming–the rise of 645
code intelligence. arXiv preprint arXiv:2401.14196. 646

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao 647
Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yu- 648
jiu Yang. 2023. Connecting large language models 649
with evolutionary algorithms yields powerful prompt 650
optimizers. arXiv preprint arXiv:2309.08532. 651

Dan Hendrycks, Collin Burns, Steven Basart, Andy 652
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein- 653
hardt. 2021. Measuring massive multitask language 654
understanding. In 9th International Conference on 655
Learning Representations, ICLR 2021, Virtual Event, 656
Austria, May 3-7, 2021. OpenReview.net. 657

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 658
sch, Chris Bamford, Devendra Singh Chaplot, Diego 659
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 660
laume Lample, Lucile Saulnier, et al. 2023. Mistral 661
7b. arXiv preprint arXiv:2310.06825. 662

Albert Q Jiang, Alexandre Sablayrolles, Antoine 663
Roux, Arthur Mensch, Blanche Savary, Chris Bam- 664
ford, Devendra Singh Chaplot, Diego de las Casas, 665
Emma Bou Hanna, Florian Bressand, et al. 2024. 666
Mixtral of experts. arXiv preprint arXiv:2401.04088. 667

9

https://arxiv.org/abs/2305.14387
https://arxiv.org/abs/2305.14387
https://arxiv.org/abs/2305.14387
https://arxiv.org/abs/2305.14387
https://arxiv.org/abs/2305.14387
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte,668
Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens,669
Abdullah Barhoum, Nguyen Minh Duc, Oliver Stan-670
ley, Richárd Nagyfi, et al. 2023. Openassistant671
conversations–democratizing large language model672
alignment. arXiv preprint arXiv:2304.07327.673

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,674
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and675
Tatsunori B. Hashimoto. 2023. Alpacaeval: An au-676
tomatic evaluator of instruction-following models.677
https://github.com/tatsu-lab/alpaca_eval.678

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.679
TruthfulQA: Measuring how models mimic human680
falsehoods. In Proceedings of the 60th Annual Meet-681
ing of the Association for Computational Linguistics682
(Volume 1: Long Papers), pages 3214–3252, Dublin,683
Ireland. Association for Computational Linguistics.684

Bingbin Liu, Sebastien Bubeck, Ronen Eldan, Janard-685
han Kulkarni, Yuanzhi Li, Anh Nguyen, Rachel Ward,686
and Yi Zhang. 2023a. Tinygsm: achieving> 80% on687
gsm8k with small language models. arXiv preprint688
arXiv:2312.09241.689

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang,690
and Junxian He. 2023b. What makes good data691
for alignment? a comprehensive study of auto-692
matic data selection in instruction tuning. Preprint,693
arXiv:2312.15685.694

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Jun-695
yang Lin, Chuanqi Tan, Chang Zhou, and Jingren696
Zhou. 2023. # instag: Instruction tagging for analyz-697
ing supervised fine-tuning of large language models.698
arXiv e-prints, pages arXiv–2308.699

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-700
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei701
Lin, Shifeng Chen, and Dongmei Zhang. 2023a. Wiz-702
ardmath: Empowering mathematical reasoning for703
large language models via reinforced evol-instruct.704
arXiv preprint arXiv:2308.09583.705

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo706
Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qing-707
wei Lin, and Daxin Jiang. 2023b. Wizardcoder:708
Empowering code large language models with evol-709
instruct. arXiv preprint arXiv:2306.08568.710

OpenAI. 2023. Gpt-4 technical report. Preprint,711
arXiv:2303.08774.712

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,713
Carroll Wainwright, Pamela Mishkin, Chong Zhang,714
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.715
2022. Training language models to follow instruc-716
tions with human feedback. Advances in Neural717
Information Processing Systems, 35:27730–27744.718

Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-719
inabadi, Olatunji Ruwase, Shuangyan Yang, Minjia720
Zhang, Dong Li, and Yuxiong He. 2021. {ZeRO-721
Offload}: Democratizing {Billion-Scale} model722
training. In 2021 USENIX Annual Technical Con-723
ference (USENIX ATC 21), pages 551–564.724

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 725
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 726
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 727
Code llama: Open foundation models for code. arXiv 728
preprint arXiv:2308.12950. 729

Mirac Suzgun and Adam Tauman Kalai. 2024. 730
Meta-prompting: Enhancing language models 731
with task-agnostic scaffolding. arXiv preprint 732
arXiv:2401.12954. 733

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 734
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 735
and Tatsunori B. Hashimoto. 2023. Stanford alpaca: 736
An instruction-following llama model. https:// 737
github.com/tatsu-lab/stanford_alpaca. 738

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 739
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 740
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 741
Azhar, et al. 2023a. Llama: Open and effi- 742
cient foundation language models. arXiv preprint 743
arXiv:2302.13971. 744

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 745
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 746
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 747
Bhosale, et al. 2023b. Llama 2: Open founda- 748
tion and fine-tuned chat models. arXiv preprint 749
arXiv:2307.09288. 750

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, 751
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and 752
Denny Zhou. 2022. Self-consistency improves chain 753
of thought reasoning in language models. arXiv 754
preprint arXiv:2203.11171. 755

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 756
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin 757
Jiang. 2023. Wizardlm: Empowering large lan- 758
guage models to follow complex instructions. arXiv 759
preprint arXiv:2304.12244. 760

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, 761
Quoc V Le, Denny Zhou, and Xinyun Chen. 2023. 762
Large language models as optimizers. arXiv preprint 763
arXiv:2309.03409. 764

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, 765
Zhengying Liu, Yu Zhang, James T Kwok, Zhen- 766
guo Li, Adrian Weller, and Weiyang Liu. 2023. 767
Metamath: Bootstrap your own mathematical ques- 768
tions for large language models. arXiv preprint 769
arXiv:2309.12284. 770

Yingxiu Zhao, Bowen Yu, Binyuan Hui, Haiyang Yu, 771
Fei Huang, Yongbin Li, and Nevin L Zhang. 2023. 772
A preliminary study of the intrinsic relationship be- 773
tween complexity and alignment. arXiv preprint 774
arXiv:2308.05696. 775

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 776
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 777
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023. 778
Judging llm-as-a-judge with mt-bench and chatbot 779
arena. arXiv preprint arXiv:2306.05685. 780

10

https://github.com/tatsu-lab/alpaca_eval
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2303.08774
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao781
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,782
Lili Yu, et al. 2023. Lima: Less is more for alignment.783
arXiv preprint arXiv:2305.11206.784

11

A Evolution Failures Detection785

We categorize prevalent scenarios of failure (Xu786

et al., 2023) in instruction evolution across vari-787

ous capabilities and devise general detection rules788

F . (See Table 5 for illustrative examples corre-789

sponding to these situations) When the following790

scenarios occur, the return value of F is 1:791

1. Stagnant Complexity: The evolved instruc-792

tion does not exhibit enhanced complexity, merely793

addressing the scope of the original instruction.794

Characteristically, responses to such instructions795

begin with phrases like “Understood” or “Thank796

you” and conclude with a question mark.797

2. Insufficient Qualification: The evolved in-798

structions lack necessary qualifications, necessitat-799

ing additional inquiries for generating a meaningful800

response. Typically, responses in these situations801

commence with “Sure” and terminate with a ques-802

tion mark.803

3. Loss of Key Information: The evolved in-804

struction omits crucial details from the original805

instruction, leading to a need for supplementary806

information before a substantial response can be807

provided. Responses in these cases often include808

requests for more information, typically indicated809

by phrases like “please provide”.810

B Evolution Issue Examples811

To illustrate the issues encountered during data812

evolution, we conduct an empirical analysis by ran-813

domly selecting 200 instructions from the GSM814

8K. These instructions are then subjected to evolu-815

tion using the initial evolving method (Figure 2).816

We employ the issue detection method described in817

Section 3.2 to pinpoint and categorize prevalent is-818

sues. Our findings, including illustrative examples,819

are presented in the Table 6 and Table 7.820

The analysis reveals that the initial evolving821

method is plagued by a series of shortcomings. For822

example, it fails to adequately account for the com-823

plexity inherent in evolving instructions. This over-824

sight results in several critical problems, such as the825

tendency to alter the core nature of the problem, the826

introduction of irrelevant details, or the generation827

of contradictions with the original problem setup.828

Furthermore, the initial method appears to overlook829

the unique attributes of mathematical instructions.830

This lapse leads to evolved instructions that often831

contain “Incorrect or unrealistic mathematical cal-832

culations.” These observations underscore the ur-833

gent need for a comprehensive optimization of the834

 Prompt For Evol Trajectory Analysis

The following list shows cases where an Instruction evolves into a

more complex version of an Instruction.

For each case, stage 0 represents the Instruction in its initial state, and

each subsequent stage requires an increase in complexity based on

the previous stage.

Please identify cases that failed to evolve, and provide their case ID

and reasons.

{Evolutionary Trajectory}

Figure 7: Prompt for Evol Trajectory Analysis. Opti-
mizer LLM will scrutinize the evolutionary trajectory
under the guidance of this prompt to pinpoint and pro-
vide feedback on any issues detected.

 Prompt For Evolving Method
Optimization

{Feedback}

I will provide you with the method for evolving the above instructions.

You need to optimize this method based on the feedback from the

evolution failure case, without harming the performance on other cases,

and ensure that the complexity increase brought by the optimized method

is not lower than the previous method.

 Please provide the optimized method in the following format.

```Optimized Method\n<Optimized Method Here>\n```

{Evol Prompt}

Figure 8: Prompt for Evolving Method Optimization.
The optimizer LLM refines the evolving method guided
by this prompt.

evolving method, ensuring it aligns more closely 835

with the unique characteristics of the instruction 836

data. 837

C Prompt For Auto Evol-Instruct 838

We have designed a simple and effective Prompt 839

to guide Optimizer LLM for evol trajectory anal- 840

ysis (Figure 7) and evolving method optimization 841

(Figure 8). 842

D Experimental Details 843

D.1 Experimental Setup 844

For instruction following, we randomly select 10K 845

data from ShareGPT as seed data and set both 846

evol LLM and optimizer LLM to GPT-4. We use 847

Evol-Instruct and Auto Evol-Instruct to obtain 10K 848

evolved data respectively. Then, we perform in- 849

struction tuning on Mistral-7B (Jiang et al., 2023) 850

(small) and Mistral-8x7B (large). 851

For mathematical reasoning, GSM8K training 852

data serves as seed data, evol LLM and optimizer 853

LLM are set to GPT-4. About 7K evolved data 854

is obtained respectively through Evol-Instruct and 855

Auto Evol-Instruct, and fine-tuned on Mistral-7B 856

12



Failure Scenarios Original Instruction Evolved Instruction Response Detection Rules

Stagnant Complexity

Rearrange this sentence for clarity:
the ocean waves waves of the crashing
onto shore

With their mighty force,...,
creating a symphony of sound.

Understood. Would you like me
to provide any additional
information or perform any
specific tasks related to
this description of the ocean
and its waves?

Begin with "Understood",
end with "?"

Generate a story based on the topic ’
a day at the beach

Amidst the turmoil of her ...
love in unexpected places.

What would you like me to do
with this information?

Begin with "What",
end with "?"

Define the term ’computer vision

Define the term ’computer
vision’, which refers to ...
rather than low-level
processing.

That is correct! Do you have
any other questions
or tasks for me?

Begin with
"That is correct",
end with "?"

Explain why the sun appears red at
sunset.

Rayleigh scattering, a
phenomenon in atmospheric
physics, is ... good or
bad fortune.

Thank you for the information.
Is there anything
specific you would like me
to do with this information?

Begin with "Thank you",
end with "?"

What should I add in this function
to generate a random number?\r
\ndef generate_random():\n # Your
code here

def generate_random ...
print(f"The sum of all
the generated random numbers
is {sum}.")

Great! Do you want me to
explain what this code does?

Begin with "Great",
end with "?"

Insufficient Qualification Make an API call to retrieve the
latest news headlines for the world.

Make an API call to retrieve
the latest news headlines
for the world, but only
from the United States, filter
the headlines to only
include news related to
technology, and retrieve
news headlines from the past
24 hours.

Sure, I can help you with
that. Which news API would
you like me to use for
this task?

Begin with "Sure",
end with "?"

Loss of Key Information Classify the provided objects.
\nInput: dog, cat, ant

Classify the provided objects
into seven categories:
mammals, insects, birds,
reptiles, fish, amphibians,
and arachnids. Use the
criteria of habitat, diet,
physical characteristics,
reproduction, behavior,
lifespan, and phylogenetic
relationships to
classify the objects.

I’m sorry, but you have not
provided any objects to
classify. Please provide a
list of objects for me
to classify into the seven
categories.

Contain "please provide"

Table 5: Evolution Failures Detection Examples.

Issue ExampleIssue Name Issue Explanation Original Instruction Evolved Instruction Reason

Lack of consistency
and logical progression
in complexity

Introduce new concepts or variables
without building on the previous
instruction, making the problem
confusing or unrealistic.

One barnyard owl makes 7 hoot sounds per
minute, measured in decibels. If the
barn is located near a construction
site and only 15 hoot sounds per minute
are heard coming out of the barn, how
many barnyard owls are making the hoot
sounds, assuming each owl makes the same
number of hoot sounds?

Assuming some owls make 10 hoot sounds
per minute and others make 5 hoot sounds
per minute, and the barn is located 100
meters away from a construction site,
how many barnyard owls are making the
hoot sounds if 20 hoot sounds per minute
are heard coming out of the barn, and each
owl makes 7 hoot sounds per minute measured
in decibels?

Introduce new concepts (owls making
different amounts of hoots, the barn’s
location, sound measurement in decibels)
without clearly building on the previous
instruction. The complexity does not
gradually increase but rather jumps
erratically.

Incorrect or unrealistic
mathematical calculations

Introduce mathematical operations
or equations that don’t make sense
in the context of the problem or
are mathematically incorrect.

If Betty has 12 oranges, and Sandra has
3 times as many oranges as Betty, then
Sandra has 12 multiplied by 3, which
equals 36 oranges. Emily has 7 times
as many oranges as Sandra, so Emily
has 36 raised to the power of 7 oranges.

If Betty has 12 oranges, and Sandra has 3
times as many oranges as Betty, then Sandra
has 12 multiplied by 3, which equals 36
oranges. Emily has 7 times as many oranges as
Sandra, so Emily has 3.6 x 10^8 oranges. If
Emily has more oranges than Betty, then she has
3.6 x 10^11 million oranges.

The problem becomes mathematically
incorrect. The multiplication and
powers used in instruction do not
make sense in the context of the
problem and create an unrealistic
scenario.

Changing the original
instruction

Change the nature of the problem,
introduce irrelevant details, or
contradict the original problem
set-up.

In seven years, Talia will be 20 years old.
Talia’s mom is currently three times as
old as Talia is today. In three years,
Talia’s father will be the same age as Talia’
s mom is today. Currently, how many years
old is Talia’s father?

Talia’s father is currently X years older than
Talia, where X is the difference between the
age Talia’s mother was when Talia was born and
the age Talia’s father will be in three years.

The evolution from does not increase
in complexity as the original problem
is completely changed. The initial
problem is about calculating ages,
but the evolved problem introduces a
variable X without any context. The
complexity is not increased but the
problem is made unnecessarily confusing.

Inconsistent or
contradictory information

Introduce information that
contradicts previous instruction

John orders food for a massive restaurant.
He orders 1000 kilograms of beef for 8
per pound. He also orders twice that much
chicken at 3 per kilogram. If the cost
of chicken is $2 per kilogram, and the
total cost of beef is greater than the
total cost of chicken, what is the final
cost of the order?

John, the head chef of a high-end restaurant,
orders a massive amount of food for his
establishment. He orders 1000 kilograms of
premium beef at a cost of 8 per pound, and
twice that amount of organic chicken at a cost
of 3 per kilogram. If the cost of chicken is
$2 per kilogram, and the total cost of beef is
greater than the total cost of chicken, what is
the final cost of the order? Please calculate
the final cost using the following equation:
(1000 * 2 * 3) + (1000 * 8 * 0.45) = ?

The progression of the instruction
is not logical. The original instruction
states that the cost of chicken is 3
per kilogram, and then in the evolved
instruction it contradicts this by
stating that the cost of chicken is 2
per kilogram.

Table 6: Issue Examples A.

(small) and Mixtral-8x7B (large). (To ensure the857

fairness of the experiment, we sampled an equal858

amount of data from MetaMath and performed fine-859

tuning) 860

In the code generation, Code Alpaca (Chaud- 861

hary, 2023) is selected as the seed data and evol 862

13



Issue ExampleIssue Name Issue Explanation Original Instruction Evolved Instruction Reason

Lack of clarity and
coherence

Make the instruction less clear
or more confusing, introduce
unnecessary complications, or
include irrelevant and unrelated
variables.

Nedy can eat 800 grams of crackers from
Monday to Thursday, but no more than 200
grams per day. If Nedy ate 2x on Friday,
1/2x on Saturday, and 1/2x on Sunday,
and Nedy is eating chocolate chip cookies,
how many crackers did Nedy eat in all from
Monday to Sunday?

Nedy can eat y grams of saltine crackers with
peanut butter from Monday to Thursday, but
no more than 200 grams per day, and only
after 5 pm, while standing on one foot,
blindfolded, and reciting the alphabet backward.
If Nedy ate 2x on Friday, 1/2x on Saturday,
and 1/2x on Sunday, how many saltine crackers
with peanut butter did Nedy eat in all from
Monday to Sunday, while wearing a hat and
sunglasses and listening to classical music?

The evolved instruction has lost its
clarity and consistency with the
original instruction. The conditions
for Nedy to eat crackers have become
absurd and unrealistic, such as standing
on one foot, blindfolded, and reciting
the alphabet backward, which
unnecessarily complicates the instruction.

Inappropriate increase in
complexity

Introduce a level of complexity
that is not supported by the
provided information or is
unrelated to the original problem.

Hawkeye is driving his electric bike to
his aunt’s place, which is now 60 miles
away. He has to charge his battery for
$3.5 per charge, and he needs to charge
it five times due to the increased
distance. However, his cousin needs a
ride to a nearby town that is 20 miles
away, and Hawkeye needs to drop him
off first. His cousin offers to pay for
half of the battery charging costs, which
total $17.50 including tax and a service
fee of $2. On the way, it starts raining
heavily, making the journey more difficult.

Hawkeye is riding his electric bike, which has
a maximum speed of 30 mph and a battery that
needs to be charged every 30 miles. He is on
his way to his aunt’s place, which is now 100
miles away. However, his battery malfunctions
after 40 miles, and he has to stop and fix it,
which takes 20 minutes. On the way, he encounters
a toll road that costs $5, and he has to take a
detour to avoid a construction site, adding an
extra 10 miles to the journey. Each time he
charges his battery, it takes 30 minutes, and
he needs to charge it five times, costing him
$17.50 including tax and a service fee of $2.
His cousin needs a ride to the nearby town, which
is 20 miles away, to catch a flight. His cousin
offers to pay for half of the battery charging
costs. On the way, there is a thunderstorm warning
in effect, making the journey more difficult.

The evolved instruction introduces a lot
of new elements (bike’s maximum speed,
battery malfunction, toll road, construction
site, thunderstorm warning) that do not
directly evolve from the original
instructions.

Decrease in complexity
Simplify the problem instead of
making it more complex.

Marcus wants to buy a new pair of shoes.
He decided to pay not more than $130 for
them. He found a pair for $120, on which
he got a discount of 30%. How much money
will he manage to save by buying these
shoes and not spending the assumed maximum
amount?

Marcus wants to buy a new pair of leather shoes.
He decided to pay not more than 130 for them.
He found a pair for 120, on which he got a
discount of 30%. The original price of the shoes
was 171.43. After the discount, the final price
of the shoes is 84. Marcus managed to save $36.43
by buying these shoes and not spending the assumed
maximum amount. He saved 21.26% of the original
price, which is more than 20%. Therefore, Marcus
will buy the shoes.

The complexity of evolved instruction is
lower than that of original instruction.
In evolved instruction, the answer to the
problem is included in the instruction,
which simplifies the problem instead of
making it more complex.

Incorrect evolution of
the instruction

Introduce elements that are not
logically connected or a
progressive development of the
previous instruction.

Harry is a professional dog-walker. He
walks dogs for different families on
different days of the week. On Sunday,
he walks 3 dogs for 7 each. On Monday,
he walks 7 dogs for 5 each and 16 for
2 dogs. On Tuesday, he walks 15 dogs for
6 each and 35 for 5 dogs. On Wednesday,
he walks 10 dogs for 5 each and 18 for
3 dogs. On Thursday, he walks 13 dogs for
4 each and 36 for 4 dogs. And on Friday,
he walks 8 dogs for 5 each and 20 for 2
dogs. If he walks all the dogs, how much
money will Harry earn in a week?

Harry is a professional dog-walker who walks dogs
for different families in various locations throughout
the week. If he walks all the dogs, including three
large dogs, seven small dogs, two medium-sized dogs,
fifteen mixed-breed dogs, five purebred dogs, ten
rescue dogs, three therapy dogs, thirteen senior
dogs, four puppies, eight working dogs, and two
show dogs, he will earn a total of $493.

The evolved instruction did not evolve
from original instruction. It did not
maintain the complexity or structure
of the previous stages, and it did not
provide a clear question for calculation.

Irrelevant increase in
complexity

Introduce additional variables
or conditions that do not
increase the complexity of the
task in a relevant or logical
way.

Tabitha has 50 dollars. She gives her mom
15 dollars and invests half of what is left
in the stock market for 1 year, with a 10%
tax. She spends some money on 15 items that
cost 1 dollar each, with a 10% discount and
a 15% tip. Tabitha also has a loan of 5
dollars that she has to pay off. How much
money does Tabitha have left after all
these transactions?

Tabitha has 50 dollars. She gives her mom 15
dollars and invests half of what is left in
the stock market for 1 year, with a 15% tax.
She spends some money on 20 items that cost
1 dollar each, with a 20% discount and a 25%
tip. Tabitha also has a loan of 10 dollars
that she has to pay off. After reinvesting
the profits from the stock market for another
year, how much money does Tabitha have left
after all these transactions?

The evolved instruction did not evolve
from original instruction. The question
at the end of evolved instruction
introduces a new concept (reinvesting
profits) that was not present in the
previous stages, and it does not
clearly build on the previous stages.

Table 7: Issue Examples B

LLM is set to GPT-3.5-turbo, and the optimizer863

LLM to GPT-4. About 20K evolved data is ob-864

tained respectively through Evol-Instruct and Auto865

Evol-Instruct, and instruction tuning is performed866

on CodeLlama-13B-Python (Roziere et al., 2023)867

(small) and DeepSeek-Coder-Base-33B (Guo et al.,868

2024) (large).869

D.2 Hyperparameters in Auto Evol-Instruct870

During the Auto Evol-Instruct process, we config-871

ure the mini-batch size to 10, the development set872

size to 50, the optimizer LLM temperature to 0.6,873

its top p to 0.95, and the evol LLM temperature to874

0. We also set the total optimization steps to 10,875

with 5 multiple optimizations performed in each876

step by default. Unless specified otherwise, we877

conduct only one round of evolving on the instruc-878

tions and generate corresponding responses. The879

experiments are performed using the Azure Ope-880

nAI ChatGPT API and GPT-4 API. 881

D.3 Training Details 882

We employ DeepSpeed Zero-Stage 3 (Ren et al., 883

2021) on eight NVIDIA Tesla A100 GPUs to train 884

models. For the integration of multi-turn conver- 885

sations, we use the Vicuna-style template. In all 886

experiments of this paper, the training parameters 887

are set with a maximum input length of 2048. For 888

models trained based on Mistral-7b, we set the 889

batch size to 128, train for 4 epochs, and set the 890

learning rate to 5e-6. For models trained based 891

on CodeLlama-13B-Python and DeepSeek-Coder- 892

Base-33B, we set the batch size to 192, train for 3 893

epochs, and set the learning rate to 2e-5. For the 894

Mixtral-8x7B model, we set the batch size to 200, 895

train for 4 epochs, and set the learning rate to 5e-6. 896

14



Weak Evolving Method

You are an Instruction Rewriter that rewrites the given #Instruction# into a 

more complex version.

 

Just provide the #Finally Rewritten Instruction# without any explanation.

 

 #Instruction#:

{Instruction}

Figure 9: Weak Initial Evolving Method.

E Baseline897

We compare the method proposed in this paper898

with the following models:899

(1) Closed-Source Models: These include lead-900

ing LLMs like OpenAI’s GPT-3.5 and GPT-4 (Ope-901

nAI, 2023).902

(2) Open-Source Base Models: We compare903

our method with a variety of open-source base mod-904

els such as LLaMA-2 (Touvron et al., 2023b), Mis-905

tral (Jiang et al., 2023), and CodeLlama (Roziere906

et al., 2023).907

(3) Open-Source Instruction-Tuned Models:908

Include instruction tuning models like Vicuna (Chi-909

ang et al., 2023).910

(4) Direct Instruction Tuning with Seed Data:911

We use the same seed instruction data as in our912

method to conduct direct instruction tuning on the913

base model.914

(5) Instruction Evolution Methods: We mainly915

compare with Evol-Instruct (Xu et al., 2023; Luo916

et al., 2023a,b) that requires human experts in-917

volved. To be fair, we will use the exact same918

evol LLM to evolve instruction datasets such as919

ShareGPT, GSM8K, and CodeAlpaca.920

F Contamination Test921

We employ (Liu et al., 2023a) proposed method-922

ology for conducting a contamination assessment923

on augmented data, utilizing n-gram matches as a924

measure. The experimental results are shown in925

the Table 8.926

G Cost Comparison927

We compare the total number of API calls made by928

Auto Evol-Instruct and Evol Instruct. The results929

are in the Table 9.930

GSM 8K
Method 13-Gram Match 8-Gram Match Total Size
Raw 44 202 7 K
MetaMath 32 150 7 K
Evol Instruct 4 87 7 K
Auto Evol-Instruct 10 133 7 K

MT-Bench
Raw 0 2 2 W
Evol Instruct 0 2 2 W
Auto Evol-Instruct 0 4 2 W

HumanEval
Raw 0 22 2 W
Evol Instruct 4 80 2 W
Auto Evol-Instruct 2 63 2 W

Table 8: Contamination Test. We conduct a Contamina-
tion Test on the pre-and post-evolution data of GSM 8K
(about 7 K), Alpaca (about 20 K), Code Alpaca (about
20 K).

Dataset Datasize Evol Instruct Auto Evol-Instruct
ShareGPT 10 K 100000 106120 (+6.12%)
GSM 8K 7 K 14000 20120 (+43.7%)

Code Alpaca 20 K 40000 46120 (+15.3%)

Table 9: Estimating API calls for Evol Instruct and Auto
Evol-Instruct. Each single-round instruction evolution
and response generation requires one API call. For
multi-round dialogues such as ShareGPT, each round
is evolved separately, with an average of 5 rounds per
dialogue assumed for estimation purposes.

H Case Study 931

We use GSM 8K to illustrate the dynamic changes 932

of the evolving method during the Auto Evol- 933

Instruct process. Figures 10 to Figures 14 depict 934

the transition from the initial evolving method to 935

the 15th step’s evolving method. Table 10 illus- 936

trates examples of how the evolving method is op- 937

timized at each step based on the previous one. 938

It’s important to note that the table just showcases 939

sample examples and does not comprehensively 940

represent the entire optimization process. 941

15



Original Instruction Evolving
Method Evolved Instruction Feedback

Updated
Evolving
Method

Updated Evolved Instruction Explanation

Natalia sold clips to 48
of her friendsin April,
and then she sold half
as many clips in May.
How many clips did
Natalia sell altogether
in April and May?

Step 0(Figure 10)

Natalia, in April, managed
to distribute a total of
clips to precisely 48
individuals categorized as
friends, and subsequently,
in May, she managed to
distribute exactly half the
number of clips she did in
the prior month. Determine
the cumulative total of
clips Natalia distributed
over the span of the two
months.

Redundancy: The use of phrases
like "managed to distribute"
and "categorized as friends"
is redundant and does not
add value to the complexity
in terms of deepening the
problem’s challenge. Instead,
it merely complicates the
language unnecessarily.
Clarity: The rewritten
instruction loses clarity by
incorporating verbose language
that could confuse the reader
without actually enhancing the
instructional or problem-solving
complexity.

Step 1(Figure 11)

In April, Natalia sold clips
to 48 friends. In May, she
sold an amount equal to half
the number of clips sold in
April. Calculate the total
number of clips Natalia sold
in these two months,
considering the changing
quantities each month.

This evolved version maintains
the original problem’s essence
while introducing a clearer
challenge focused on mathematical
relationships and understanding
variable quantities across two
periods.

Henry took 9 pills a day
for 14 days. Of these 9
pills, 4 pills cost 1.50
each, and the other pills
each cost 5.50 more. How
much did he spend in
total on the pills?

Step 1(Figure 11)

Henry, for a period of 14
days, consumed 9 pills
daily. Out of these, 4
pills were priced at 1.50
each, and the remaining 5
pills were priced at 7.00
each, which is 5.50 more
than the cost of the cheaper
pills. Calculate Henry’s
total expenditure
for all the pills over
the 14 days.

Unnecessary Complexity: The
evolved instruction introduces
detailed breakdowns of costs
in a way that may confuse the
basic arithmetic problem about
summing costs, without
adding substantive educational
value.
Over-specification:
The instruction specifies the
number of days and pills in
detail in each sentence, which
can be redundant and may
detract from the clarity and
simplicity needed for
understanding the mathematical
calculation required.

Step2(Figure 12)

Henry took 9 pills daily
over a two-week period. Four
of these pills each cost
1.50, and the rest cost
7.00 each. Calculate the
total amount Henry spent
on the pills during this
period.

This version addresses the initial
issues by removing redundant
details and focusing on the
arithmetic operations required
to solve the problem, thus
maintaining the relevance and
educational value of the exercise.

Table 10: Case Study illustrates how the evolving method is optimized at each step based on the previous one. The
"Original Instruction" represents the instruction to be evolved, "Evolving Method" represents the current evolving
method, "Evolved Instruction" is the instruction evolved by the Evol LLM using the evolving method, "Feedback"
represents issues identified by the optimizer LLM through Evol Trajectory Analysis of the evolved instruction,
"Updated Evolving Method" represents the evolving method optimized by the optimizer LLM based on the feedback,
and "Updated Evolved Instruction" represents the instruction evolved by the updated evolving method guided by the
Evol LLM. It’s important to note that the table just showcases sample examples and does not comprehensively
represent the entire optimization process.

Evolving Method in Step 0 
(Initial Evolving Method)

You are an Instruction Rewriter that rewrites the given #Instruction# into a more complex version.

 Please follow the steps below to rewrite the given "#Instruction#" into a more complex version.

 Step 1: Please read the "#Instruction#" carefully and list all the possible methods to make this instruction more 

complex (to make it a bit harder for well-known AI assistants such as ChatGPT and GPT4 to handle). Please do 

not provide methods to change the language of the instruction!

 Step 2: Please create a comprehensive plan based on the #Methods List# generated in Step 1 to make the 

#Instruction# more complex. The plan should include several methods from the #Methods List#. 

 Step 3: Please execute the plan step by step and provide the #Rewritten Instruction#. #Rewritten Instruction# can 

only add 10 to 20 words into the "#Instruction#".

 Step 4: Please carefully review the #Rewritten Instruction# and identify any unreasonable parts. Ensure that the 

#Rewritten Instruction# is only a more complex version of the #Instruction#. Just provide the #Finally Rewritten 

Instruction# without any explanation.

 Please reply strictly in the following format:

 Step 1

#Methods List#:

 Step 2

#Plan#: 

 Step 3

#Rewritten Instruction#:

 Step 4

#Finally Rewritten Instruction#:

 #Instruction#:

Evolving Method in Step 3

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions.

 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing 

more variables or making the existing variables dependent on others. For constants, consider changing them 

to variables or making them dependent on other factors. For operations, consider introducing more complex 

operations or multiple steps. For conditions, consider adding more conditions or making the existing 

conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent 
and relevant to the initial problem context. The plan should not just randomly add complexity but should make the 

problem more interesting or challenging in a meaningful way.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 

the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5\n#Finally Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 6

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions. 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the 

problem to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 
the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#:

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5
#Finally Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 12

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions.
 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the problem 

to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 
the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Step 6: Ensure that the complexity increase is consistent and logical. Avoid introducing new conditions or 

variables that are not related to the initial problem. The complexity should evolve from the initial problem and 

not transform it into a different problem.

Step 7: Test the rewritten instruction to ensure that it is solvable and that the complexity has indeed increased. If the 

problem is too difficult or impossible to solve, revise it as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5

#Revised Instruction#:

Step 6

#Consistency Check#:

Step 7

#Final Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 15

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions. 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 
making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the problem 

to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 

the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Step 6: Ensure that the complexity increase is consistent and logical. Avoid introducing new conditions or variables that 

are not related to the initial problem. The complexity should evolve from the initial problem and not transform it into a 

different problem.

Step 7: Test the rewritten instruction to ensure that it is solvable and that the complexity has indeed increased. If the 

problem is too difficult or impossible to solve, revise it as necessary. If the complexity of the instruction decreases at 
any stage, go back to the previous stage and revise the instruction to maintain a consistent increase in 

complexity.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5
#Revised Instruction#:

Step 6

#Consistency Check#:

Step 7

#Final Rewritten Instruction#:

#Instruction#:

Figure 10: Evolving method at optimization step 0 (initial evolving method).

16



Evolving Method in Step 0 
(Initial Evolving Method)

You are an Instruction Rewriter that rewrites the given #Instruction# into a more complex version.

 Please follow the steps below to rewrite the given "#Instruction#" into a more complex version.

 Step 1: Please read the "#Instruction#" carefully and list all the possible methods to make this instruction more 

complex (to make it a bit harder for well-known AI assistants such as ChatGPT and GPT4 to handle). Please do 

not provide methods to change the language of the instruction!

 Step 2: Please create a comprehensive plan based on the #Methods List# generated in Step 1 to make the 

#Instruction# more complex. The plan should include several methods from the #Methods List#. 

 Step 3: Please execute the plan step by step and provide the #Rewritten Instruction#. #Rewritten Instruction# can 

only add 10 to 20 words into the "#Instruction#".

 Step 4: Please carefully review the #Rewritten Instruction# and identify any unreasonable parts. Ensure that the 

#Rewritten Instruction# is only a more complex version of the #Instruction#. Just provide the #Finally Rewritten 

Instruction# without any explanation.

 Please reply strictly in the following format:

 Step 1

#Methods List#:

 Step 2

#Plan#: 

 Step 3

#Rewritten Instruction#:

 Step 4

#Finally Rewritten Instruction#:

 #Instruction#:

Evolving Method in Step 1

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions.

 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing 

more variables or making the existing variables dependent on others. For constants, consider changing them 

to variables or making them dependent on other factors. For operations, consider introducing more complex 

operations or multiple steps. For conditions, consider adding more conditions or making the existing 

conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent 
and relevant to the initial problem context. The plan should not just randomly add complexity but should make the 

problem more interesting or challenging in a meaningful way.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 

the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5\n#Finally Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 2

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions. 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the 

problem to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 
the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#:

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5
#Finally Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 12

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions.
 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the problem 

to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 
the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Step 6: Ensure that the complexity increase is consistent and logical. Avoid introducing new conditions or 

variables that are not related to the initial problem. The complexity should evolve from the initial problem and 

not transform it into a different problem.

Step 7: Test the rewritten instruction to ensure that it is solvable and that the complexity has indeed increased. If the 

problem is too difficult or impossible to solve, revise it as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5

#Revised Instruction#:

Step 6

#Consistency Check#:

Step 7

#Final Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 15

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions. 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 
making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the problem 

to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 

the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Step 6: Ensure that the complexity increase is consistent and logical. Avoid introducing new conditions or variables that 

are not related to the initial problem. The complexity should evolve from the initial problem and not transform it into a 
different problem.

Step 7: Test the rewritten instruction to ensure that it is solvable and that the complexity has indeed increased. If the 

problem is too difficult or impossible to solve, revise it as necessary. If the complexity of the instruction decreases at 
any stage, go back to the previous stage and revise the instruction to maintain a consistent increase in 

complexity.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5
#Revised Instruction#:

Step 6

#Consistency Check#:

Step 7

#Final Rewritten Instruction#:

#Instruction#:

Figure 11: Evolving Method at Optimization Step 1. This includes terms related to mathematical proficiency like
“variables”, “constants”, “operations”, and “conditions”. It also encourages the model to enhance the mathematical
complexity of the instructions by introducing more variables or making existing variables dependent on others.
Furthermore, it emphasizes the need for changes to be coherent and relevant to the initial problem context.

17



Evolving Method in Step 0 
(Initial Evolving Method)

You are an Instruction Rewriter that rewrites the given #Instruction# into a more complex version.

 Please follow the steps below to rewrite the given "#Instruction#" into a more complex version.

 Step 1: Please read the "#Instruction#" carefully and list all the possible methods to make this instruction more 

complex (to make it a bit harder for well-known AI assistants such as ChatGPT and GPT4 to handle). Please do 

not provide methods to change the language of the instruction!

 Step 2: Please create a comprehensive plan based on the #Methods List# generated in Step 1 to make the 

#Instruction# more complex. The plan should include several methods from the #Methods List#. 

 Step 3: Please execute the plan step by step and provide the #Rewritten Instruction#. #Rewritten Instruction# can 

only add 10 to 20 words into the "#Instruction#".

 Step 4: Please carefully review the #Rewritten Instruction# and identify any unreasonable parts. Ensure that the 

#Rewritten Instruction# is only a more complex version of the #Instruction#. Just provide the #Finally Rewritten 

Instruction# without any explanation.

 Please reply strictly in the following format:

 Step 1

#Methods List#:

 Step 2

#Plan#: 

 Step 3

#Rewritten Instruction#:

 Step 4

#Finally Rewritten Instruction#:

 #Instruction#:

Evolving Method in Step 1

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions.

 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing 

more variables or making the existing variables dependent on others. For constants, consider changing them 

to variables or making them dependent on other factors. For operations, consider introducing more complex 

operations or multiple steps. For conditions, consider adding more conditions or making the existing 

conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent 
and relevant to the initial problem context. The plan should not just randomly add complexity but should make the 

problem more interesting or challenging in a meaningful way.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 

the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5\n#Finally Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 2

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions. 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 
steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the 

problem to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 
the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#:

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5
#Finally Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 12

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions.
 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the problem 

to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 
the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Step 6: Ensure that the complexity increase is consistent and logical. Avoid introducing new conditions or 

variables that are not related to the initial problem. The complexity should evolve from the initial problem and 

not transform it into a different problem.

Step 7: Test the rewritten instruction to ensure that it is solvable and that the complexity has indeed increased. If the 

problem is too difficult or impossible to solve, revise it as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5

#Revised Instruction#:

Step 6

#Consistency Check#:

Step 7

#Final Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 15

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions. 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 
making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the problem 

to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 

the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Step 6: Ensure that the complexity increase is consistent and logical. Avoid introducing new conditions or variables that 

are not related to the initial problem. The complexity should evolve from the initial problem and not transform it into a 
different problem.

Step 7: Test the rewritten instruction to ensure that it is solvable and that the complexity has indeed increased. If the 

problem is too difficult or impossible to solve, revise it as necessary. If the complexity of the instruction decreases at 
any stage, go back to the previous stage and revise the instruction to maintain a consistent increase in 

complexity.

Please reply strictly in the following format:

Step 1
#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5
#Revised Instruction#:

Step 6

#Consistency Check#:

Step 7

#Final Rewritten Instruction#:

#Instruction#:

Figure 12: Evolving Method at Optimization Step 2 makes new optimizations based on Step 1. This prompt requires
avoiding the introduction of irrelevant concepts or complicating the problem to the point of changing its nature. It
also necessitates ensuring a smooth and gradual progression of complexity.

18



Evolving Method in Step 0 
(Initial Evolving Method)

You are an Instruction Rewriter that rewrites the given #Instruction# into a more complex version.

 Please follow the steps below to rewrite the given "#Instruction#" into a more complex version.

 Step 1: Please read the "#Instruction#" carefully and list all the possible methods to make this instruction more 

complex (to make it a bit harder for well-known AI assistants such as ChatGPT and GPT4 to handle). Please do 

not provide methods to change the language of the instruction!

 Step 2: Please create a comprehensive plan based on the #Methods List# generated in Step 1 to make the 

#Instruction# more complex. The plan should include several methods from the #Methods List#. 

 Step 3: Please execute the plan step by step and provide the #Rewritten Instruction#. #Rewritten Instruction# can 

only add 10 to 20 words into the "#Instruction#".

 Step 4: Please carefully review the #Rewritten Instruction# and identify any unreasonable parts. Ensure that the 

#Rewritten Instruction# is only a more complex version of the #Instruction#. Just provide the #Finally Rewritten 

Instruction# without any explanation.

 Please reply strictly in the following format:

 Step 1

#Methods List#:

 Step 2

#Plan#: 

 Step 3

#Rewritten Instruction#:

 Step 4

#Finally Rewritten Instruction#:

 #Instruction#:

Evolving Method in Step 3

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions.

 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing 

more variables or making the existing variables dependent on others. For constants, consider changing them 

to variables or making them dependent on other factors. For operations, consider introducing more complex 

operations or multiple steps. For conditions, consider adding more conditions or making the existing 

conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent 

and relevant to the initial problem context. The plan should not just randomly add complexity but should make the 

problem more interesting or challenging in a meaningful way.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 

the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5\n#Finally Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 6

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions. 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the 

problem to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 
the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#:

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5

#Finally Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 12

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions.

 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the problem 

to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 
the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Step 6: Ensure that the complexity increase is consistent and logical. Avoid introducing new conditions or 

variables that are not related to the initial problem. The complexity should evolve from the initial problem and 

not transform it into a different problem.

Step 7: Test the rewritten instruction to ensure that it is solvable and that the complexity has indeed increased. If the 

problem is too difficult or impossible to solve, revise it as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5

#Revised Instruction#:

Step 6

#Consistency Check#:

Step 7

#Final Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 15

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions. 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 
making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the problem 

to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 

the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Step 6: Ensure that the complexity increase is consistent and logical. Avoid introducing new conditions or variables that 

are not related to the initial problem. The complexity should evolve from the initial problem and not transform it into a 

different problem.

Step 7: Test the rewritten instruction to ensure that it is solvable and that the complexity has indeed increased. If the 

problem is too difficult or impossible to solve, revise it as necessary. If the complexity of the instruction decreases at 
any stage, go back to the previous stage and revise the instruction to maintain a consistent increase in 

complexity.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5
#Revised Instruction#:

Step 6

#Consistency Check#:

Step 7

#Final Rewritten Instruction#:

#Instruction#:

Figure 13: Evolving Method at Optimization Step 12. Based on the previous step’s prompt, a new “Consistency
Check” process has been added. This aims to ensure that any increase in complexity is consistent and logical, and to
prevent the introduction of new conditions or variables unrelated to the initial problem.

19



Evolving Method in Step 0 
(Initial Evolving Method)

You are an Instruction Rewriter that rewrites the given #Instruction# into a more complex version.

 Please follow the steps below to rewrite the given "#Instruction#" into a more complex version.

 Step 1: Please read the "#Instruction#" carefully and list all the possible methods to make this instruction more 

complex (to make it a bit harder for well-known AI assistants such as ChatGPT and GPT4 to handle). Please do 

not provide methods to change the language of the instruction!

 Step 2: Please create a comprehensive plan based on the #Methods List# generated in Step 1 to make the 

#Instruction# more complex. The plan should include several methods from the #Methods List#. 

 Step 3: Please execute the plan step by step and provide the #Rewritten Instruction#. #Rewritten Instruction# can 

only add 10 to 20 words into the "#Instruction#".

 Step 4: Please carefully review the #Rewritten Instruction# and identify any unreasonable parts. Ensure that the 

#Rewritten Instruction# is only a more complex version of the #Instruction#. Just provide the #Finally Rewritten 

Instruction# without any explanation.

 Please reply strictly in the following format:

 Step 1

#Methods List#:

 Step 2

#Plan#: 

 Step 3

#Rewritten Instruction#:

 Step 4

#Finally Rewritten Instruction#:

 #Instruction#:

Evolving Method in Step 3

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions.

 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing 

more variables or making the existing variables dependent on others. For constants, consider changing them 

to variables or making them dependent on other factors. For operations, consider introducing more complex 

operations or multiple steps. For conditions, consider adding more conditions or making the existing 

conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent 
and relevant to the initial problem context. The plan should not just randomly add complexity but should make the 

problem more interesting or challenging in a meaningful way.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 

the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5\n#Finally Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 6

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions. 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the 

problem to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 
the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#:

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5
#Finally Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 12

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions.
 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 

making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the problem 

to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 
the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Step 6: Ensure that the complexity increase is consistent and logical. Avoid introducing new conditions or 

variables that are not related to the initial problem. The complexity should evolve from the initial problem and 

not transform it into a different problem.

Step 7: Test the rewritten instruction to ensure that it is solvable and that the complexity has indeed increased. If the 

problem is too difficult or impossible to solve, revise it as necessary.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5

#Revised Instruction#:

Step 6

#Consistency Check#:

Step 7

#Final Rewritten Instruction#:

#Instruction#:

Evolving Method in Step 15

Step 1: Carefully read the initial instruction and identify all the elements involved - this includes variables, constants, 

operations, and conditions. 

Step 2: Consider how each element could be made more complex. For variables, this could involve introducing more 

variables or making the existing variables dependent on others. For constants, consider changing them to variables or 
making them dependent on other factors. For operations, consider introducing more complex operations or multiple 

steps. For conditions, consider adding more conditions or making the existing conditions more complex.

Step 3: Formulate a plan to integrate these complexities into the instruction. Ensure that the changes are coherent and 

relevant to the initial problem context. The plan should not just randomly add complexity but should make the problem 

more interesting or challenging in a meaningful way. Avoid introducing irrelevant concepts or complicating the problem 

to the extent of changing its nature.

Step 4: Rewrite the instruction according to the plan. Ensure that the rewritten instruction is still understandable and 

that it accurately represents the initial problem context. The rewritten instruction should only add 10 to 20 words to the 

original instruction. Make sure that the progression of complexity is smooth and gradual.

Step 5: Review the rewritten instruction and check for any inaccuracies or inconsistencies. Make sure that the rewritten 

instruction is a more complex version of the original instruction and not a completely different problem. If any parts of 

the rewritten instruction are unreasonable or do not fit the problem context, revise them as necessary.

Step 6: Ensure that the complexity increase is consistent and logical. Avoid introducing new conditions or variables that 

are not related to the initial problem. The complexity should evolve from the initial problem and not transform it into a 
different problem.

Step 7: Test the rewritten instruction to ensure that it is solvable and that the complexity has indeed increased. If the 

problem is too difficult or impossible to solve, revise it as necessary. If the complexity of the instruction decreases at 
any stage, go back to the previous stage and revise the instruction to maintain a consistent increase in 

complexity.

Please reply strictly in the following format:

Step 1

#Elements Identified#: 

Step 2

#Complexity Additions#: 

Step 3

#Plan#: 

Step 4

#Rewritten Instruction#:

Step 5
#Revised Instruction#:

Step 6

#Consistency Check#:

Step 7

#Final Rewritten Instruction#:

#Instruction#:

Figure 14: Evolving Method at Optimization Step 15. On the basis of the evol prompt at the previous step, a new
constraint has been added, “If the complexity of the instruction decreases at any stage, go back to the previous stage
and revise the instruction to maintain a consistent increase in complexity.”

20


	Introduction
	Background
	Evol-Instruct
	Problem Formulation

	Auto Evol-Instruct
	Initial Evolving Method Design
	Evol Trajectory Analysis
	Evolving Method Optimization
	Instruction Tuning on Evolved Data

	Experiment
	Experimental Setup
	Evaluation Results

	Analysis
	Effect of Initial Evolving Method
	Effect of Multiple Optimizations
	Different Evol LLM
	Mix Rounds Scaling
	Discussion of Complexity and Diversity
	Contamination Test
	Case Study
	Cost Comparison

	Related Work
	Conclusion
	Evolution Failures Detection
	Evolution Issue Examples
	Prompt For Auto Evol-Instruct
	Experimental Details
	Experimental Setup
	Hyperparameters in Auto Evol-Instruct
	Training Details

	Baseline
	Contamination Test
	Cost Comparison
	Case Study

